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ABSTRACT 
By applying the Finite-Discrete Element Method (FDEM) in this study, modelling assumptions, including considerations 
and limitations, such as the application of 2D methods to simulate the 3D effects of tunnel advancement, the effect of the 
out-of-plane stress etc., will be addressed. Additionally specific suggestions will be provided in order to assist with the 
setup of FDEM tunnel models in hard rockmasses and serve as a guide to the practicing engineer for tunnelling projects. 
The specifics associated with such a modelling methodology/strategy, model set-up, calibration and validation (and 
considerations at each stage) are the focus, with the paper also summarizing in a systematic fashion, the subsequent 
checks required of a tunnel design engineer in order to gain confidence with the numerical model as well as the analysis 
process for an underground tunnel excavation. 
 
RÉSUMÉ 
En appliquant la méthode d’éléments discrets finis (FDEM), incluant des hypothèses de modélisation, des considérations 
et des limitations, telles que l’applications des méthodes 2D pour une simulation d’effets en 3D de l'avancement d'un 
tunnel, l'effet du stress hors-plan, etc., sera adressé pour la mise en place des modèles de tunnels FDEM dans les masses 
rocheuses. De plus, ceci servira d’un guide pour les projets de tunneling à l'ingénieur en exercice. Les spécificités d’une 
telle méthodologie/stratégie de modélisation, la configuration, l'étalonnage et les validations d’un modèle (et les 
considérations durant chaque étape) sont les mises au point de ce document. Ce document met également l’accent de 
manière systématique les contrôles ultérieurs exigés d’un ingénieur de conception de tunnel afin que celui-ci obtienne plus 
de confiance avec le modèle numérique et le processus d'analyse pour une excavation de tunnel souterrain. 
 
 
 
1 INTRODUCTION 
Underground excavations are becoming more and more 
common as alternative infrastructure ‘spaces’ as civil 
surface infrastructure becomes more congested and 
constrained. These spaces, serving multiple purposes, 
including: transportation, mining, containment of 
hazardous contaminants, storage of valuable resources 
etc. have become more complex due to modern society’s 
requirements and as a result of the increasing demand in 
underground development. As such, numerous projects 
take place at greater depths under high magnitude 
stresses and within more competent, hard rockmasses. 

Numerical modelling has proven a valuable tool for the 
design process of such projects as it allows the design 
engineers to simulate various conditions and take into 
consideration multiple scenarios in order to obtain a better 
insight of the rockmass response during the excavation 
process and to assist in optimizing the employed design. 
Developed underground excavation and tunnel numerical 
models in most cases are based on traditional failure 
criteria such as the Mohr-Coulomb or the Hoek-Brown 
(Hoek et al. 2002) which depend on the peak shear 
strength of a material to predict its response during an 
excavation process. Work by various researchers 
(Vlachopoulos 2009, Vlachopoulos et al. 2013, Oke et al. 
2014a, Langford et al. 2015) have shown the applicability 
of such an approach within weak rockmasses (i.e. heavily 
fractured, disturbed, and soft rocks) in which high 
magnitude displacements are expected. Under these 

rockmass conditions shearing is the dominant failure 
mechanism and the numerical analysis results are in 
agreement with relevant field observations. 

However, within hard, competent, massive, highly 
interlocked rockmasses at low confinement environments 
around a tunnel excavation boundary, the material 
response in not driven by shear failure. On the contrary, 
brittle failure associated with hard rock underground 
excavations is well documented (Kaiser and McCreath 
1994, Lee et al. 2004, Diederichs et al. 2004) and the 
material response is governed by the tensile strength of the 
rockmass, with the medium failing in extension due to high 
magnitude compressive induced stresses as a result of the 
excavation (Diederichs 2003, Diederichs 2007). Therefore, 
conventional shear based failure criteria are not 
appropriate for capturing this rockmass brittle behaviour 
(Vlachopoulos and Vazaios 2018) and other numerical 
techniques are more appropriate for such instances. 
Different approaches for the numerical simulation of brittle 
failure include the use of continuum modelling and the 
application of a cohesion weakening friction strengthening 
(CWFS) model (Hajiabdolmajid et al. 2002, Diederichs 
2007, Perras and Diederichs 2016), discontinuum 
modelling based on the discrete element method (DEM) 
(Potyondy and Cundall 2004, Shin 2010, Farahmand et al. 
2017), and the hybrid finite-discrete element method 
(FDEM) (Mahabadi 2012, Lisjak et al. 2015, Vazaios et al. 
2018) 



