

1

Machine learning algorithms for applications in
geotechnical engineering

Pouyan Pirnia, François Duhaime & Javad Manashti
Department of Construction Engineering – École de technologie supérieure,
Montréal, Québec, Canada

ABSTRACT
Artificial neural networks (ANNs) applications are increasingly common in all fields of engineering. One of the main
obstacles to the development of ANN applications in geotechnical engineering is the need for large datasets. This paper
presents two application examples in which numerical methods were used to generate large datasets. The first example
involves the determination of grain size distributions from soil pictures based on a dataset that includes 53130 synthetic
soil images corresponding to different particle size distributions. The pictures were generated using YADE, a discrete
element code. The second application example involves the use of the finite element method to generate a dataset.
COMSOL’s MATLAB programming interface was used to generate a large number of finite element simulations to predict
the water level in the reservoir of a hypothetical dam based on pore pressure measurements obtained using an array of
15 piezometers.

RÉSUMÉ
L'utilisation de réseaux de neurones artificiels (RNA) est de plus en plus commune dans tous les domaines du génie. Un
des principaux obstacles qui freine l’utilisation de RNA en géotechnique est la disponibilité de grands ensembles de
données. Cet article présente deux exemples d'applications pour lesquels des méthodes numériques ont été utilisées pour
produire les ensembles de données. Le premier exemple concerne la détermination de distributions granulométriques à
partir d’une banque de 55 000 images synthétiques de sol qui correspondent à différentes distributions granulométriques.
Les images ont été générées en utilisant YADE, un code d'éléments discrets. Le deuxième exemple d'application implique
l'utilisation de la méthode des éléments finis pour générer un ensemble de données. L'interface de programmation
MATLAB de COMSOL a été utilisée pour générer un grand nombre de simulations par éléments finis pour prédire le niveau
d'eau dans le réservoir d'un barrage hypothétique en se basant sur des mesures de pression interstitielle obtenues en
utilisant un réseau de 15 piézomètres.

1 INTRODUCTION

Machine learning (ML) is an empirical approach where a
computer program learns from a dataset without the need
to code the problem and a procedure to solve it. Artificial
Neural Networks (ANN) are one example of machine
learning models. The number of ML applications is growing
rapidly in all fields of engineering.

Several ML applications can already be found in the
geotechnical engineering literature. For example, Mustafa
et al. (2013) evaluated the performance of four ANN
training algorithms for modelling the dynamics of soil pore
water pressure (PWP) in response to rainfall variations
using multilayer perceptron (MLP) ANN. The results
showed that the network performance (training time and
prediction accuracy) is related to the type of training
algorithm.

Taormina et al. (2012) assessed the ability of a feed
forward neural network (FFNN) to predict hourly
groundwater levels in a coastal unconfined aquifer. The
network was first trained with observed groundwater
elevations and external inputs such as rainfall and
evapotranspiration in case of one-hour ahead predictions.
Then, to simulate longer periods, the FFNN was fed back
its own output instead of past observed water level data.
The algorithm could accurately reproduce water level
variations for several months. It was suggested as a
reliable tool for modelling aquifer responses or
reconstructing missing data.

Gordan et al. (2015) used artificial neural network
(ANN) and particle swarm optimization (PSO)–ANN
models to predict the factor of safety (FOS) of homogenous
slopes during earthquakes. A dataset including 699 FOS
values for different slope geometries, soil properties and
peak ground accelerations was obtained using the
Geostudio software package. The PSO–ANN technique
showed a higher accuracy (R2 = 0.97) compared to the
ANN technique (R2 = 0.91).

Obtaining large datasets is often the main difficulty in
developing ML applications. Numerical methods can help
to generate these datasets. The Finite Element Method
(FEM) has been used for more than 50 years to study
seepage, stresses and deformations in embankment dams
and other earth structures (Day et al., 1998; Hnang, 1996;
Ng & Small, 1999; Sharif et al., 2001; Sherard, 1992;
Zhang & Du, 1997). On the other hand, the Discrete
Element Method (DEM) is used to simulate the discrete
nature of soil and its microscale behaviour. The DEM
considers each particle explicitly in a granular material.
Hence it can simulate finite displacements and rotations of
particles (Cundall & Hart, 1993). Both FEM and DEM can
be used to create large databases for the training of ML
algorithms.

