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ABSTRACT 
Artificial neural networks (ANNs) applications are increasingly common in all fields of engineering. One of the main 
obstacles to the development of ANN applications in geotechnical engineering is the need for large datasets. This paper 
presents two application examples in which numerical methods were used to generate large datasets. The first example 
involves the determination of grain size distributions from soil pictures based on a dataset that includes 53130 synthetic 
soil images corresponding to different particle size distributions. The pictures were generated using YADE, a discrete 
element code. The second application example involves the use of the finite element method to generate a dataset. 
COMSOL’s MATLAB programming interface was used to generate a large number of finite element simulations to predict 
the water level in the reservoir of a hypothetical dam based on pore pressure measurements obtained using an array of 
15 piezometers. 
 
RÉSUMÉ 
L'utilisation de réseaux de neurones artificiels (RNA) est de plus en plus commune dans tous les domaines du génie. Un 
des principaux obstacles qui freine l’utilisation de RNA en géotechnique est la disponibilité de grands ensembles de 
données. Cet article présente deux exemples d'applications pour lesquels des méthodes numériques ont été utilisées pour 
produire les ensembles de données. Le premier exemple concerne la détermination de distributions granulométriques à 
partir d’une banque de 55 000 images synthétiques de sol qui correspondent à différentes distributions granulométriques. 
Les images ont été générées en utilisant YADE, un code d'éléments discrets. Le deuxième exemple d'application implique 
l'utilisation de la méthode des éléments finis pour générer un ensemble de données. L'interface de programmation 
MATLAB de COMSOL a été utilisée pour générer un grand nombre de simulations par éléments finis pour prédire le niveau 
d'eau dans le réservoir d'un barrage hypothétique en se basant sur des mesures de pression interstitielle obtenues en 
utilisant un réseau de 15 piézomètres. 
 
 
1 INTRODUCTION 
 
Machine learning (ML) is an empirical approach where a 
computer program learns from a dataset without the need 
to code the problem and a procedure to solve it. Artificial 
Neural Networks (ANN) are one example of machine 
learning models. The number of ML applications is growing 
rapidly in all fields of engineering.  

Several ML applications can already be found in the 
geotechnical engineering literature. For example, Mustafa 
et al. (2013) evaluated the performance of four ANN 
training algorithms for modelling the dynamics of soil pore 
water pressure (PWP) in response to rainfall variations 
using multilayer perceptron (MLP) ANN. The results 
showed that the network performance (training time and 
prediction accuracy) is related to the type of training 
algorithm.  

Taormina et al. (2012) assessed the ability of a feed 
forward neural network (FFNN) to predict hourly 
groundwater levels in a coastal unconfined aquifer. The 
network was first trained with observed groundwater 
elevations and external inputs such as rainfall and 
evapotranspiration in case of one-hour ahead predictions. 
Then, to simulate longer periods,  the FFNN was fed back 
its own output instead of past observed water level data. 
The algorithm could accurately reproduce water level 
variations for several months. It was suggested as a 
reliable tool for modelling aquifer responses or 
reconstructing missing data.  

Gordan et al. (2015) used artificial neural network 
(ANN) and particle swarm optimization (PSO)–ANN 
models to predict the factor of safety (FOS) of homogenous 
slopes during earthquakes. A dataset including 699 FOS 
values for different slope geometries, soil properties and 
peak ground accelerations was obtained using the 
Geostudio software package. The PSO–ANN technique 
showed a higher accuracy (R2 = 0.97) compared to the 
ANN technique (R2 = 0.91). 

Obtaining large datasets is often the main difficulty in 
developing ML applications. Numerical methods can help 
to generate these datasets. The Finite Element Method 
(FEM) has been used for more than 50 years to study 
seepage, stresses and deformations in embankment dams 
and other earth structures (Day et al., 1998; Hnang, 1996; 
Ng & Small, 1999; Sharif et al., 2001; Sherard, 1992; 
Zhang & Du, 1997). On the other hand, the Discrete 
Element Method (DEM) is used to simulate the discrete 
nature of soil and its microscale behaviour. The DEM 
considers each particle explicitly in a granular material. 
Hence it can simulate finite displacements and rotations of 
particles (Cundall & Hart, 1993). Both FEM and DEM can 
be used to create large databases for the training of ML 
algorithms.  

This paper presents two application examples in which 
FEM and DEM were used to generate large datasets to 
train ANNs.  

