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ABSTRACT 
Numerous studies have been conducted thus far to predict temperature and pore pressure variations within an injection 
layer. Available studies were developed assuming plane strain conditions, thus trivial deformations within sealing rocks. 
However, the response of a reservoir in the plane perpendicular to induced flow has substantial effects on in situ stress 
regime. Another common assumption is a content temperature at wellbore boundary from the very beginning of injection 
initiation. This assumption implicates a discontinuous jump in the temperature profile, from an initial state to fluid 
temperature. This paper presents new coupled closed-form thermoporoelastic analytical solutions for spatiotemporal pore 
pressure, temperature, and displacement evolutions induced in a reservoir confined with flexible sealing rocks, during early 
stages of injection when temperatures at wellbore change from an initial state to fluid temperature.  
 
RÉSUMÉ 
De nombreuses études ont été réalisées jusqu'à présent pour prévoir les variations de température et de pression 
interstitielle dans une couche d'injection. Les études disponibles ont été développées en supposant des conditions de 
déformation plane, donc des déformations triviales à l'intérieur des roches de scellement. Cependant, la réponse d'un 
réservoir dans le plan perpendiculaire au flux induit a des effets substantiels sur le régime de contrainte in situ. Une autre 
hypothèse courante est une température de contenu à la limite du puits de forage dès le début de l'injection. Cette 
hypothèse implique un saut discontinu dans le profil de température, d'un état initial à la température du fluide. Cet article 
présente de nouvelles solutions analytiques couplées thermoporoélastiques pour la pression porale spatio-temporelle, la 
température et les évolutions de déplacement induites dans un réservoir confiné avec des roches de scellement flexibles, 
au début de l'injection lorsque les températures passent d'un état initial à un fluide. 
 

 
 
1  INTRODUCTION 
 
Injection of fluids with temperatures higher or lower 
compared to that of the in situ strata is a typical process in 
numerous energy and water production and/or storage 
operations. The resulting alterations in in situ pore pressure 
and temperature have substantial effects on stress state 
and deformations within a rock skeleton. Heat energy 
transfer into a reservoir rock occurs through two different 
mechanisms: conductive heat transfer, and convective 
heat transfer (Detournay and Cheng, 1988; Wang and 
Dusseault, 2003). In rocks with lower permeability, fluid 
flow from the wellbore into the rock takes place very slowly, 
thus thermal energy exchange between the injectant and 
the solid skeleton is mainly through conduction. In rocks 
with high permeability, fluid flow rate into the reservoir rock 
is rather high. The heat energy transferred to the rock via 
conduction is thus insignificant, and convection becomes 
the main heat transfer mechanism. 
Palciauskas and Domenico (1982) demonstrated the pore 
pressure and deformations in a rock due to the thermal 
loading using analytical methods. Results suggested the 
thermal effects to be irreversible and rather significant on 
pore pressure generation. Chenevert and Salisbury (1993) 
conducted a series of experiments on rock to obtain the 
variation of rock permeability with effective stress and 
porosity. Then the deformation of rock surrounding 
wellbore was studied in transient and steady-state flow. 
Rajapakse (1993) used Laplace and Fourier integration 
transforms to derive general solution for an axisymmetric 

stress analysis of a cylindrical borehole in an infinite 
poroelastic medium. The displacements, stresses and flow 
were presented based on modified Bessel functions of the 
second kind.  
The simplest theory describing the coupled response of a 
porous strata under induced pore pressures is the theory 
of isothermal poroelastic consolidation, originally proposed 
by Biot (1941). Rice and Cleary (1976) revised this theory 
considering the components’ compressibility and 
discussed stress and pore pressure responses in plane 
problems. Considering only the conductive heat transfer, 
and assuming a constant temperature at the wellbore 
boundary, the solution to the general heat diffusion 
equation can be obtained using Laplace transform 
(Carslaw and Jaeger, 1959; Chen and Ewy, 2005). As the 

solution for temperature variations is yet complicated and 
difficult to implement in the field, the complementary error 
function has been typically adopted in the literature to 
obtain an approximate and simplified expression for early 
injection times and small radial distances from the injection 
source (McTigue, 1986; Wang and Papamichos, 1994).  
Two fundamental sources exist behind geomechanical 
variations occurring during a typical injection operation: 
pore pressure, and heat. Pore pressures at the wellbore 
are believed to continuously increase with injection 
initiation. As for the temperatures at the wellbore boundary, 
the reservoir response can be assessed in two stages. (1) 
The stage during which the rock temperature at the 
wellbore boundary changes from an initial state to the fluid 
temperature, referred to as the first stage in this paper. (2) 