This paper presents two application examples in which
FEM and DEM were used to generate large datasets to
train ANNs.

The first example involves the determination of grain
size distributions from soil pictures. The most common

2

geotechnical tests for granular soils, like sand and gravel,
concern the determination of the particle size distribution
(PSD). Sedimentation and sieving, the most common
methods, date from the first half of the 20th century. These
methods are time-consuming and novel techniques, like
laser diffraction and image processing methods, are faster.
Commercial laboratories would benefit from more rapid
and precise methods to determine the grain size
distribution. In the first example, the applicability of
Convolutional Neural Networks (ConvNet) (LeCun et al.,
2015; Krizhevsky et al., 2012) to evaluate the size of
particles from soil photographs was verified. A dataset
composed of synthetic soil pictures was generated using
YADE (Šmilauer et al. 2010), a discrete element code.

The second application example involves the use of
FEM to generate a dataset for the training of an ANN.
COMSOL’s MATLAB programming interface (COMSOL,
2013) was used to generate a large number of FEM
simulations in which pore pressure time series were
modelled for a series of virtual piezometers installed in the
core of a dam. The upstream boundary condition was
based on different water level time series for each
simulation. An ANN was trained to predict the upstream
water level during previous weeks based on the current
piezometer measurements. The objective of this
application example was to evaluate the capability of ML
algorithms for data recovery or to generate alarm levels for
instruments that take into consideration external factors or
measurements from other instruments.

2 METHODOLOGY

2.1 Grain size distribution example

Convolutional Neural Networks require thousands of
images for model training and parameter tuning. The
discrete element code YADE was used to generate
particles in five size categories corresponding to sieves
with openings of 75, 106, 150, 250, 425 and 710 µm. A
MATLAB script generated a list of 53130 different PSD
based on the five size categories. A java interface read the
data and sent the different PSD to the YADE python
interface. A loose cloud of particles in a box was then
generated for each PSD (Pirnia et al., 2016, 2017). After
the particles settled at the bottom of the box, two pictures
were taken from top and bottom viewpoints (Figure 1).

The particles were shaded using random grey levels for
each image. The dataset involved 53130 pairs of top and
bottom images with a resolution of 128x128 pixels. Image
pairs were merged together in 256x128 pixels images as
the input of the model (Figure 1)..

The Microsoft Cognitive Toolkit (CNTK) (Yu et al.,
2014) version 2.2 was used to analyze the image pairs and
to determine the percentage passing for five sieves (106,
150, 250, 425 and 710 µm).

Figure 1. Images showing the top (left) and bottom
(right) views of the synthetic soil particles in the virtual
transparent box

The architecture of the convolutional neural network
that provided the best results is displayed in Figure 2.
Pooling layers were inserted after two convolutional layers
to down-sample the spatial dimension of the input image
(Krizhevsky et al., 2012). The Max pooling layer uses 5x5
receptive fields with a stride of 2 along the spatial
dimension (width and height). Rectified Linear Units
(ReLU) Layers was applied after each Convolutional layer.
This layer intensifies the model nonlinearity. Rectified
linear translates the negative value input to zero and when
the input is above a certain quantity thresholds it at zero.
The same combination of Conv-Pooling layers was
repeated again to reduce the image size.

Three fully connected (Dens) layers followed by ReLU
layer and Dropout. Fully connected layers have connection
to all activation of the last layer. The Drop out layers avoid
overfitting to the training data and improves the
generalization. The last layer in the model is linear layer
holding the output.

Figure 2. ConvNet model structure

3

2.2 Pore pressure monitoring example

A 2-D COMSOL model of transient and unsaturated
seepage was built to simulate the pore water pressure at
15 points (virtual piezometers) aligned on three vertical
lines in the core of a hypothetical dam in response to water
level changes in the upstream reservoir (Figure 3). The
pore water pressure in the dam was directly influenced by
the water level time series during the weeks that preceded
the pore pressure measurements.

