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ABSTRACT 
Probabilistic analysis of slopes with several random variables, complex geometries, and spatial variability of soil properties 
can be carried out using a non-circular random limit equilibrium method (RLEM) search together with an optimization 
technique. Two optimization techniques are coupled with non-circular slope stability analysis in this paper: 1) the wide-
spread Monte Carlo optimization (MCO) technique, and 2) a new surface altering optimization (SAO) method. Both 
approaches are used to minimize the factor of safety for a given slip surface by modifying its geometry. The SAO approach 
is a local optimization method which offers flexibility to find the geometry of a critical slip surface using spline curves. In 
this paper, the results of probabilistic analysis of a tailings dam model using no optimization, optimization using MCO, and 
optimization using SAO are compared. Results show that the SAO approach can capture more failure paths resulting in 
larger computed probabilities of failure, and is five times faster than the MCO approach. 
 
RESUME 
L'analyse probabiliste des pentes tenant compte de plusieurs variables aléatoires, de géométries complexes et de la 
variabilité spatiale des propriétés du sol, peut être réalisée en utilisant une méthode de recherche basée sur une méthode 
d’équilibre limite aléatoire (MELA) non circulaire couplée à une technique d'optimisation. Deux techniques d'optimisation 
sont couplées à une analyse de stabilité de pente non circulaire dans cet article: 1) la technique d'optimisation de Monte 
Carlo (OMC) largement répandue, et 2) une nouvelle méthode d'optimisation de modification de surface (OMS). Les deux 
approches sont utilisées pour minimiser le facteur de sécurité pour une surface de glissement donnée en modifiant sa 
géométrie. L'approche OMS est une méthode d'optimisation locale qui offre de la flexibilité pour trouver la géométrie d'une 
surface de glissement critique en utilisant des courbes splines. Dans cet article, nous comparons les résultats de l'analyse 
probabiliste d'un modèle de barrage de résidus sans optimisation, avec optimisation à l'aide de OMC et avec optimisation 
à l'aide de OMS. Les résultats montrent que l'approche OMS peut capturer plus de modes de rupture entraînant des 
probabilités de rupture calculées plus grandes, et est cinq fois plus rapide que l'approche OMC. 
 
 
1 INTRODUCTION 
 
1.1 Surface Altering Optimization 
 
The search for a critical slip surface is a global optimization 
problem in which the objective is to minimize factor of 
safety (FS) by changing the geometry of trial slip surfaces. 
Various search algorithms have been proposed in 2D slope 
stability applications. Some methods utilize brute force, 
such as grid searching, whereby a discretized region of 
points is used to define the origins of circular slip surfaces 
together with different circle radii. This is a lengthy process 
that checks all areas of the solution space equally, even 
those regions where global minimums are not present. The 
method only applies to circular slip surfaces even though 
slope failures are seldom circular. 

The focus in recent years has been on metaheuristic 
searching (Taha 2010). Many different metaheuristic 
algorithms have been proposed and tested for 2D slope 
stability problems (e.g., Gandomi et al. 2015, 2017; Cheng 
et al. 2007). These metaheuristic algorithms take an input 
set of slip surface parameters that are then adjusted to 
minimize the factor of safety using stochastic processes 
inspired by nature (Gandomi et al. 2016).  

Surface altering optimization is a new technique to 
minimize the factor of safety for a given slip surface by 
modifying its geometry. This method, similar to the Monte 
Carlo random walk optimization method (Greco 1996), is a 
local optimization method. Although SAO can be used 
independently to find the critical slip surface in slope 
stability analysis, it works best when combined with a 
global search method to calculate factor of safety. In this 
way, the burden of finding an approximate geometry and 
location of the failure surface with minimum factor of safety 
is on the global search method; the SAO technique simply 
modifies the geometry of that surface to further minimize 
the factor of safety.  

To provide flexibility to find the adjusted geometry of 
more critical slip surfaces, SAO employs spline curves in 
the 2D analyses. In general, spline formulations require a 
larger number of parameters in comparison to the number 
of parameters required to describe primitive geometries 
such as circles. Therefore, in the larger scheme of slope 
stability analysis, global optimization methods can be 
performed using primitive surfaces to find an approximate 
critical surface relatively fast, followed by SAO using spline 
functions. 

The advantage of SAO over other optimization 
techniques such as MCO is the accuracy of the results and 



 

the reduced computation time. Such performance 
measures can be investigated using either deterministic 
and probabilistic slope stability analysis. To best 
investigate the influence of optimization technique on 
simulation times, a computationally intensive problem such 
as a probabilistic analysis considering spatial variability of 
soil properties is a good choice.  
 