The second stage during which the reservoir rock at the 
wellbore boundary has reached a constant temperature. 
Numerous studies have been dedicated on the second 
stage. The current paper presents new coupled closed-
form thermos-poro-elastic analytical solutions for pore 
pressure, temperature, and deformation variations in an 
elastic continuum confined with flexible sealing rocks and 
subjected to fully-penetration injection. The proposed 
solutions are obtained for low permeable rocks, thus 
incorporating only conduction. Analogous to the study by 
Monfared and Rothenburg (2017) on flow-induced 

poroelasticity, the Winkler model is adopted to assess the 
response of the injection layer in the direction 
perpendicular to the injection flow. The final part of the 
paper presents temperature and pore pressure responses 
in various types of rocks in the first stage. The objective is 
to determine conditions in which the first stage is trivial for 
the analysis of wellbore stability. 
 
2  COUPLED ANALYTICAL SOLUTION 
 
2.1 Problem Statement 
 
This study is aimed at deriving coupled thermoporoelastic 
solutions to describe the geomechanical response of an 
isotropic, homogeneous, semi-infinite, linear elastic 
continuum surrounded by flexible sealing rocks and 
subjected to fully-penetrating injection wellbore that 
generates axisymmetric radial flow (Fig. 1). The Winkler 
model is employed to describe the response of the injection 
layer perpendicular to the flow direction. Specific solution 
is obtained for a low permeable formation, thus 
incorporating only conduction as the heat transfer 
mechanism. Pore pressures are a function of induced 
temperatures, however, temperature variations are taken 
to be independent of pore pressures. The fluid injection 
flow rate is constant, and the fluid is a Newtonian fluid with 
a constant temperature. Assessments are carried out for 
drained conditions.  
 

 
Fig. 1 Normal displacements caused by fluid injection and 
thermal conduction. 
 
2.2 Analytical derivations 
 
The thermoporoelastic constitutive equation – using the 
Hooke’s law – adopted to describe the coupled response 
of an injection layer can be described as follows: 
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where ij   is the total induced stresses; ij  is the elastic 

strains; ij  is the Kronecker delta; P  is the induced pore 

pressure; T  is the induced temperature ; 
bK  is the bulk 

modulus that is defined as a function of the Young’s 

modulus ( E ) and Poisson’s ratio (  ),  3 1 2bK E   ; 

 2 1bG E    is the shear modulus;   is the Biot 

coefficient; and t  is the coefficient of linear thermal 

expansion of grains.  
In the vertical plane, the relation between vertical deflection 

(  ) and vertical pressure ( zz  )  follows the Winkler 

model: 
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where zz  is the elastic vertical strain on the reservoir-seal 

rock interface; K  is the overburden Winkler stiffness 
parameter and defined as a function of the normal stiffness 

of the seal rock ( nK  ) and the reservoir thickness ( h  ), 

namely 2nK K h   (Monfared and Rothenburg, 2017). 

Substituting Eq. 2 into the constitutive Eq. 1, zz  can be 

obtained in terms of horizontal strain components, and 
induced pore pressure and temperatures: 
 

( ) t
zz rrN P T

F X



                                      [3] 

 

where rr  and   are respectively the radial and 

tangential strains in the elastic state; N, F and X are 
material constants derived to be: 
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Combining force balance along the horizontal plane with 
and the constitutive equation 1, the general strain-
pressure-temperature equation is derived: 
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Eq. 5 can be rewritten in terms of radical displacement ( ru  ) 

as: 
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where Y1 and Y2 are referred to as displacement constants 
and defined as follows: 
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Integrating Eq. 6 results in a general expression for radical 
displacement as a function of pore pressure and 
temperature. 
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where C is an integral constant to be determine via 
boundary conditions, which can be determined by 
boundary conditions. Based on Eq. 3, 5 and 8, the strain 
components can be expressed in terms of pore pressure 
and temperature. 
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The induced stress components can then be calculated 
using the constitutive equation Eq. 1 and the strain 
components Eq. 9. 
 