Figure 3. Geometry of the COMSOL model. The red points
display the piezometer positions

The simulations were conducted with different time
series of water level in the upstream reservoir for the five
weeks that preceded the pore pressure measurements.
These time series were constructed from five water levels
at one week interval from t = 0 to t = 4 weeks. The water
level was kept constant during the fifth week. Six discrete
water level values were chosen for the first four water
levels between t = 0 to t = 3 weeks (from 6 to 8.5 m in 0.5 m
increments). Eleven discrete water levels were used for the
last week (from 6 to 8.5 m in 0.25 m increments). Together,
these discrete water levels can be combined to form a
database of 14 256 water level time series. A MATLAB
script was written to produce all possible water level
conditions. The water level conditions were combined in
COMSOL using a linear interpolation function.

The model solved the water conservation equation
under unsaturated conditions (Richard’s Equation). The
unsaturated soil properties of both the filter and core
materials (Table 1) were based on the van Genuchten
(1980) model and the parameter values used by Dumberry
et al. (2015).

The MATLAB LiveLink interface was used to access
and modify the COMSOL model created through the
graphical user interface. Through the MATLAB LiveLink
interface, command lines were sent to COMSOL to change
the initial conditions (water levels within five weeks) for
each test, and to run the simulation. The results were
written in an Excel file. The total simulation time for the
COMSOL model was five weeks. The water level condition
from five weeks ago was set as the initial condition using a
steady state simulation. The outputs of the COMSOL
model were the PWP for each piezometer at the end of the
simulation.

The input dataset for the neural networks consisted of
the PWP for the 15 points in the core of the dam at the end
of the COMSOL simulation (Figure 3). Three algorithms
were used to train the neural networks and to predict the
water level in the reservoir for the 5 weeks that preceded

the pore pressure measurements: Feedforward neural
network, LSTM unit and GRU.

Table 1. Seepage properties used in the COMSOL
simulations

In general, training, validation and testing are the three
stages of preparing a machine learning algorithm. The
training and validation process can often be combined in a
single training session, especially in the case of small
datasets. Both parameter estimation and model structure
selection happen during training. The Mean Square Error
(MSE) was used to evaluate the performance of the
training algorithms. For testing, a set of data was used to
assess the predictive performance of the model.

The original data containing 14256 simulations was
split into training, validation and testing sets (Figure 5).
Most of the dataset (70 percent chosen randomly) was
devoted for training and validation of the network. The rest
was used for testing. Twenty percent of the training dataset
was held aside as validation data. The testing dataset
contains data which are not introduced to the network
during training. The testing dataset shows how the model
can generalize.

Figure 4. Training, validation and testing split

The activation function chosen for input and hidden
layers was an Hyperbolic tangent sigmoid (tanH) with
range (-1,1) because the PWP values ranged from positive
to negative. The input data were normalized between (-1,1)
to match the activation function (tanH). Moreover,
normalization of data makes the training faster and
minimizes the error (Rojas 1996). A Rectified Linear Unit
(ReLU) layer was set as the output layer to extrapolate in
the desired range of values (6 to 8.5 m).

Hyperparameters are variables that determine the
model structure and training algorithm (e.g., learning rate).
These values are set for the network before the training
process begins. An optimization of hyperparameters is
needed for the three proposed algorithms to obtain the best
results. This optimization involves changing the number of

4

neurons in input and hidden layers, the number of hidden
layers, the learning rate, and the batch size. Comparison
of the best results for each algorithm and hyperparameter
combination determines the appropriate algorithm for this
problem. Keras (Chollet, 2015), an open source high-level
neural network API written in python, was employed for
modelling the three algorithms. Keras was used with the
TensorFlow (Abadi et al., 2016) backend.

3 RESULTS AND DISCUSSIONS

3.1 First application example

The goodness of fit of the estimated particle size
distributions to the actual results (sieve sizing) was
evaluated based on the smallest Root mean squared error
(RMSE) and the highest value of coefficient of
determination (R-squared), which defines the fit integrity of
the experimental data.

The Mean RMSE of all sieves is 6.94 % passing and R-
Squared is 0.95. As shown in Figure 5, the bigger particles
hide behind the smaller one and some of the big particles
can only be seen in the top view (left part of Fig. 1). It is
hypothesized that this issue increases the error for
predictions of percent passing for bigger particles rather
than smaller ones. Consequently, the smallest sieve has
the lowest error (RMSE=4.2). Moreover, the RMSE
gradually increases to 9.1 % passing for largest mesh
sizes.