The first example involves the determination of grain 
size distributions from soil pictures. The most common 
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geotechnical tests for granular soils, like sand and gravel, 
concern the determination of the particle size distribution 
(PSD). Sedimentation and sieving, the most common 
methods, date from the first half of the 20th century. These 
methods are time-consuming and novel techniques, like 
laser diffraction and image processing methods, are faster. 
Commercial laboratories would benefit from more rapid 
and precise methods to determine the grain size 
distribution. In the first example, the applicability of 
Convolutional Neural Networks (ConvNet) (LeCun et al., 
2015; Krizhevsky et al., 2012) to evaluate the size of 
particles from soil photographs was verified. A dataset 
composed of synthetic soil pictures was generated using 
YADE (Šmilauer et al.  2010), a discrete element code.  

The second application example involves the use of 
FEM to generate a dataset for the training of an ANN. 
COMSOL’s MATLAB programming interface (COMSOL, 
2013) was used to generate a large number of FEM 
simulations in which pore pressure time series were 
modelled for a series of virtual piezometers installed in the 
core of a dam. The upstream boundary condition was 
based on different water level time series for each 
simulation. An ANN was trained to predict the upstream 
water level during previous weeks based on the current 
piezometer measurements. The objective of this 
application example was to evaluate the capability of ML 
algorithms for data recovery or to generate alarm levels for 
instruments that take into consideration external factors or 
measurements from other instruments. 
 
 
2 METHODOLOGY 
 
2.1 Grain size distribution example 
 

Convolutional Neural Networks require thousands of 
images for model training and parameter tuning. The 
discrete element code YADE was used to generate 
particles in five size categories corresponding to sieves 
with openings of 75, 106, 150, 250, 425 and 710 µm. A 
MATLAB script generated a list of 53130 different PSD 
based on the five size categories. A java interface read the 
data and sent the different PSD to the YADE python 
interface. A loose cloud of particles in a box was then 
generated for each PSD (Pirnia et al., 2016, 2017). After 
the particles settled at the bottom of the box, two pictures 
were taken from top and bottom viewpoints (Figure 1).      

The particles were shaded using random grey levels for 
each image. The dataset involved 53130 pairs of top and 
bottom images with a resolution of 128x128 pixels. Image 
pairs were merged together in 256x128 pixels images as 
the input of the model (Figure 1).. 

The Microsoft Cognitive Toolkit (CNTK) (Yu et al., 
2014) version 2.2 was used to analyze the image pairs and 
to determine the percentage passing for five sieves (106, 
150, 250, 425 and 710 µm).  

 

 
Figure 1. Images showing the top (left) and bottom 
(right) views of the synthetic soil particles in the virtual 
transparent box  
 

The architecture of the convolutional neural network 
that provided the best results is displayed in Figure 2. 
Pooling layers were inserted after two convolutional layers 
to down-sample the spatial dimension of the input image 
(Krizhevsky et al., 2012). The Max pooling layer uses 5x5 
receptive fields with a stride of 2 along the spatial 
dimension (width and height). Rectified Linear Units 
(ReLU) Layers was applied after each Convolutional layer. 
This layer intensifies the model nonlinearity. Rectified 
linear translates the negative value input to zero and when 
the input is above a certain quantity thresholds it at zero. 
The same combination of Conv-Pooling layers was 
repeated again to reduce the image size. 

Three fully connected (Dens) layers followed by ReLU 
layer and Dropout. Fully connected layers have connection 
to all activation of the last layer. The Drop out layers avoid 
overfitting to the training data and improves the 
generalization. The last layer in the model is linear layer 
holding the output. 
 

 
Figure 2. ConvNet model structure 
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2.2 Pore pressure monitoring example 
 
A 2-D COMSOL model of transient and unsaturated 
seepage was built to simulate the pore water pressure at 
15 points (virtual piezometers) aligned on three vertical 
lines in the core of a hypothetical dam in response to water 
level changes in the upstream reservoir (Figure 3). The 
pore water pressure in the dam was directly influenced by 
the water level time series during the weeks that preceded 
the pore pressure measurements. 
 
 

 
Figure 3. Geometry of the COMSOL model. The red points 
display the piezometer positions 
 
 

The simulations were conducted with different time 
series of water level in the upstream reservoir for the five 
weeks that preceded the pore pressure measurements. 
These time series were constructed from five water levels 
at one week interval from t = 0 to t = 4 weeks. The water 
level was kept constant during the fifth week. Six discrete 
water level values were chosen for the first four water 
levels between t = 0 to t = 3 weeks (from 6 to 8.5 m in 0.5 m 
increments). Eleven discrete water levels were used for the 
last week (from 6 to 8.5 m in 0.25 m increments). Together, 
these discrete water levels can be combined to form a 
database of 14 256 water level time series. A MATLAB 
script was written to produce all possible water level 
conditions. The water level conditions were combined in 
COMSOL using a linear interpolation function. 

