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ABSTRACT 
A new constitutive model based on critical state theory is introduced to model behavior of granular material. This new 
model is a bounding surface plasticity model in multilaminate framework that allows capturing the effects of inherent and 
induced anisotropy as well as principal stress rotation. Multilaminate framework is a tool and cannot predict the behavior 
of material independently from a constitutive model. Multilaminate framework is semi-micromechanical tool based 
on formulating a number of planes with varying orientations over a virtual unit sphere around a stress point. 
The constitutive equations of the model are derived within the context of non-linear elastic behavior and plastic sliding of 
interfaces of predefined planes from multilaminate framework. Presented here are multilaminate framework details, the 
constitutive equations of the original bounding surface model in the multilaminate framework and sensitivity analysis of 
key material parameters that clearly show the capabilities and flexibility of the presented constitutive model in predicting 
drained and undrained behavior of granular material.  

RÉSUMÉ 
Un nouveau modèle constitutif basé sur la théorie de l'état critique est introduit pour modéliser le comportement de 
matériaux granulaires. Ce nouveau modèle est un modèle de consistance de surface limite dans un cadre multi-laminé 
qui permet de capturer les effets de l'anisotropie inhérente et induite ainsi que la rotation de stress principale. Le cadre 
multi-laminé est un outil et ne peut pas prédire le comportement de matériaux de manière indépendante à partir d'un 
modèle constitutif. Le cadre multi-laminé est un outil semi-micromécanique basé sur la formulation d'un certain nombre 
de plans avec des orientations différentes sur une sphère d'unité virtuelle autour d'un point de stress. 
Les équations constitutives du modèle sont dérivées dans le contexte du comportement élastique non-linéaire et du 
glissement plastique des interfaces des plans prédéfinis à partir du cadre multi-laminé. Nous présentons ici les détails du 
cadre multi-laminé, les équations constitutives du modèle de surface limite original dans le cadre multi-laminé et 
l'analyse de sensibilité des paramètres matériels clés qui montrent clairement les capacités et la flexibilité du modèle 
constitutif présenté pour prédire le comportement drainé et non drainé de matériaux granulaires. 

1 INTRODUCTION 

A numerous number of constitutive models have been 
presented with different capabilities, mostly based on 
experimental observations of material behavior using 
elasticity and plasticity theories. Usefulness of these 
models will be based on various factors such as soil 
grading and texture, presence of water, loading condition, 
etc. To name a few, the following researchers have 
introduced classic constitutive models that have been 
widely used in geotechnical engineering: Drucker et al. 
(1957), Roscoe and Burland (1968), DiMaggio and 
Sandler (1971), Lade (1977), Prevost (1978),  Mroz et al. 
(1981), Ghaboussi and Momen (1982), Desai and 
Faruque (1984), Poorooshasb and Pietruszak (1985), 
Dafalias and Herrmann (1986).  

Taylor (1938) presented a framework referred to as 
multilaminate. Multilaminate framework is semi-
micromechanical tool based on formulating a number of 
planes with varying orientations over a virtual unit sphere 
around a stress point. A weight factor is assigned to each 
plane with respect to the volume of the unit sphere. The 
overall response of the material when subjected to a load 
will then be integrated by summation of the contributions 
of all planes. 

Multilaminate framework is a tool and cannot predict 
the behavior of material independently. A constitutive law 

can be defined in this framework to take advantage of its 
features. By using this framework the overall behavior is, 
obtained by accumulating responses of the defined 
planes. Mathematically, any constitutive law could be 
used in this framework. 

Batdrof and Budiansky (1949) presented a 
multilaminate plasticity theory for metals that considered 
development of plastic shear strain along the direction of 
the shear stress path component.  

Zienkiewicz and Pande (1977) used Batdrof and 
Budiansky’s constitutive model and expanded it to 
fractured rocks. A similar approach was also employed by 
Pande and Pietruszczak (1982) for prediction of 
liquefaction of layered sand called reflecting surface 
model. In the same framework, Bazant and Oh (1983) 
presented a new model referred to as micro-plane for 
analyzing cracking in concrete. Pande and Pietruszczak 
(2001) provided a multilaminate model to describe soil 
anisotropy. Schweiger et al. (2009) provided a 
multilaminate model capable of considering both induced 
and inherent anisotropy for soils. 

An existing bounding surface constitutive model, as 
proposed by Crouch et al. (1994) based on Dafalias and 
Herrmann (1986), is explained in the multilaminate 
framework to introduce a new constitutive model. In this 
article, details of the new constitutive model is presented. 
In addition, a sensitivity analysis has been performed on 



the most influential material parameters to show the 
capabilities and flexibility of the constitutive model in 
capturing drained and undrained behavior of granular 
materials.  
 