To be applicable to real soil, the determination of PSD
from ConvNet needs to be based on real or at least more
realistic soil images. Another dataset is under

developement using the Unity game engine to give more
realistic features (size, shape and texture) to the particles.
This method could eventually provide rapid, precise and
economic online PSD in the laboratory or in the field.

3.2 Second application example

The main parameters for the trained algorithms are
presented in Table 2. The training was stopped when the
MSE of the testing (prediction) results for the five weeks
reached a minimum value. The training and validation
errors showed a relatively high error due to errors from the
first three weeks.

As can be seen in Figure 6, the GRU algorithm could
converge fast and passed the underfitting region within 500
epochs. It could minimize the validation error in 5000
epochs (Table 2). The GRU showed the lowest error during
training compared to the three other algorithms. The MSE
reached 0.5 (m2) after only 50 epochs. The Dense
algorithm (FFNN) required more iteration (2500 epochs) to
minimize both MSE to less than 0.45 (m2). It shows more
training error but less oscillation compared to the LSTM
and GRU algorithms, which show more oscillations.

The prediction errors for the different algorithms
presented in table 3 suggest that all three algorithms could
be used to predict the water level in the reservoir during
last week with high accuracy. The R-Squared for three
algorithms is equal to 1 (Figure 7). The algorithms were
also able to predict the water level two weeks before the
PWP measurements with a reasonable accuracy
(Figure 8).

Figure 5. Comparison between real and predicted percentages passing for each sieve

5

Table 2. Hyperparameters studied for the optimization process.

Figure 6. Training and validation curves per epoch of three algorithms

Figure 7. Comparison between predicted and observed water levels at the time of PWP measurements using
different algorithms

Algorithm

number of neurons

Learning
rate

Batch-
size

Epoch
Training Error

MSE (m2)
Validation Error

MSE (m2) input layer
1st hidden

layer

LSTM 50 - 0.0001 600 5000 0.3822 0.378

GRU 50 - 0.001 600 5000 0.3869 0.3896

Dense 50 15 0.1 600 5000 0.3935 0.3878

6

Figure 8. Comparison between predicted and observed water levels two weeks before the PPW measurements using
different algorithms

Table 3. Performance statistics of different algorithms in testing

Algorithm
Prediction

Error 1 week ago 2 weeks ago 3 weeks ago 4 weeks ago 5 weeks ago

LSTM

RMSE (m) 0.0138 0.1878 1.1 0.9362 0.8352

R-Squared 1 0.9531 0.2287 0.0285 0.0387

MSE (m2) 0.0002 0.0352 1.2099 0.8765 0.6975

GRU

RMSE (m) 0.0108 0.2170 0.9217 0.8863 0.9384

R-Squared 1 0.9369 0.2423 0.0407 0.0663

MSE (m2) 7.66E-05 0.0414 1.2047 0.8328 0.6736

 RMSE (m) 0.0147 0.2035 1.0159 0.9221 0.8814

Dense
R-Squared 1 0.9436 0.1982 0.0236 0.0072

MSE (m2) 7.11E-05 0.0672 0.9454 0.8581 0.7783

The simulation results in Table 3 indicate that from PWP
data inside the core of dams, the water level in the
upstream reservoir could be estimated for the previous two
weeks. An interesting observation that can be made from
this result is that once the water level changes in the
reservoir, it takes approximately two weeks for PWP inside
the core to reach equilibrium with the new boundary
condition for the hypothetical dam that was modelled.

Several applications could be developed based on this
type of ANN. It could for instance be used to set “intelligent”
alarm levels for geotechnical instruments based on
external factors such as temperatures, upstream water

levels or readings by other instruments. It could also be
used to detect impaired instruments inside a
real dam. For each instrument, an ANN could be trained to
predict a reading based on previous reservoir level
measurements (or some other external parameter), and on
measurements from other instruments. The neural network
would be able to identify measurements that are
anomalous.

4 CONCLUSION

7

This study was centred on generating large datasets using
numerical models for machine learning applications in
geotechnical engineering. For the first application, YADE,
a DEM code, was used to produce assemblages of
spherical particles. A dataset involving 53130 synthetic soil
pictures corresponding to different particle size
distributions was generated. The Microsoft Cognitive
Toolkit (CNTK) was used to analyze the images and the
percentages passing for five sieves. The results show that
Convolutional Neural Networks (ConvNet) can predict the
PSD with a Root Mean Square Error (RMSE) of around
4 %.