Following the work by Vazaios et al. (2018), and 
Vlachopoulos and Vazaios (2018), the modelling 
procedure of a two-dimensional (2D) numerical model for 
the simulation of a tunnel excavation at great depths in a 
massive rockmass by applying the FDEM method is 
discussed herein. The tunnel scale model is built in the 
numerical package Irazu (Geomechanica Inc. 2017) and 
various aspects of the model are examined in order to 
provide guidelines for the setup of a numerical model at a 
tunnel scale. 
 
2 THE FDEM METHOD 
The combined finite-discrete element method (FDEM) 
merges finite element tools and techniques with discrete 
element algorithms in order to capture the fracturing 
processes. More specifically, finite-element based analysis 
of continua is combined with discrete element-based 
transient dynamics, contact detection and contact 
interaction solutions. The numerical model is comprised of 
large number of deformable bodies that may interact with 
one another and in this process they can break, fracture or 
fragment (Munjiza 2004). Due to the capability of the 
method to allow for the dynamic simulation of multiple 
interacting objects, a simulation can begin with either a 
single intact domain or a collection of discrete intact bodies. 
For the creation of a tunnel scale model the first approach 
is applied as discussed in the next sections. 

Within the FDEM method, which accommodates the 
finite strain elasticity coupled with a smeared crack model 
for the simulation of discontinuous systems, the 
deformation of the bulk material is captured by 3-noded, 
linear-elastic, constant-strain, triangular elements with the 
impenetrability enforced by a penalty function and the 
continuity constrained by bonding forces of interface 
elements in between the triangular elements (Munjiza et al. 
1999), as depicted in Figure 1. 
 

 
Figure 1. Representation of 2D medium using an 
unstructured mesh of 3-noded, triangular elements linked 
by 4-node interface elements. 
 

In order to simulate the fracturing and the progressive 
failure of rock materials, a cohesive-zone approach is 
adopted. By employing this technique, the strength 
degradation of the interface elements allows for the 
progressive failure of rocks (Lisjak et al. 2015), and 
therefore, a macroscopic constitutive model (e.g. Hoek-
Brown) is not required. The main advantage of this 
approach is that the fracturing process only depends on 
induced stresses and strains and the crack trajectories do 

not need to be determined a priori. They are, however, 
controlled by the mesh topology. The peak shear strength 
of the interface elements can be expressed as a function 
of the internal friction angle φ, cohesion c, and the normal 
stress σn. Once the peak shear strength is exceeded, the 
interface element transitions to a softening mode until the 
assigned fracture energy in shear GII is depleted, followed 
by the removal of the “broken” element. In similar fashion, 
the interface elements are assigned a strength in tension, 
and when the peak tensile strength ft is exceeded, the 
interface element “softens” until its fracture energy in 
tension GI is consumed. The reader is referred to Mahabadi 
(2012), Lisjak (2013), and Tatone and Grasselli (2015) for 
more information. 
 
3 MODEL SETUP 
Brittle fracturing within hard rock excavations is controlled 
by extensile cracks along the direction of high magnitude 
compressive stresses forming around the tunnel boundary 
as the in situ stress field changes due to the underground 
opening. Vazaios et al. (2018) demonstrated the potential 
of the FDEM method to capture these complex failure 
mechanisms under low confining stresses by using the well 
documented case of the Underground Research 
Laboratory (URL) Test Tunnel (Martin et al. 1997), located 
in Pinawa, Manitoba in Canada. The numerical model that 
was generated for this purpose is illustrated in Figure 2, 
and hereafter it will be used in this paper as the reference 
model in order to discuss the features, considerations and 
limitations of this modelling approach for deep, 
underground, hard rock excavations. 