2 MULTILAMINATE FRAMEWORK 
 
Using a multilaminate model, one could define a 
numerical relation between the microscopic and 
macroscopic behaviours. An existing bounding surface 
constitutive model, as proposed by Crouch et al. (1994) 
and referred to as unified critical state bounding model 
has been defined in the multilaminate framework.  

The original bounding surface constitutive model uses 
two different radial and deviatoric mapping rules to define 
the loading surface based on the failure surface. Also, an 
innovative approach, based on movement of the mapping 
center are used in this model to observe the rotation of 
the principal stress axes and account for imposed 
anisotropy effects. The intrinsic anisotropy and bedding 
effects can be considered when using the multilaminate 
model by defining different material parameters on 
different planes. 
 
2.1 Definition of Planes and Local Coordinates 
 
To satisfy conditions of the multilaminate framework from 
the engineering viewpoint and reduce high computational 
costs, a limited number of sampling planes are used. 
Considering a good distribution of plastic deformation and 
avoiding high computing time, the choice of 13 
independent planes as shown in Figure 1 is a fair number 
for solution of any three-dimensional problem. 

The components of the unit normal vector of plane i  
(l i, mi and ni) and plane’s weight coefficients (wi) for the 
numerical integration rule are presented in Table 1. The 
coefficients wi have been calculated based on Gauss 
Quadrature numerical integration rule. The presented wi 
are acceptable for a first order tensor and are corrected 
for a second order tensor like (e.g., stress or strain) by 
multiplying the ratio of area for each plane on the unit 
sphere. 

A coordinate system has been used for each plane 
such that one axis is perpendicular to the plane and two 
axes are on the plane. Plastic shear strains are 
considered on the planes. 
 
2.2 Stress and Strain Vectors 
 
In the following equations { } and [ ] denote a 9-element 
vector and a square matrix, respectively. Superscript T 
indicates a transposed array. A superposed dot indicates 
the rate and |  | refers to the norm. Following this notation 

|}{|  is the length of a vector whereas |}{|  represents 
a unit vector ( { } |}{||}{| = ). A comma followed by a 
subscripted variable implies the partial derivative with 
respect to that variable. Bars over the stress quantities 
refer to points on the bounding surface. The effective 
stress, strain and Kronecker’s delta vectors are defined as 
follows: 
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The applied stress vector is proportioned to each 

plane by multiplying related transitive matrix ][ iT  that are 
derived from the unit vectors. The following stress 
components are defined on each plane: 
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The stress ratio of each plane is defined as follows:                                                                                                                                                      

nσ
τζ =       (4) 

 
3 PLASTICITY OF NEW MULTILAMINATE 

BOUNDING SURFACE CONSTITUTIVE MODEL 
 
The plasticity of the new model is generally similar to the 
original model as proposed by Crouch et al. (1994) and 
follows the classic plasticity: 

 
{𝜀𝜀̇} = {𝜀𝜀̇𝑒𝑒} + {𝜀𝜀̇𝑝𝑝}     (5) 

 
which states separate components of elastic {𝜀𝜀𝑒𝑒} and 
plastic {𝜀𝜀𝑝𝑝} strain vectors: 

 
{𝜀𝜀̇} = [𝐶𝐶𝑒𝑒]𝑇𝑇 ∙ {�̇�𝜎} + [𝐶𝐶𝑝𝑝]𝑇𝑇 ∙ {�̇�𝜎}   
[𝐶𝐶𝑒𝑒𝑝𝑝]𝑇𝑇 = [𝐶𝐶𝑒𝑒]𝑇𝑇 + [𝐶𝐶𝑝𝑝]𝑇𝑇    (6) 
 
where ][ eC  and ][ pC  are defined for each plane as: 
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where, iK and iG  are bulk and shear moduli at plane i . 
{ }Q  and { }P  are defined as the unit normal to the loading 
surface and the unit direction of the plastic strain rate, 
respectively. 
 

 



Table 1. Plane’s unit vector components and weight coefficients for numerical integration. 
Plane 1 2 3 4 5 6 7 8 9 10 11 12 13 

N
or

m
al

 A
xi

s l i 
3
3

 3
3

 3
3

−
 3

3
−

 2
2

 2
2

−
 2

2

 2
2

−
 

0  0  1  0  0  

mi 
3
3

 3
3

−
 3

3

 3
3

−
 2

2

 2
2

 
0  0  2

2
−

 2
2

 
0  1  0  

ni 
3
3

 3
3

 3
3

 3
3

 
0  0  2

2

 2
2

 2
2

 2
2

 
0  0  1  

wi 
840
27

 840
27

 840
27

 840
27

 840
32

 840
32

 840
32

 840
32

 840
32

 840
32

 840
40

 840
40

 840
40

 
 
 

 
Figure 1. Planes used in the presented multilaminate constitutive model. 