1.2 Spatial Variability 
 
Probabilistic stability analysis results considering spatial 
variability of soil properties and using limit equilibrium 
method (LEM) have been reported in studies by El-Ramly 
et al. (2001), Babu and Mukesh (2004), Cho (2007, 2010), 
Hong and Roh (2008), Ji et al. (2012), Tabarroki et al. 
(2013), Li et al. (2014), Javankhoshdel and Bathurst (2014) 
and Javankhoshdel et al. (2017).  

Javankhoshdel et al. (2017) used a circular slip limit 
equilibrium method and random field theory called the 
Random Limit Equilibrium Method (RLEM) to investigate 
the influence of spatial variability of soil properties on 
probability of failure. Tabarroki et al. (2013) used a non-
circular limit equilibrium approach (Spencer method) 
together with random field theory (non-circular RLEM) to 
consider spatial variability in their probabilistic analyses. 

Cho (2007) carried out probabilistic analysis for a 
layered slope with spatial variability in soil properties using 
MCO. He carried out probabilistic analyses with spatial 
variability of soil properties using the non-circular random 
limit equilibrium method (RLEM) together with optimization 
techniques.  

There are few studies that investigate the influence of 
spatial variability of soil properties for the case of layered 
slopes. Huang et al. (2010) and Cho (2007) investigated 
the influence of spatial variability on probability of failure 
using the random finite element method (RFEM) and the 
non-circular RLEM, respectively. However, the example 
slopes presented in those studies are slopes with simple 
geometries.  

In this paper, the results of probabilistic analyses of a 
tailings dam using the RLEM with 1) no optimization, 2) 
optimization using MCO, and 3) optimization using SAO 
are computed. Factor of safety, probability of failure, and 
simulation times are compared for the different cases. 

 
 
2 SURFACE ALTERING OPTIMIZATION 
 
2.1 Geometry Presentation 
 
In order to minimize the factor of safety for a given slip 
surface, a proper geometrical formulation to present the 
slip surface geometry using a finite set of parameters is 
required. For this purpose, non-uniform rational B-spline 
(NURBS) can be used. A NURBS curve is defined as a set 
of weighted control points and a knot vector. A knot vector 
is a sequence of non-decreasing values dividing the 
parametric space. The general equation for a NURBS 
curve is presented as follows (Piegl and Tiller 2012): 
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where u is the local parameter that the curve is evaluated 
at, Pi is a control point in 2D space, n is the number of 

control points, wi is the weight of a control point, and Ni,p(u) 

are the pth-degree B-spline functions defined recursively in 

a knot span ui ≤ u ≤ ui+1.  (Piegl and Tiller 2012): 
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The simplest form of NURBS are first-degree functions that 
provide a simple presentation of a set of control points 
connected with straight lines. Increasing the degree of the 
B-spline yields a smoother curve. 
 
2.2 Structure of SAO 
 
Surface altering is based on a sequence of transformations 
applied to the geometry of the entire input surface. Each 
SAO step is solved using the bound optimization by 
quadratic approximation (BOBYQA) developed by Powell 
(2009). BOBYQA is a constrained derivative-free 
optimization method based on trust-region (Wright and 
Nocedal 2006). 

In two-dimensional analysis, a non-circular surface in 
its simplest form can be described as a linear spline curve. 
Coordinate values of control points will form the 
optimization input. As an example, Figure 1 illustrates a 
surface with 7 control points, yielding 14 input variables to 
define x and y coordinates of the 2D surface. The geometry 
of the surface can be altered by modifying these 
coordinates. SAO offers a systematic set of steps to 
perform this alteration to minimize the factor of safety while 
satisfying geometrical convexity and a non-overlapping 
sequence of control points. These steps are repeated in 
multiple iterations until convergence criteria are met. A key 
consideration in SAO is to consider the entire surface 
geometry, such that changing coordinates of one control 
point influences the adjustment of the other points to keep 
the surface convex and to preserve their original order.  



 

 
 

Figure 1. A linear spline 2D slip surface. 
 
2.3 Weak Layers  
 
In the presence of geological structures with weak layers, 
it is likely that the critical slip surface passes through the 
weak layer. Thin structured weak layers introduce an extra 
challenge to find a set of proper transformations applied to 
the slip surface such that it extends through the weak layer. 
In the presence of weak layers, an additional step can be 
performed. Whenever the y-coordinate of the control point 
is altered, an additional displacement can be applied such 
that the control point moves inside the weak layer. If this 
additional displacement results in a smaller factor of safety, 
then the change is accepted. 
 