 
Figure 2. Tunnel model configuration for the URL Test 
Tunnel created in Irazu. The model is divided into four 
different areas A, B, C and D with the element size being 
0.03-0.5 m, 0.03 m (constant size employed), 0.03-1.5m, 
and 1.5-2.5 m respectively (Vazaios et al. 2018). 
 
3.1 Element size 
In continuum numerical techniques, usually smaller 
element sizes result in higher accuracy results. However, 
as noted by Diederichs (2007), for the simulation of brittle 
processes, small element sizes may lead to unrealistic 
stress and strain localization, with a coarser mesh of higher 
order elements being more preferable to capture the high 
stress gradients of the lower order elements of a finer 
mesh. 

Unlike continuum approaches, in order to capture the 
brittle fracturing processes of hard rock excavations, the 
adopted element size should be small enough relative to 



the scale of the model in order to secure that the generated 
fracture pattern is going to be relatively independent of the 
adopted mesh configuration and that the fracturing 
mechanisms are adequately captured (Gao and Stead 
2014, Farahmand and Diederichs 2015, Tatone and 
Grasselli 2015). For the reference model adopted by 
Vazaios et al. (2018), the selected element size was 
approximately 2% of the tunnel radius R=1.75 m (i.e. 0.03 
m) which is considered adequate for the simulation of brittle 
fracturing. This element size was uniform and was adopted 
for only a smaller sub-domain of the numerical model within 
which material fracturing was expected. In this domain of 
interest, it is strongly advised that a graded mesh be 
avoided and a mesh with a uniform element size is 
required. Larger element sizes as one is moving towards 
the model boundaries (similar technique as that used within 
continuum models) can be adopted and out of the area of 
inters a graded mesh can be used (Figure 2). 
 
3.2 External boundary and boundary conditions 
In most geomechanics problems, a semi-infinite medium 
(i.e. the ground surrounding an excavation) is involved, 
however, the FDEM method, similar to the finite element 
method (FEM) and the discrete element method (DEM) 
requires a finite computational domain. Therefore, the need 
for artificial far-field boundary conditions arises (Mahabadi 
2012). 

For tunnel models using the FEM method, pins and 
rollers are typically used in order to simulate the far field 
conditions depending on the specific requirements of the 
project. For example, for the simulation of a tunnel close to 
the ground surface where the vertical displacement needs 
to be captured, a free boundary is assigned to the ground 
surface, rollers (i.e. zero horizontal displacement) are 
assigned to the sides and pins (i.e. zero horizontal and 
vertical displacements) at the bottom of the tunnel. On the 
contrary, for a deep tunnel there is no such requirement 
and usually pins are utilized along the external boundary. 
In a similar fashion within the FDEM method, the external 
boundaries are assigned a displacement condition for the 
simulation of the far field conditions. However, in dynamic 
problems, these boundary conditions may cause 
unrealistic reflections of outward propagation stress waves 
(Mahabadi 2012). One way to prevent boundary effects is 
by extending the domain boundaries far enough away. This 
is similar to techniques used in FEM tunnel models in which 
the plastic zone surrounding the opening dictates the 
external boundaries (Oke et al. 2014b). However, due to 
the high speed of elastic waves in rock materials, this 
solution is often computationally impractical. A valid 
alternative integrated into Irazu (Geomechanica Inc. 2017) 
is the use of an absorbing (non-reflective) boundary 
condition which allows for the necessary energy 
dissipation. Based on the solution proposed by Lysmer and 
Kuhlemeyer (1969), viscous boundary tractions are used 
to numerically absorb the kinetic energy of incident waves 
(Mahabadi 2012). Based on the work by Lisjak (2013), 
Vazaios et al. (2018), and Vlachopoulos and Vazaios 
(2018), the ratio between the width of the external 
boundary and the diameter of the opening (W/D) should be 
at least between 10 and 15, and an absorbing boundary 
condition should be applied. 

3.3 Field Stresses 
The final stress state, deformation, stability conditions and 
the potential failure mode within the vicinity of an 
underground opening depends on the in situ stress 
distribution and magnitude. In the FDEM method, the 
specified stress state is translated into nodal forces that 
gradually deform the finite element mesh until a static 
equilibrium has been achieved. These assigned stresses 
form the initial conditions of the rockmass prior to the 
excavation. 