For the second application, a dataset involving 14256
simulations was generated with COMSOL, an FEM engine.
The model evaluated the PWP inside the core of an
embankment dam for different water level time series in the
reservoir during the five previous weeks. Three different
ML algorithms could accurately predict the upstream water
levels for the two weeks that preceded the PWP
measurements in the core of the dam.

ACKNOWLEDGMENTS

The authors would like to acknowledge the funding of
NSERC for this project.

5 REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., . . . Isard, M. 2016. TensorFlow: A System for Large-
Scale Machine Learning. Paper presented at the OSDI.

Chollet, F. 2015. Keras. Retrieved from https://keras.io/

COMSOL. 2013. COMSOL MULTIPHYSICS. Version 5.3.
Retrieved from http://www.comsol.com/

Dumberry, K., Duhaime, F., and Éthier, Y. A. 2005.
Experimental study of contact erosion during core
overtopping. Paper presented at the annual conference
of the Canadian Dam Association (CDA), Mississauga,
ON, Canada.

Day, R., Hight, D., and Potts, D. 1998. Finite element
analysis of construction stability of Thika Dam.
Computers and Geotechnics, 23(4), 205-219.

Gordan, B., Armaghani, D. J., Hajihassani, M., and
Monjezi, M. 2016. Prediction of seismic slope stability
through combination of particle swarm optimization and
neural network. Engineering with Computers, 32(1), 85-
97.

Hnang, T.-K. 1996. Stability analysis of an earth dam under
steady state seepage. Computers & structures, 58(6),

1075-1082.

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012.
Imagenet classification with deep convolutional
neural networks. In Advances in neural
information processing systems, 1097-1105.

LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep learning.
Nature, 521(7553), 436.

Mustafa, M., Rezaur, R., Saiedi, S., Rahardjo, H., and Isa,
M. 2012. Evaluation of MLP-ANN training algorithms for
modeling soil pore-water pressure responses to rainfall.
Journal of Hydrologic Engineering, 18(1), 50-57.

Ng, A. K., and Small, J. C. 1999. A case study of hydraulic
fracturing using finite element methods. Canadian
Geotechnical Journal, 36(5), 861-875.

Pirnia, P., Duhaime, F., Ethier, Y., and Dubé, J.-S. 2016.
Development of a multiscale numerical modelling tool
for granular materials. Paper presented at the 69th
Canadian Geotechnical Conference, Vancouver, BC,
Canada.

Pirnia, P., Duhaime, F., Ethier, Y., and Dubé, J-S. 2017.
Multiscale numerical modelling of internal erosion with
discrete and finite elements, Paper presented at the
70th Canadian Geotechnical Conference, Ottawa, ON,

Canada.

Rojas, R. 1996. Neural networks: a systematic introduction.
Springer Science & Business Media.

Sharif, N. H., Wiberg, N.-E., and Levenstam, M. 2001. Free
surface flow through rock-fill dams analyzed by FEM
with level set approach. Computational mechanics,
27(3), 233-243.

Sherard, J. L. 1986. Hydraulic fracturing in embankment
dams. Journal of Geotechnical Engineering, 112(10),
905-927.

Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S.,
Duriez, J., Gladky, A., . . . Sibille, L. 2017. Yade
reference documentation. Yade Documentation, 474
pp..

Taormina, R., Chau, K.-W., and Sethi, R. 2012. Artificial
neural network simulation of hourly groundwater levels
in a coastal aquifer system of the Venice lagoon.
Engineering Applications of Artificial Intelligence, 25(8),
1670-1676.

Van Genuchten, M. T. 1980. A closed-form equation for
predicting the hydraulic conductivity of unsaturated
soils. Soil science society of America journal, 44(5),
892-898.

Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z.,
Guenter, B., . . . Wang, H. 2014. An introduction to
computational networks and the computational network
toolkit. Microsoft Technical Report MSR-TR-2014–112.

Zhang, L., and Du, J. 1997. Effects of abutment slopes on
the performance of high rockfill dams. Canadian
Geotechnical Journal, 34(4), 489-497.