2.4 Comparison with Monte Carlo Optimization 

 
Surface optimization based on Monte Carlo random walk 
(Greco 1996) relies on modifying the positions of slip 
surface control points in two phases identified as  
exploration and extrapolation. In the exploration phase, a 
new location for each control point is created randomly by 
slightly replacing each control point. If the new slip surface 
results in a lower factor of safety, the change is preserved, 
otherwise it returns the control point to its previous position. 
In the extrapolation phase it applies computed 
displacements for all the control points after exploration 
and keeps the change if it yields a lower factor of safety. 
Iterations stop when changes in the computed factor of 
safety fall below a given prescribed threshold. Although 
random generation in MCO is somewhat improved by 
adding the extrapolation phase, in general it requires a 
large number of factor of safety evaluations until an optimal 
solution is reached, typically 5 to 10 times more than those 
required using SAO. 

 
 

3 EXAMPLE: SPATIAL VARIABILITY 
 

3.1 The Tailings Dam Model 
 

The Mount Polley tailings dam was selected to provide 
baseline geometry and soil properties for this study 
(Province of British Columbia, 2015). It is important to note 
that the purpose of this example is not to re-analyze the 
failure of the dam, but to use the dam as a baseline case 

to compare the output results using different optimization 
cases. Some soil properties were adjusted from the Mount 
Polley case study so that detectable values of probability 
of failure could be computed for the purpose of comparison 
of deterministic and probabilistic analysis outcomes.  

The model used in this study is taken from Cami et al. 
(2017), using data provided by Province of British 
Columbia (2015). The model and baseline material 
parameters used in the current study are shown in Figure 
2.  
 

 

 
 
Figure 2. The Mount Polley tailings dam model and the 
material properties used in this study. 
 
3.2 Spatial Correlation Length 

 
Liu and Chen (2010), Lloret-Cabot et al. (2014), and 
Pieczynska-Kozlowska (2015) measured spatial 
correlation lengths using field CPT data. They showed that 
due to the larger number of measurements available in the 
vertical direction, the calculated value of vertical correlation 
length can be found relatively accurately. The horizontal 
correlation length on the other hand is harder to determine, 
particularly when measurement locations are far apart.  

In this study, vertical correlation length was calculated 
using a method outlined by Vanmarcke (1977) which 
estimates the correlation length by minimizing the error 
between the theoretical and empirical correlation models. 

The empirical correlation model, �̂�(𝜏), is shown in 
Equation 4: 
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where 𝑘 is the number of lag distances (𝜏) between two 

points, �̂� is the estimated standard deviation of the 

detrended CPT data, 𝑛 is the number of observations, 𝑥𝑡 is 

the detrended tip resistance value at location 𝑡, and �̂� is the 
estimated mean of the detrended CPT data.  

In this study the Markov correlation model (Equation 5) 
was used to calculate the theoretical correlation values.  
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where 𝛳 is the correlation length. 
Using the method described above, the vertical 

correlation length was measured at nine different CPT 
locations (Province of British Columbia, 2015) and found to 
range between 0.3 m and 1.8 m, with most values falling 
closer to 1 m; hence, a vertical correlation length of 1 m 
was used in this study. A square mesh size of 0.5 m was 
used in the random field to accommodate this correlation 
length. An example field from one set of tip resistance data 
is shown in Figure 3. The corresponding correlation length 
is 0.86 m.  

Due to less data in the horizontal direction as noted 
earlier, the effect of horizontal correlation length was 
assumed to be infinity in this study. 

 

 
Figure 3. Tip resistance data. The vertical correlation 
length calculated for this case is 0.86 m.  
 
3.3 Slope Stability Analysis using LEM 

 
In this study, the Morgenstern-Price limit equilibrium 
method was used with the half sine interslice force function 
to calculate factor of safety. 50 slices for the probabilistic 
analysis were used in this study. 10,000 simulations were 
used for all probabilistic analyses. A deterministic analysis 
case (section 3.3.1) and a RLEM case (section 3.3.2) are 
examined. 

The non-circular auto refine search method was used 
to locate the initial minimum slip surface before 
optimization (Rocscience Inc., 2015). With this method, the 
search for the lowest safety factor is refined as the search 
progresses such that the results of one iteration are used 
to narrow the search area on the slope in the next iteration. 