For tunnelling projects, and especially for deep tunnels 
in situ stresses are frequently initialized by assigning a 
uniform Cauchy stress tensor in the entirety of the 
modelling domain (deep tunnel assumption). In this way, 
gravity induced stress gradients are neglected, which are 
more appropriate for a tunnels closer to the ground surface. 
 
3.4 Analysis Method for Capturing 3D Effects in 2D 
Since the effect of an excavation in a rockmass is 3D in 
nature, within 2D plain strain analyses, the progressive 
displacement of the tunnel boundary must be recreated in 
order to replicate the gradual loss of confinement due to 
the excavation sequence. 

Within the Irazu software, the face replacement method 
is used in order to replicate the 3D effect. Plane strain 
simulation of tunnel advance in this method involves the 
replacement of the tunnel core with unstressed, elastic 
material of reduced modulus during each step. In this way 
the tunnel boundary is allowed to converge during the 
subsequent model step until the stresses reestablish in the 
tunnel core and a temporary equilibrium is reached 
(Vlachopoulos and Diederichs 2014). 

The reduction of the modulus is performed in a linear 
fashion over a number of steps until the complete removal 
of the excavation material. Since the excavation within the 
FDEM method is a dynamic process, the user must ensure 
that a large number of steps is employed in order to secure 
that pseudo-static stress conditions are maintained at each 
stage of the excavation and dynamic oscillations are 
avoided. If the number of steps in not adequate for the 
simulation of the excavation, then dynamic effects may 
occur which may result in unrealistic fracturing processes 
and damage extents. 
 
3.5 Selection of Penalty Values 
Without the presence of the interface elements, the 
emergent tangent elastic modulus and Poisson’s ratio 
measured in an unconfined compression strength (UCS) 
test should match the input values (Tatone and Grasselli 
2015). However, due to the presence of the interface 
elements that are necessary for the simulation of the 
fracturing processes, the overall effective stiffness of the 
system is reduced as a result of the finite stiffness of these 
elements and the infinitesimal inter-element penetrations. 
To maintain the correct emergent elastic behaviour (Figure 
3) appropriate values of the Young’s modulus, Poisson’s 
ratio, and the penalty terms used have to be selected. 
While large penalty term values ensure that the linear 
elastic response is achieved, smaller time steps are 
required in order to maintain numerical stability during the 
analysis. Therefore, a balance between computational cost 
and the desired material response is required. 



In order to achieve the emergent elastic properties of a 
given rock material, Tatone and Grasselli (2015) used the 
modulus and Poisson’s ratio obtained from laboratory 
testing as input and then calibrated the three penalty terms 
(normal contact penalty, tangential contact penalty, and 
fracture penalty). On the other hand, in terms of the 
simulation of the URL Test Tunnel, Vazaios et al. (2018) 
made an assumption that the penalty terms are an order of 
magnitude mode that Young’s modulus and calibrated the 
modulus and Poisson’s ratio based on that assumption. 
This ensured that the already small time step (due to the 
element size) would not have to be further decreased. 
 
3.6 Selection of Strength Parameters 
Having determined the penalty terms and the deformability 
parameters of the numerical model, the parameters 
controlling the fracturing process of the material can then 
be calibrated. Tatone and Grasselli (2015) suggest that 
cohesion c, friction angle φ, and tensile strength ft can be 
used initially directly from laboratory testing results and the 
fracture energy parameters are determined in order to 
recreate the observed failure mechanisms in UCS and 
Brazilian numerical tests. Furthermore, it is noted that 
multiple combinations of fracture parameters can yield the 
same peak macroscopic strength. 

For a tunnel scale model, however, this calibration can 
be more complicated as the in situ rockmass strength is 
almost always lower than the strength obtained in the lab. 
For the simulation of the URL Test Tunnel, Vazaios et al. 
(2018) initially attempted to calibrate a large scale UCS and 
Brazilian test in order to determine a set of parameters 
yielding the same UCS and indirect tensile strength as the 
massive granite of the URL (Martin 1994). However, once 
these strength parameters were applied in a tunnel scale 
model, no fracturing was observed (Vazaios and 
Vlachopoulos 2017), hence, indicating that reduced 
strength parameter values should be used. 