 

T
eC ][  and T

pC ][  are calculated based on numerical 
integration as follows: 
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The following 4 surfaces are defined in this constitutive 

model: 
 

• Failure surface describing the critical state; 
• Bounding surface recording the previous loading 

dominion and defining the plastic loading surface; 
• Loading surface defining the direction of plastic 

loading; and, 
• Plastic dilatancy surface, which is determined using 

the ratio of volumetric to deviatoric plastic strain. 
 

 
3.1 Failure Surface 
 
For simplicity, in the multilaminate model failure surface is 
assumed as Mohr-Coulomb form instead of the original 
elliptic form. This surface is specified by critical effective 
stress ratio, crζ . The critical state line is shown in Figure 
2. 
 
 

 
3.2 Bounding Surface 
 
The boundary surface includes three sectors: (1) a 
compressive ellipse, (2) a hyperbola and (3) a tensile 
ellipse as shown in Figure 2. The compressive elliptic part 
lies in 

01 nnn σσσ ≤≤  region where Rnn 01
σσ = . R  is a 

material constant ( ∞<≤ R1 ). 
0nσ  varies as a function of 

the volumetric plastic strain and defines the size of 
bounding surface. The compressive ellipse meets the 
normal stress axis perpendicularly. The equation of the 
compressive ellipse is given as: 
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N  is the slope of a line passing from stress origin to 

the common tangent point of ellipse and hyperbola 
sectors. The hyperbola is located in 

1
0 nn σσ <<  region 

and defined as: 
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The gap between N-line and the asymptote to the 

hyperbolic sector is controlled by 
0nA σ⋅ . The last sector 

is a tensile ellipse situated in 0
3

≤≤ nn σσ  region and is 
defined as: 
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3.3 Critical State Line, Normal Consolidation Line and 

Rebound Lines 
 
In this model, the critical state, normal consolidation, and 
rebound lines are defined similar to what Crouch et al. 
(1994) defined by the exception that here the space is

nLne σ−  instead of 3ILne − .  
 

3.4 Hardening/Softening Equation 
 
The most crucial hardening/softening parameter is 

0nσ&

which defines the size of bounding surface (the 
intersection of compressive ellipse with normal stress 
axis). Variation in the amount of this parameter is a 
function of volumetric plastic strain as follows:                      
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Moreover, elastic behavior of the model is not linear, 
and is a function of confining pressure. The elastic 
behavior is not transferred to the planes. The Bulk 
modulus follows the following hyper elastic formulation: 
 

κ
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P and lσ are the average amount of principal stresses 

at the point, and model constant, respectively. lσ  
represents a lower bound below which P  does not have 
any effect on bulk and shear modules. By assuming a 
constant Poisson's ratio υ , tangent shear modulus can 
be defined as: 
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3.5 Loading Surface 
 
The stress point is always located on the loading surface 
that is defined based on the bounding surface using radial 
scaling method in the compressive elliptic sector                
( R

onn σσ > ) and deviatoric scaling method elsewhere       

( R
onn σσ ≤ ). 

β  is defined as the scaling coefficient and defined as: 
 

τ
τβ =      (19) 

 
However, in the case of isotropic loading (stress point 

on the nσ  axis) the it can be calculated as:  
 

( )( ) ( )nnn RR σσσβ −−⋅=
00

11   (20) 
 
The loading surface equation in the radial scaling 

region is defined by substituting ))(()(
00

RR nnn σσβσ −+

for nσ and βτ  for τ  in the compressive sector of the 
bounding surface (Equation 9): 
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The other two sectors of the loading surface are 

defined by replacing nσ  by nσ  for and τ  by βτ  in 
Equations 10 and 11: 
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The direction of plastic loading vector could be 

obtained from the following equation: 
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3.6 Plastic Dilatancy Surface and Plastic Strain 

Direction 
 
Similar to the loading surface, plastic dilatancy surface is 
also passing through the stress point and geometrically 
similar to bounding surface; however, a different scaling 
method is used to define the plastic dilatancy surface from 
the bounding surface. In addition, there is dissimilarity in 
comparison to bounding surface regarding the 
compressive ellipse sector. The power of two in Equation 



 

(9) is changed to gn ; thus, for ∞<< gn2  we have super-

ellipse and for 21 << gn  there is a sub-ellipse: 
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Despite of the fact that the bounding and plastic 

dilatancy surfaces are geometrically identical, the non-
associated flow rule exists as the direction of loading 
increment vector differs from the direction of the plastic 
strain increment vector. The direction of plastic strain 
vector can be evaluated as: 
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The surfaces described above are schematically 

shown in Figure 2.  
 