2.3 Fluid Diffusion Equation 
 
The well-known constitutive law to describe pore pressure 
variations considering the thermal expansion of the 
saturated matrix is: 
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where w  is the variation of fluid content, M  is the Biot 

modulus, v  is the volumetric strain, and   is the 

undrained volumetric thermal expansion. Using mass 
balance, the general differential equation for pore pressure 
is obtained as follows:  
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An expression of the volumetric strain can be obtained 
based Eq. 3, which would results in:  
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The general format of equation 13 follows the traditional 
format, however, new expressions are obtained for 
coefficients of diffusivity (c1 and c2) which incorporate 
vertical confinement. 
 
2.4 Heat Diffusion Equation 
 
For rocks with low permeability (Hojka, Dusseault et al. 

(1991) suggest that 
18 21 10k m   ), it is reasonable to 

assume trivial heat transfer and thus consider only 
conductive heat transfer. In this paper, heat conduction is 
only incorporated. Based on heat energy balance, the 
thermal constitutive law can be expressed as: 
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Where 
thM  and 

th  are material constants, and 

1th vM C .   and 
vC  are the total mass density and 

specific heat, and   is the heat stored per unit volume. In 

cylindrical coordinate system, Eq. 14 can be expressed in 
the following form: 
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where 
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Assuming a particular case of 0th  , which implies 

variations of temperature to be independent of pore 

pressure, results in 2 0g  . Eq. 15 will thus simplify into 

the following form: 
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2.5 Solutions of Pore Pressure and Temperature 
 



Following the approach proposed by Atefi-Monfared and 
Rothenburg (2017), the solution for Eq. 24 can be obtained 
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where  1

V

I

e
E I dV

V




   is the exponential integral, B is 

a coefficient related to the heat energy carried by the 
injected fluid.  

Assuming a constant fluid injection rate ( thQ ) and a 

constant fluid temperature ( fT ), using the heat energy 

equation, and assuming small wellbore radius compared to 
the reservoir extension, the following relation is obtained 
for B: 
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and the expression of temperature Eq. 18 turns into the 
following equation: 
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Pore pressure is therefore derived to be: 
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where  
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and A is obtained via boundary conditions as:  
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Substituting results in the general solution for pore 
pressure as a function of t, r, T: 
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When the temperature of the injected fluid equals to that of 

the reservoir, fT  is zero and the pore pressure equation 

Eq. 24  becomes 
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which is the solution proposed by Atefi-Monfared and 
Rothenburg (2017) for flow-induced pore pressures under 

isothermal conditions. 
 
3  SPECIAL CASES  
 
3.1 Vertical Confinement 
 
Two limiting cases are discussed in this paper to 
demonstrate the significance of vertical confinement 
effects governed by the stiffness of sealing rock. First, very 

soft seal rocks are considered ( 0nK   ). The parameters 

of the proposed analytical solution become: 
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Next, is where the stiffness of seal rock is quite large (Kn/KD 
=1000). The vertical displacement approaches zero and 
the reservoir rock deformation can be simplified as plane 
strain. The parameters of seal rock will be as follows: 
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3.2 Heat Transfer at Wellbore 
 
We consider two case scenarios in terms of wellbore 
temperature: first stage, and second stage. First stage, 
where the rate of heat energy is constant, temperature 
response is described by the proposed Eq. 20. As for the 
latter stage (common approach in available studies), the 
complementary error function Eq. 26 is employed to get the 
temperature response over time and space (Wang and 
Papamichos, 1994). 
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error function.  
Fig 2 illustrates the comparison between temperature 
response based on the above two different boundary 
conditions. For the first stage with a constant heat energy 
rate, the temperature at wellbore boundary changes 
gradually from the initial temperature. As for the second 
stage, the temperature at the wellbore boundary jumps 
from the initial state to fluid temperature at the beginning of 
fluid injection. 
All parameters are presented as normalized values in this 

paper: normalized time 
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assigned a very small value for Eq. 26 in order to find the 
temperature distribution at injection initiation. Based on the 
temperature expression Eq. 20, the expression of 
temperature can be calculated at wellbore boundary 
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When wT  is equal to fT  , the heat energy can calculated 

from Eq. 27 
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By setting normalized time a small value ( 51 10 ) for Eq. 