The second phase of the calibration process focused 
on using the laboratory test results for c, φ, and ft and adjust 
GI and GII to capture the v-shaped notch observed at the 
URL Test Tunnel. Slight adjustments of the c, φ, and ft 
allowed for the replication of both the damage extent and 
the failure mechanism (spalling) within the numerical model 
based on field observations, as shown in Figure 3. By using 
these established strength parameters within a UCS, 
numerical test showed that the UCS strength of the 
rockmass in situ is almost half of what reported from lab 
testing (Figure 4); a finding consistent with other 
researchers (Hajiabdolmajid et al. 2002, Potyondy and 
Cundall 2004, Cai and Kaiser 2014). In a similar fashion, 
Lisjak et al. (2015) also reported that calibration of a tunnel 
scale model based on laboratory tests results does not 
yield results consistent with in situ observations and 
calibration of the tunnel scale model has to be performed 
based on material response observed in the field. 
 
3.7 Damping Coefficient 
For quasi-static problems, such as a tunnel excavation, a 
critical damping factor should be used in order to dissipate 
unwanted dynamic oscillations. Higher values of the 
damping coefficient suppress high-frequency stress 
waves, hence, resulting in the in the replication of quasi- 

 
Figure 3. (a) Photograph of the URL Test Tunnel (after 
Diederichs 2007) showing the damage profile observed in 
situ. (b) Damage profile from the FDEM model (highlighted 
black) after the completion of the numerical analysis. 
Fractures in extension (Mode I) are red and fractures in 
shear (Mode II) are green (Vazaios et al. 2018). 
 

 
Figure 4. Stress-strain curves obtained from the UCS test 
using calibrated strength parameters for the interface 
elements (Vazaios et al. 2018). 
 



-static conditions (Tatone and Grasselli 2015). However, by 
increasing significantly the viscous damping, the time step 
size decreases and therefore a balance needs to be 
maintained as it affects the total computation time. 
 
3.8 Timestep and Analysis Steps 
Having established the aforementioned parameters of the 
analysis for a tunnel scale model, the final step is to 
determine the required timestep size and the number of 
required time steps to run the analysis. 

If the timestep size is too big, the model will not run or 
will undergo numerical instability. On the contrary, very 
small timesteps result in very long computational times if 
results are to be obtained. The timestep size depends on 
several factors which include: the element size (larger 
elements result in larger timesteps while smaller elements 
in smaller timesteps), the density of the material (by 
increasing the material density the timestep size 
increases), the Young modulus of the material (large 
Young moduli values result in smaller timesteps), the 
viscous damping (increase in damping requires smaller 
timesteps), and the penalty terms (increased values of the 
penalty terms decrease the required timestep). In order to 
achieve an optimal timestep, a trial-and-error process is 
required depending on the model requirements and the 
simulated materials. 

Once the timestep size has been established, the 
number of time steps for the analysis have to be 
determined. Typical simulations require from a few 
hundreds of thousands to several million time steps. The 
number of time steps required depends on the timestep 
size, as an analysis with a larger timestep size requires less 
steps than an analysis with a smaller timestep size until 
accurate results are obtained. Based on the work by 
Vazaios et al. (2018), and Vlachopoulos and Vazaios 
(2018) for a timestep size between 4×10-8 s and 6×10-8 s a 
number between 300,000 to 600,000 for the initialization of 
the geostatic stress state, 1,500,000 to 3,000,000 steps for 
the excavation process, and 500,000 to 700,000 for the 
establishment of equilibrium after the complete removal of 
the tunnel core material appears to be adequate for a 
tunnel scale simulation in brittle rocks. Additionally, the 
expected damage extent around the excavation should be 
taken into account as well in order to determine the number 
of time steps required. 
 