 
Figure 2. Schematic presentation of the different surfaces 
in bounding surface model. 
 
4 SENSITIVITY OF MATERIAL PARAMETERS 

 
The original constitutive model presented by Crouch et al. 
(1994) is defined by 32 parameters. Crouch et al. (1994) 
stated that in majority of practical cases only 8 
parameters are to be defined and default values may be 
considered for the remaining 24 material parameters. 
Basically, although the values of some of the material 
parameters are different when the constitutive model is 
described in the multilaminate framework, the role of the 
material parameters on prediction of stress-strain 
behavior of soils are the same. 

In this article, a sensitivity analysis has been 
performed to describe the effects of the most important 
material parameters in the multilaminate model and initial 
stress condition on prediction of stress-strain behavior of 
granular soils in drained and undrained conditions and to 
highlight the capabilities and flexibility of the proposed 
model. Table 2 presents the definition of these material 
parameters. 
 

Table 2. Material parameters used in sensitivity analysis. 
 
Material Parameter Definition symbol 
Critical state line slope in e-Lnσn space λ 
Slope of unloading line in e-Lnσn space κ 
Critical state void ratio ecrk 
Critical state line slope in σn - τ space ζcrc 
Parameter for size of boundary surface Ac 
Initial void ratio ein 
Initial mean stress (initial stress state)  σno 

 
Figures 3 to 9 present the effect of variation of the 
parameters stated in Table 2 on drained and undrained 
behavior of a sand. 
 
 
5 SUMMARY 
 
A new constitutive model in multilaminate framework is 
presented for granular materials. This paper discussed 
the constitutive equations of the model based on a non-
linear elastic behavior and plastic behavior at the 
predefined planes from multilaminate framework.  
 
Further, a sensitivity analysis was carried out to show the 
flexibility of this model in prediction of stress-strain 
behavior of granular materials in drained and undrained 
conditions. 
 
  



 

 

 

  
Figure 3. Effects of parameter λ on a) drained stress-
strain behavior, b) drained volumetric behavior, c) 
undrained stress-strain behavior, d) mean effective stress 
versus deviator stress. 

 

 

 

 
 

Figure 4. Effects of parameter κ on a) drained stress-
strain behavior, b) drained volumetric behavior, c) 
undrained stress-strain behavior, d) mean effective stress 
versus deviator stress. 

 
 



 

 

 

 

 

 
Figure 5. Effects of parameter ecrk on a) drained stress-
strain behavior, b) drained volumetric behavior, c) 
undrained stress-strain behavior, d) mean effective stress 
versus deviator stress. 

 
 
 

 

 

 

 
 

Figure 6. Effects of parameter ζcrc on a) drained stress-
strain behavior, b) drained volumetric behavior, c) 
undrained stress-strain behavior, d) mean effective stress 
versus deviator stress. 

 



 

 

 

 

 
 

Figure 7. Effects of parameter Ac on a) drained stress-
strain behavior, b) drained volumetric behavior, c) 
undrained stress-strain behavior, d) mean effective stress 
versus deviator stress. 

 

 

 

 

 
Figure 8. Effects of parameter ein on a) drained stress-
strain behavior, b) drained volumetric behavior, c) 
undrained stress-strain behavior, d) mean effective stress 
versus deviator stress. 

 



 

 

 

 

 
Figure 9. Effects of parameter  σno on a) drained stress-
strain behavior, b) drained volumetric behavior, c) 
undrained stress-strain behavior, d) mean effective stress 
versus deviator stress. 
 

6 REFERENCES 
 
Drucker, D.C., Gibson, R.E., and Henkel, D.l. 1957. Soil 

mechanics and work-hardening theories of plasticity. 
Trans., ASCE, 122, 338-346. 

Roscoe, K.H., and Burland, J.B. 1968. On the generalized 
stress-strain behaviour of ‘wet’ clay. Engineering 
Plasticity. J. Heymann and F. A. Leckie, eds., 
Cambridge University Press, Cambridge, England, 
535-609. 

DiMaggio, F.L. and Sandler, I.S. 1971. Material model for 
granular soils. Journal of Engineering Mechanics Div., 
ASCE, 97 (3), 935-950. 