The model solved the water conservation equation 
under unsaturated conditions (Richard’s Equation). The 
unsaturated soil properties of both the filter and core 
materials (Table 1) were based on the van Genuchten 
(1980) model and the parameter values used by Dumberry 
et al. (2015). 

The MATLAB LiveLink interface was used to access 
and modify the COMSOL model created through the 
graphical user interface. Through the MATLAB LiveLink 
interface, command lines were sent to COMSOL to change 
the initial conditions (water levels within five weeks) for 
each test, and to run the simulation. The results were 
written in an Excel file. The total simulation time for the 
COMSOL model was five weeks. The water level condition 
from five weeks ago was set as the initial condition using a 
steady state simulation. The outputs of the COMSOL 
model were the PWP for each piezometer at the end of the 
simulation.  

The input dataset for the neural networks consisted of 
the PWP for the 15 points in the core of the dam at the end 
of the COMSOL simulation (Figure 3). Three algorithms 
were used to train the neural networks and to predict the 
water level in the reservoir for the 5 weeks that preceded 

the pore pressure measurements: Feedforward neural 
network, LSTM unit and GRU.  
 
 

Table 1. Seepage properties used in the COMSOL 
simulations 

 
 
 

In general, training, validation and testing are the three 
stages of preparing a machine learning algorithm. The 
training and validation process can often be combined in a 
single training session, especially in the case of small 
datasets. Both parameter estimation and model structure 
selection happen during training. The Mean Square Error 
(MSE) was used to evaluate the performance of the 
training algorithms. For testing, a set of data was used to 
assess the predictive performance of the model. 

The original data containing 14256 simulations was 
split into training, validation and testing sets (Figure 5). 
Most of the dataset (70 percent chosen randomly) was 
devoted for training and validation of the network. The rest 
was used for testing. Twenty percent of the training dataset 
was held aside as validation data. The testing dataset 
contains data which are not introduced to the network 
during training. The testing dataset shows how the model 
can generalize. 
 
 

Figure 4. Training, validation and testing split 
 
 

The activation function chosen for input and hidden 
layers was an Hyperbolic tangent sigmoid (tanH) with 
range (-1,1) because the PWP values ranged from positive 
to negative. The input data were normalized between (-1,1) 
to match the activation function (tanH). Moreover, 
normalization of data makes the training faster and 
minimizes the error (Rojas 1996). A Rectified Linear Unit 
(ReLU) layer was set as the output layer to extrapolate in 
the desired range of values (6 to 8.5 m).  

Hyperparameters are variables that determine the 
model structure and training algorithm (e.g., learning rate). 
These values are set for the network before the training 
process begins. An optimization of hyperparameters is 
needed for the three proposed algorithms to obtain the best 
results. This optimization involves changing the number of 
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neurons in input and hidden layers, the number of hidden 
layers, the learning rate, and the batch size. Comparison 
of the best results for each algorithm and hyperparameter 
combination determines the appropriate algorithm for this 
problem. Keras (Chollet, 2015), an open source high-level 
neural network API written in python, was employed for 
modelling the three algorithms. Keras was used with the 
TensorFlow (Abadi et al., 2016) backend. 
 
 
3 RESULTS AND DISCUSSIONS 
 
3.1 First application example 

 

The goodness of fit of the estimated particle size 
distributions to the actual results (sieve sizing) was 
evaluated based on the smallest Root mean squared error 
(RMSE) and the highest value of coefficient of 
determination (R-squared), which defines the fit integrity of 
the experimental data. 

The Mean RMSE of all sieves is 6.94 % passing and R-
Squared is 0.95. As shown in Figure 5, the bigger particles 
hide behind the smaller one and some of the big particles 
can only be seen in the top view (left part of Fig. 1). It is 
hypothesized that this issue increases the error for 
predictions of percent passing for bigger particles rather 
than smaller ones. Consequently, the smallest sieve has 
the lowest error (RMSE=4.2). Moreover, the RMSE 
gradually increases to 9.1 % passing for largest mesh 
sizes.  

To be applicable to real soil, the determination of PSD 
from ConvNet needs to be based on real or at least more 
realistic soil images. Another dataset is under 

developement using the Unity game engine to give more 
realistic features (size, shape and texture) to the particles. 
This method could eventually provide rapid, precise and 
economic online PSD in the laboratory or in the field. 

 
3.2 Second application example 
 
The main parameters for the trained algorithms are 
presented in Table 2. The training was stopped when the 
MSE of the testing (prediction) results for the five weeks 
reached a minimum value. The training and validation 
errors showed a relatively high error due to errors from the 
first three weeks.  