4 MODEL VERIFICATION 
After the model has been generated, the user has to 
ensure that that the input and run parameters are 
appropriate and that they simulate the required field 
conditions. In this section, a verification process of the 
model is discussed in order to provide selected preliminary 
guidelines for the user. 
 
4.1 Geostatic Stress State 
Similar to tunnel scale models using the FEM method, prior 
to the excavation, the in situ stresses have to be initialized. 
In nature, an undisturbed rockmass is under static 
equilibrium conditions which means that the field stresses 
are balanced and the rockmass remains undeformed 
unless the in situ stress regime changes. Therefore, in the 
numerical model the initial stresses have to reflect the in 

situ stress state, and after their initialization the resulting 
displacements and velocities have to be of a very low 
magnitude approximating zero. In an FDEM model, an 
adequate number of steps during the establishment of the 
geostatic stresses is important in order to create the 
required field stress regime (Figure 5). 

 
Figure 5. Displacement magnitude contours at the 
completion of the geostatic stage of the model. 
 
4.2 Model Elastic Response 
During the analysis and by assuming that no-fracturing 
occurs, the FDEM model should be able to reproduce the 
results of a FEM analysis given the same conditions, as 
shown in Figure 6. This ensures that the model when 
behaving elastically produces the same results as well 
established solutions. 
 
4.3 Fracturing of Interface Elements 
A properly calibrated model will fracture and form a 
damaged zone surrounding the underground opening, as 
shown in Figure 2. The fracturing process depends on the 
assigned strength parameters of the interface elements (as 
discussed in the previous sections) which once exceeded, 
results in the formation and propagation of cracks. In brittle 
rockmasses the dominant failure mode of the interface 
elements is in tension due to the extensile state that the 
material undergoes as a result of the high compressive 
major principal stresses as the tunnel advances. In Figure 
7, it can be observed the deconfinement that the rockmass 
undergoes at the crown of the excavation and the resulting 
failure due to tension. 
 
5 MODEL VALIDATION 
Following the calibration and verification of the FDEM 
tunnel scale model, the obtained results have to be 
compared to the results of established solutions in order to 
ensure the validity of the model and its results. Numerical 
models developed using the FEM method are usually 
compared to the results of established solutions in order to 



 
Figure 6. Comparison between FDEM and FEM principal 
stress results. The measurements were taken along a 
horizontal line starting at point A (Vazaios and 
Vlachopoulos 2018). 
 
 

 
Figure 7. Crack elements failure envelope and Mohr circles 
of a single crack element failing in extension. 

ensure the validity of the model and its results. Numerical 
models developed using the FEM method are usually 
compared to well-established analytical solutions and field 
observations in order to validate the results. Especially for 
weak rockmasses, shear based failure criteria integrated 
into FEM models have produced good results 
(Vlachopoulos et al. 2013, Oke et al. 2014a, Langford et al. 
2015) which are validated from analytical solutions as well. 
However, that is not the case for brittle failure as the 
extensile fracturing involves complex failure mechanisms 
that are hard to capture based on analytical methods. 

While analytical solutions for the brittle failure of hard 
rocks in tunnel excavations are not readily available, well-
established continuum modelling methods like the CWFS 
model (Hajiabdolmajid et al. 2002) or the damage initiation 
spalling limit (DISL) method (Diederichs 2007) can be used 
for the simulation of brittle fracturing in massive 
rockmasses, and their results can be compared to the 
FDEM model results. Vlachopoulos and Vazaios (2018) 
demonstrated that the results between the continuum 
approach of the DISL method and the discontinuum FDEM 
model for the simulation of the URL Test Tunnel are in good 
agreement; mostly regarding the extent of the HDZ (Figure 
8). Additionally, acoustic emission (AE) and micro-seismic 
(MS) events recorded at the URL Test Tunnel are in good 
agreement with the FDEM results. It has to be noted that 
the calibration of the FDEM model using the URL field 
observations was based on the simulation of the HDZ. The 
EDZ obtained in the numerical model is an emergent 
feature showing that its calibration results in a good 
representation of the material in situ. Additionally, the 
results of large scale UCS models (Figure 4) yield similar 
results to other researchers’ work (Vazaios et al. 2018). 