The auto refine search method for non-circular surfaces 
first generates circular surfaces using the algorithm 
described below: 

 
1. The slope surface is divided into a number of divisions.  
2. Circles are generated between each pair of divisions, 

according to the required level of accuracy (generally 
ten circles are enough) (Figure 4).   

3. The safety factors are then calculated for these circles 
using a limit equilibrium approach such as the 
Morgenstern-Price method, and the average safety 

factor associated with each division along the slope, is 
recorded. 

4. This constitutes one iteration of the auto refine search 
method. 

5. Half of the divisions along the slope are used to define 
a new, narrowed search area, for the next iteration. 
Only the divisions with the lowest (average) safety 
factors are used, while the divisions with high safety 
factors are discarded from the analysis. 

6. The divisions of the slope which are retained, are then 
used to form a new slope polyline. Using this new, 
narrowed slope surface, steps 1 to 5 are then 
repeated, for 10 more iterations. 

 
 
Figure 4. Division circles in the auto refine search.  
 
The circular surfaces have now been generated. Each 
circle is converted into a non-circular (piece-wise linear) 
surface with a number of vertices (10 vertices are used in 
this study) and the Fs is calculated for each non-circular 
surface. The slip surface with the lowest Fs is determined 
using the circular algorithm outlined above. An optimization 
search can be applied at this stage. 

To investigate the influence of each optimization 
technique on probability of failure and also compare the 
simulation time for each technique, the combination of non-
circular auto refine search with three different optimization 
cases were considered in this study: 1) no optimization 2) 
optimization using MCO, and 3) optimization using SAO. 
Cases 2 and 3 are especially effective at locating 
(searching out) slip surfaces with lower safety factors, 
when used in conjunction with a non-circular search. These 
three cases are applied to a deterministic analysis and a 
RLEM analysis. The program Slide 2018 (Rocscience 
2018) was used to carry out the computations. 

 
3.3.1 Deterministic Analysis 

 
In the deterministic slope stability analysis example, the 
material parameters shown in Figure 2 are assumed to be 
constant values that do not vary within each material unit.  

The results of deterministic analyses using the three 
different cases of no optimization, optimization using MCO 
and optimization using SAO are presented in Figure 5. The 
factor of safety for the case with no optimization was 1.35 
while the factor of safety for the cases with MCO and SAO 
techniques was 1.26 and 1.26, respectively.  

 
 
 
 
 
 
 



 

a)

 
b)

 

 
Figure 5. Critical slip surface geometry from 
deterministic analyses using a) no optimization, b) MCO, 
and c) SAO.  
 

A deterministic shear strength reduction (SSR) analysis 
was also computed in order to verify the LEM results. 
Figure 6 shows the maximum computed shear strain 
contours which correspond to the model, which resulted in 
a shear strength factor (SRF) of 1.26 which is in a good 
agreement with the results of LEM with optimization 
techniques. The surface shown in Figure 6 is also in 
agreement with the critical non-circular LEM slip surface.  
 
3.3.2 RLEM 

 
In the RLEM, a random field is first generated using the 
local average subdivision (LAS) method developed by 
Fenton and Vanmarcke (1990) and then mapped onto a 
grid of elements (mesh). Each mesh element in the random 
field has different values of soil properties, and cells close 
to one another have values that are closer in magnitude, 
based on the value of the spatial correlation length. In each 
realization, a search is carried out to find the mesh 

elements intersected by the slip surface. The random soil 
property values are assigned to the slices whose base mid-
point falls within that element. A limit equilibrium approach 
(Morgenstern-Price method) is then used to calculate the 
factor of safety for each realization. The probability of 
failure (Pf) is calculated as the ratio of the number of 
simulations resulting in Fs < 1 to the total number of 
simulations.  

A combination of the COV of soil properties was 
selected (Table 1), i.e. COVγ was set to the typical 
maximum value of 0.1, COVϕ was set to the typical 
maximum value of 0.2 and COVc was set to a typical value 
of 0.3. Table 2 shows the random variable parameters 
used in this study. Lognormal distributions are assumed for 
all random variables. The core and rock materials were 
assumed to have the constant material properties defined 
in Figure 2. 
 
Table 1. COV values used in probabilistic analyses. 