Lade, P.V. 1977. Elasto-plastic stress-strain theory for 
cohesionless soil with curved yield surfaces. 
International Journal of Solids Structure, 13, 1019-
1035. 

Prevost, J-U. 1978. Plasticity theory for soil stress-strain 
behavior. Journal of Engineering Mechanics Div., 
ASCE, 104 (5), 1177-1194. 

Mroz, Z., Norris, V.A., and Zienkiewicz, O.C. 1981. An 
anisotropic, critical state model for soils subjects to 
cyclic loading. Geotechnique, London, England, 31 
(4), 451-469. 

Ghaboussi, J. and Momen, H., 1982. Modeling and 
analysis of cyclic behavior of sands, G. N. Pande and 
O. C. Zienkiewicz (eds), Soil Mechanics-Transient and 
Cyclic Loads, Wiley, New York, 313-342. 

Desai, C.S., and Faruque, M.O. 1984. Constitutive model 
for (geological) materials.’ Journal of Engineering 
Mechanics, ASCE, 110 (9), 1391-1408. 

Poorooshasb, H.B. and Pietruszczak, S. 1985. On 
yielding and flow of sand; a generalized two-surface 
model, Computers and Geomechanics, 1, 33-58. 

Dafalias, Y.F. and Herrmann, L.R. 1986. Bounding 
surface plasticity. II: Application to isotropic cohesive 
soils, Journal of Engineering Mechanics, 112 (12), 
1263-1291. 

Frantziskonis, G., Desai, C.S., and Somasundaram, S. 
1986. Constitutive model for non-associative behavior. 
Journal of Engineering Mechanics, ASCE, 112 (9), 
932-946. 

Crouch, R.S. and Wolf, J.P. 1994. Unified 3D Critical 
State Bounding Surface Plasticity Model for Soils 
Incorporating Continuous Plastic Loading under Cyclic 
Paths. Part I: Constitutive relations, International 
Journal of Numerical and Analytical Methods in 
Geomechanics, 18, 735-758. 

Taylor G.I. 1938. Plastic strain in metals. Journal of 
Industrial Metals, 62, 307-324. 

Batdorf S.B. and Budiansky B. 1949. A mathematical 
theory of plasticity based on the concept of slip. 
National advisory committee for Aeronautics, T1871. 

Zienkiewicz, O.C., Pande G.N. 1977. Time-dependent 
Multilaminate model of rocks - a numerical study of 
deformation and failure of rock masses, International 
Journal of Numerical and Analytical Methods in 
Geomechanics, 1 (3), 219-247. 

Pande G.N. and Piretruszczak S. 1982. Reflecting surface 
model for soils, proceeding International Symposium 
Numerical Methods in Geomechanics, Zurich, A.A. 
Balkema, Rotterdam, 50-64. 



 

Pande G.N. and Sharma K.G. 1983. Multilaminate model 
of clays, International Journal of Numerical and 
Analytical Methods in Geomechanics, 7 (4), 397-418. 

Bazant Z.P. and Oh B.H. 1983. Micro plane model for 
fracture analysis of concrete structures, Proceeding 
Symposium on the interaction of Non-nuclear 
munitions with structures, published by McGregor & 
Werner, Washington. 

Pietruszczak S. and Pande G.N. 2001. Description of soil 
anisotropy based on multi-laminate framework. Int. 
journal for numerical and analytical methods in 
geomechanics. Vol. 25, pp 197-206 

Sadrnejad S.A., Karimpour H. 2010. A Bounding Surface 
Model for Sand Behaviour under Drained and 
Undrained Conditions, International Journal of Civil 
Engineering 9 (2), 96-110. 

Schweiger, H.F., Wiltafsky, C., Scharinger, F. and Galavi, 
V. 2009. A multilaminate framework for modelling 
induced and inherent anisotropy of soils. 
Geotechnique 59 (2), 87-101. 

 
  

  
 


	1 INTRODUCTION
	2 Multilaminate FRAMEWORK
	2.1 Definition of Planes and Local Coordinates
	2.2 Stress and Strain Vectors

	3 Plasticity of New MULTILAMINATE BOUNDING SURFACE Constitutive Model
	3.1 Failure Surface
	3.2 Bounding Surface
	3.3 Critical State Line, Normal Consolidation Line and Rebound Lines
	3.4 Hardening/Softening Equation
	3.5 Loading Surface
	3.6 Plastic Dilatancy Surface and Plastic Strain Direction

	4 Sensitivity of material parameters
	6 References