For the modelling of hard rock excavations by applying 
the FDEM method, the validation of the model can be 
performed by using well-established methodologies of 
brittle failure based on continuum models, with an 
emphasis on massive, hard rockmasses. Validation of the 
numerical model can also be performed based on field 
observations given a specific site, if suitable field data is 
available. 
 
6 CONSIDERATIONS AND LIMITATIONS 
6.1 Mesh Sensitivity 
The calibration of an FDEM model is performed for a given 
element size that has to be small enough in order to be able 
to capture the fracturing processes in brittle rocks as 
discussed earlier. Furthermore, numerical methods 
utilizing a mesh approach for the discretization of the 
modelling domain have an inherent sensitivity to the mesh 
topology, which may affect the fracture trajectories. In order 
to overcome this, a random discretization scheme should 
be adopted. Mahabadi et al. (2012) and Lisjak et al. (2014) 
suggest the use of an unstructured Delaunay triangulation 
scheme that should be applied in order to minimize the 
constraints imposed by the mesh configuration. 

By maintaining the same input parameters but varying 
the element size, an investigation was conducted in order 
to examine its effect on the tunnel scale model response. 
From Figure 9, it can be seen that by transitioning from an 
element size of 0.03 m to 0.05 m and finally to 0.10 m, the 
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system response is becoming stiffer and stronger due to 
the penetration of discrete bodies and the critical openings 
increase with increasing of the element size (Mahabadi 
2012). As observed, the stronger and stiffer configurations 
suppress the extensile cracks and therefore, not only do 
they not replicate the damage extent observed in the field 
but they also fail to replicate the extensile failure 
mechanism in brittle rocks. Therefore, it becomes evident 
that the calibrated strength parameters for one element 
size cannot be used for another, and the calibration 
process has to be repeated for the given element size. 
 
6.2 Density Scaling 
When DEM modelling approaches are employed for the 
simulation of geomaterials, the required computational 
time required poses a major problem for the numerical 
simulation, especially for system with a large number of 
discrete bodies. As previously discussed, in the FDEM 
method, a density increase results in increased timestep 
sizes, and therefore, this may result in less time steps 
required to obtain results and subsequently less 
computational time. Researchers by using other DEM 
methods (Thornton 2000, O’Sullivan and Bray 2004) used 
a density scaling approach in order to reduce the 
computational time. For quasi-static problems this could be 
an appropriate way to shorten simulation times (Zhao 
2011). However, such a technique should be used with 
caution as it may affect significantly the simulation process 
and yield unrealistic results if very high density values are 
used. 
 
6.3 Out-of-Plane Stress 
Within the 2D FDEM method, the crack elements do not 
account for the influence of the out-of-plane stress 
component of the in situ stresses. Therefore, during the 
simulation, fracture nucleation and growth are determined 
only by the in-plane stresses, and the deconfinement effect 
of the tunnel core softening. In this way, however, the 
impact of the intermediate principal stress on the rockmass 
strength is neglected, and its effect should be taken into 
account through the proper calibration of the input strength 
parameters based on field observations. 
 
7 SUMMARY 
The numerical simulation of hard rock excavations can be 
particularly complicated and challenging, as a result of the 
complexity of the failure mechanisms that are required to 
be captured. In this study, a comprehensive overview of the 
different components which have to be taken into 
consideration for the numerical modelling of deep 
underground excavations within hard, massive 
rockmasses using the FDEM method was presented and 
discussed. Furthermore, a set of specific guidelines for the 
initial model setup and determination of its input 
parameters was provided (Figure 10). The authors would 
like to note that the development of a numerical model is 
tied to the in situ specific conditions of a project and the 
field observations should guide and update the numerical 
model as required. 

 
Figure 8. Damage profiles obtained from the FDEM model 
and the FEM model using the DISL approach (modified 
after Vlachopoulos and Vazaios 2018). 
 

 
Figure 9. Failure mechanisms and damage extent for the 
general model configuration shown in Figure 2 but different 
nominal element sizes for the refined area of the model: (a) 
0.03 m, (b) 0.05 m, and (c) 0.10 m. Tensile fractures are 
red and shear fractures are green. 
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