As can be seen in Figure 6, the GRU algorithm could 
converge fast and passed the underfitting region within 500 
epochs. It could minimize the validation error in 5000 
epochs (Table 2). The GRU showed the lowest error during 
training compared to the three other algorithms. The MSE 
reached 0.5 (m2) after only 50 epochs. The Dense 
algorithm (FFNN) required more iteration (2500 epochs) to 
minimize both MSE to less than 0.45 (m2). It shows more 
training error but less oscillation compared to the LSTM 
and GRU algorithms, which show more oscillations.  

The prediction errors for the different algorithms 
presented in table 3 suggest that all three algorithms could 
be used to predict the water level in the reservoir during 
last week with high accuracy. The R-Squared for three 
algorithms is equal to 1 (Figure 7). The algorithms were 
also able to predict the water level two weeks before the 
PWP measurements with a reasonable accuracy 
(Figure 8). 

 

 

Figure 5.  Comparison between real and predicted percentages passing for each sieve 
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Table 2. Hyperparameters studied for the optimization process. 
 
 

 
 
 
 
 
 
 
 
 

 

  
Figure 6. Training and validation curves per epoch of three algorithms 

 
 

 
Figure 7. Comparison between predicted and observed water levels at the time of PWP measurements using 
different algorithms 

 

 
Algorithm 

number of neurons 

Learning 
rate 

Batch-
size 

Epoch 
Training Error 

MSE (m2) 
Validation Error 

MSE (m2) input layer 
1st hidden 

layer 

LSTM 50 - 0.0001 600 5000 0.3822 0.378 

GRU 50 - 0.001 600 5000 0.3869 0.3896 

Dense 50 15 0.1 600 5000 0.3935 0.3878 
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Figure 8. Comparison between predicted and observed water levels two weeks before the PPW measurements using 
different algorithms 

 
 

Table 3. Performance statistics of different algorithms in testing 
 

Algorithm 
Prediction 

Error 1 week ago 2 weeks ago 3 weeks ago 4 weeks ago 5 weeks ago 

LSTM 

RMSE (m) 0.0138 0.1878 1.1 0.9362 0.8352 

R-Squared 1 0.9531 0.2287 0.0285 0.0387 

MSE (m2) 0.0002 0.0352 1.2099 0.8765 0.6975 

GRU 

RMSE (m) 0.0108 0.2170 0.9217 0.8863 0.9384 

R-Squared 1 0.9369 0.2423 0.0407 0.0663 

MSE (m2) 7.66E-05 0.0414 1.2047 0.8328 0.6736 

 RMSE (m) 0.0147 0.2035 1.0159 0.9221 0.8814 

Dense 
R-Squared 1 0.9436 0.1982 0.0236 0.0072 

MSE (m2) 7.11E-05 0.0672 0.9454 0.8581 0.7783 

 
 
 
The simulation results in Table 3 indicate that from PWP 
data inside the core of dams, the water level in the 
upstream reservoir could be estimated for the previous two 
weeks. An interesting observation that can be made from 
this result is that once the water level changes in the 
reservoir, it takes approximately two weeks for PWP inside 
the core to reach equilibrium with the new boundary 
condition for the hypothetical dam that was modelled.  

Several applications could be developed based on this 
type of ANN. It could for instance be used to set “intelligent” 
alarm levels for geotechnical instruments based on 
external factors such as temperatures, upstream water 

levels or readings by other instruments. It could also be 
used to detect impaired instruments inside a  
real dam. For each instrument, an ANN could be trained to 
predict a reading based on previous reservoir level 
measurements (or some other external parameter), and on 
measurements from other instruments. The neural network 
would be able to identify measurements that are 
anomalous. 

 
4 CONCLUSION 
 



 

7 
 

This study was centred on generating large datasets using 
numerical models for machine learning applications in 
geotechnical engineering. For the first application, YADE, 
a DEM code, was used to produce assemblages of 
spherical particles. A dataset involving 53130 synthetic soil 
pictures corresponding to different particle size 
distributions was generated. The Microsoft Cognitive 
Toolkit (CNTK) was used to analyze the images and the 
percentages passing for five sieves. The results show that 
Convolutional Neural Networks (ConvNet) can predict the 
PSD with a Root Mean Square Error (RMSE) of around 
4 %.  

For the second application, a dataset involving 14256 
simulations was generated with COMSOL, an FEM engine. 
The model evaluated the PWP inside the core of an 
embankment dam for different water level time series in the 
reservoir during the five previous weeks. Three different 
ML algorithms could accurately predict the upstream water 
levels for the two weeks that preceded the PWP 
measurements in the core of the dam. 
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