 

Parameter COVγ COVϕ COVc 

Value 0.1 0.2 0.3 

 
 
Table 3 summarizes the probability of failure results from 
non-circular RLEM analyses with different optimization 
cases. In these analyses, the soil properties were 
expressed as anisotropic random fields with spatial 
variability in the vertical direction only. The vertical 
correlation length was taken as 1 m as noted earlier. Figure 
7 shows the failure surface band for the three different 
optimization cases. The deterministic failure surface 
presented in Figure 5 is also shown in this figure.   
 

 
 
Figure 6. Maximum shear strain contours from an example 
SSR analysis. SRF = 1.26. 
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b)

 
c) 

 
Figure 7. Results of probabilistic analyses: a) no 
optimization, b) MCO technique, and c) SAO technique.  
 

 
It can be seen in Table 3 that, for the no optimization case, 
Pf is zero. However, the combination of auto refine search 
method and optimization helps to find weaker failure paths. 
Pf for the analyses with MCO is 0.25%, compared to the 
case with SAO in which Pf = 0.47%. It can be observed 
from these results that SAO improves the auto refine 
method, i.e. finds more failure surfaces compared to the 
case without optimization and also the case with MCO. 

Also, assuming that a reasonable target design value for 

probability of failure for slopes is Pf = 0.01% (Silva et al. 
2008), using no optimization implies that the slope is safe. 
However, MCO and SAO techniques show that the failure 
probability is greater than the target design value and thus 
the slope is not safe for design. It can also be noted that 
the Pf calculated using SAO is about three times greater 
than that calculated using MCO indicating that results 
calculated using SAO are upper bound values for design. 
Table 3 also shows the computation time for each method. 
The main advantage of SAO compared to MCO is the great 
improvement in speed. It can be seen in Table 3 that SAO 
reduces simulation times by about a factor of 5 compared 
to MCO. This is an important benefit for probabilistic 
analysis. Thus, SAO not only improves the results by 
finding more failure surfaces, but also reduces the 
computational expense. 

Figure 8 shows the failure surfaces corresponding to 
the lowest factor of safety in the probabilistic analysis using 
the three optimization cases. It is shown that the SAO 
technique found a minimum factor of safety less than 1 (Fs 
= 0.972), while the MCO method was not able to find the 
same surface (Fs = 1.06 and 1.16, with MCO and no 
optimization, respectively). It can be seen in the figure that 
both SAO and MCO failure mechanisms pass through the 
weak layer, but analyses with SAO were still able to find 
mechanisms with lower factor of safety compared to MCO. 

 
4 CONCLUSION 

 
This study provides an introduction to the surface altering 
optimization (SAO) technique in slope stability analysis to 
calculate factor of safety. This optimization technique is 
used together with a general (limit equilibrium) approach to 
calculate factor of safety such that the burden of finding an 
approximate geometry and location of the failure surface 
with minimum factor of safety falls on the global search 
method. The SAO technique is employed to modify the 
geometry of that surface in order to further minimize the 
factor of safety.  

To demonstrate the accuracy of SAO, Fs values were 
first compared to results using the more common MCO 
technique as well as the shear strength reduction method. 
Good agreement was found between the three results.  

A computationally intensive probabilistic analysis was 
carried out on a tailings model with different layers of soil 
and considering spatial variability of soil properties. It was 
shown that the SAO method gave upper bound values of 
probability of failure (i.e., found more critical failure 
surfaces) compared to the case with MCO and the case 
with no optimization. The simulation time was improved by 
a factor of 5 using SAO compared to MCO.  

Finally, the no optimization case implied that the slope 
was safe for design (Pf = 0% ≤ 0.01%). However, 
combining the limit equilibrium method with the 
optimization techniques described in this paper showed 
that the probability of failure was greater than the minimum 
target Pf assumed for design. 

Table 2. Random variable parameters. Lognormal 
distributions are used with all variables. 

 

Material Property Mean Std. Dev. 

Tailings Unit weight 
(kN/m3) 

18 1.8 

Tailings Friction 
angle 
(degrees)  

30  6.0  

Upper Till Unit Weight 
(kN/m3) 

21 2.1  

Upper Till Friction 
angle 
(degrees) 

35  7 

Upper 
Glaciolacustrine  

Unit weight 
(kN/m3) 

20 2.0  

Upper 
Glaciolacustrine 

Friction 
angle 
(degrees) 

20  4.0  

Upper 
Glaciolacustrine 

Cohesion 
(kPa) 

25  7.5  



 

 
a) 

 
b) 

 
c) 

 

Figure 8. Spatial field and a failure mechanism with the 
lowest Fs using SAO and the same field for other 
methods: a) no optimization, b) MCO technique, and c) 
SAO technique.  
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