26, we can compare the temperature distribution at the end 
of the first stage with that of the beginning of the second 
stage from Eq. 26 (Fig 3). It shows that the difference 
between the temperature distribution from the two cases is 
large when the time of first stage is relatively long. With the 
time of first stage decreasing, the temperature response at 
the end of first stage become closer to the temperature 
distribution of the second stage obtained based on the error 
function. When the period of first stage is very short, the 
temperature distribution at the end of first stage is very 
close to that at the beginning of second stage. Hence, it is 
reasonable to assume that the temperature at wellbore 
boundary equals to fluid temperature at the beginning of 
injection. 
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(b) constant thQ   

Figure 2. A schematic illustration of temperature response 
based on two boundary conditions. 
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Figure 3. Temperature distribution at the end of first stage. 
 
 
4  SENSITIVITY ANALYSES 
 
4.1 Thermal effects on Pore Pressure in First Stage 
 
Thermal effects on pore pressure alterations during the first 
stage are assessed next. Tab 1 presents the adopted 
parameters. Figs 4 and 5 present pore pressure 
distributions and histories. Higher pore pressures are 
observed when thermal effect is considered. Assuming 

w fT T  in the beginning of injection, pore pressure 

response obtained will be significantly different. 
 
 
 
 
 
 
 
 



Table 1. Parameters’ values of model. 
 

Geometry and 
injection data 

Fluid-injected 
parameters 

Rock properties 

0.5wr m  

0.67h m  

30.002 /fQ m s  

0.7   

bK K   

31000 /f kg m   

4200 /fC J kg K   

100fT C   

101 10E Pa   

0.3   
62 10 /C J kg K     

62 10 /t K    

12 22 10 /k m Pa s    

5 /thK W m K   

102 10M Pa   

31 10 / C     

 
4.2 Effects of Vertical Confinement 
 
In the analysis above, the stiffness of the sealing rock K , 

is taken to be equal to the stiffness of the reservoir rock 
bK . 

Next, three different case scenarios are considered to 
obtained the effect of K  on pore pressure and stress 

responses in an injection process: 0.1 bK K , 
bK K  

and 10 bK K . The input parameters are those presented 

in Tab 1 and the fluid temperature is 100 degrees. Results 
show insignificant effect of vertical confinement on pore 
pressures (Fig. 6). Pore pressure increases slightly with the 

increasing of K . Fig 7 gives the variations of effective 
stresses with different stiffness of seal rock. The induced 
radial stress increases and tangential stress decreases 
under stiffer vertical confinement settings. The vertical 
stress decreases rapidly under softer sealing rocks. When 
the stiffness of seal rock is zero, the vertical stress 
becomes zero and the wellbore stability becomes plane 
stress problems. 
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(a) Pore pressure distributions at different times. 
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(b) Pore pressure histories at different locations. 

 
Figure 4. Pore pressure distribution and histories, with and 
without thermal effects. 
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Figure 5. Temperature distribution at the end of first stage. 
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Figure 6. Normalized pore pressure history at r/rw=2 for 
different K/Kb. 
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(a) Induced radial stress. 
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(b) Induced tangential stress. 
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(c) Induced vertical stress 

Figure 7. Induced pore pressure distribution at t=6500 
seconds for different K/Kb. 

 

5  CONCLUSIONS 
 
This paper presents new closed-form thermo-poro-elastic 
analytical solutions for fluid injection in an elastic medium 
confined with flexible sealing rocks, assuming a constant 
injection rate and heat energy, incorporating only 
conductive heat transfer. Based on thermo-poroelastic 
theory and Winkler model, new fluid and heat energy 
diffusion equations are obtained. The analytical solutions 
are derived for the first stage where rock temperature at the 
wellbore is transient.  
By comparing the temperature distribution at the end of first 
stage and at the beginning of the second stage, we obtain 
the condition that the normalized time is smaller than 0.03, 
under which the first stage can be neglected. The pore 
pressure history in the first stage is given based on the 
analytical solutions, which demonstrates the significance of 
first stage for wellbore stability. Finally, different stiffness 
values of seal rock are discussed and results prove that the 
stiffness of seal rock has a significant effect on induced 
effective stress response. 
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