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ABSTRACT 

Acquiring detailed information about the state of the pavement structures is an important element in rehabilitation planning 
of sections showing significant damage. The Falling Weight Deflectometer Test (FWD) is a popular Non-Destructive 
Testing (NDT) technique used to characterize the mechanical properties of a pavement structure. This paper aims to study 
the effect of poro-visco-elasticity of the pavement structure on the mechanical parameters such as the resilient modulus 
and structural damping as determined by FWD using a novel dynamic algorithm rather than a quasi-static analysis. For 
this purpose, a poro-visco-elastic Forward Solver Kernel was developed. The associated forward solver is cross-checked 
against viscoelastic and elastic limit cases.        
 
RÉSUMÉ 

Acquérir des informations détaillées sur l'état des structures de chaussée est un élément essentiel dans n’importe quel 
programme de réhabilitation pour les sections subites des dommages importants. L’essai de déflectomètre à masse 
tombante (FWD) est l'une des techniques d'essais non destructifs (NDT) les plus populaires dans la caractérisation des 
propriétés mécaniques de la structure de la chaussée. Cet article vise à étudier l'effet de poro-visco-élasticité de la 
structure de la chaussée sur les paramètres mécaniques tels que le module élastique ou réversible ainsi que 
l'amortissement structurel. Ces paramètres sont déterminés par FWD en utilisant un nouvel algorithme dynamique plutôt 
qu'une analyse quasi-statique. A cette fin, une solution analytique poro-viscoélastique est utilisée. La solution analytique 
associée est vérifiée en comparaison avec les solutions viscoélastique et élastique. Finalement, la fonction Green du 
system est évaluée.  
 
 
1 INTRODUCTION 
 
Pavement structures reach performance limits when there 
are multiple deteriorations caused by repeated vehicle 
loading and environmental effects. Due to the safety and 
comfort point of view, it is important to acquire detailed 
information about the state of the pavement structures. It 
is, in fact, an important element in rehabilitation planning of 
sections showing significant damage. FWD is one of the 
most widely accepted NDT approaches in evaluating 
pavement structure in terms of the strength and load baring 
capacity. The information provided by FWD are essential 
part in a cost effective maintenance framework in 
pavement structures.  

Non-Destructive Testing (NDT) techniques have been 
broadly used for structural health monitoring and low-cost 
assessment in transportation. Among different NDT 
approaches, Falling Weight Deflectometer Test (FWD) is 
one of the most popular techniques in characterization of 
the mechanical properties of the pavement structure. The 
FWD test measures the surface deflections caused by 
dropping a known mass from a specific height onto a load 
plate placed on the pavement surface, and associated 
stress wave propagating through the multilayer pavement 
structure. Geophones are used to record the time histories 
of the vertical deflections of the pavement surface at 
various distances from the center of the load-plate.  

Several wave types will propagate through soil layers 
and reflect and diffract at layer interfaces due to the impact 

excitation source used at the ground surface during a FWD 
test.  Acquired surface displacement data are later used as 
the input of a back-calculation algorithm to inversely 
determine the mechanical properties of the layers 
constituting the multilayered flexible pavement system. 
The back-calculation algorithm consists of a forward solver 
(forward kernel) and an inverse scheme. The accuracy of 
the forward solver is the key to achieving better precision 
and reliability with the inversion scheme. 

The current practical state-of-the-art of this technique 
is, mostly, limited to the quasi-static inversion of the 
maximum measured deflections. However, this approach 
does not take advantage of the additional information 
contained in the stress wave time histories such as 
damping, moisture content, and the effect of porous 
structure. The accuracy of determining the mechanical 
properties of the layers would also improve by using a 
comprehensive dynamic analysis rather than a quasi-static 
analysis. 

The presence of moisture in the pavement structure 
can significantly affect the performance of the pavement. 
For example, an increase of 2% in optimum moisture 
content, would decrease the resilient modulus of the whole 
structure by as much as 75%. Another important issue to 
the pavement maintenance is the seasonal factor in cold 
regions. For example, the resilient modulus in winter is 
approximately on average 40% higher than the one in early 
spring (thawing season) (Ji et al., 2010).  
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The current state-of-the-art in FWD, using a quasi-
static technique, cannot account for the presence of 
moisture in the subgrade. See, for example, Al-Khoury et 
al. (2001) and Lee (2014). Consequently, a more realistic 
hydro-mechanical dynamic model is needed to determine 
mechanical as well as hydraulic properties such as water 
content, porosity, and visco-elastic parameters.  

This paper, first, aims to include the effect of moisture 
present in the pavement structure on its dynamic behavior 
which influences effective mechanical parameters such as 
the elastic or resilient modulus and structural damping.  
Subsequently a porous forward solver kernel is developed 
in time domain. Corresponding inversion algorithms for the 
Laplace and Hankel transforms are implemented and 
improved. Later, the temporal and spatial description of the 
loading is modified to better describe an actual falling 
weight impact. These modifications, significantly improve 
the computational efficiency while improving the accuracy 
at the same time.  It is shown that this solver can be 
reduced to an equivalent elastic or viscoelastic one, as two 
subsequent limit cases.   
 
 
2 MECHANICS OF WAVES IN A POROUS MEDIUM 

 
A saturated porous medium is composed of a solid 
skeleton and a porous space filled with water. According to 
principles of continuum mechanics, any infinitesimal 
volume of a saturated porous medium can be considered 
as the superposition of two continua, skeleton continuum 
and fluid continuum, in time and space. The propagation of 
waves in a fluid-saturated porous solid is presented in this 
section in the framework of the theory of dynamic poro-
elasticity, also known as Biot’s theory (Biot, 1956:1,2). 

Biot assumed a porous medium as macroscopically 
homogeneous and isotropic. Hence the material is 
described in terms of averaged field variables and material 
properties. The average macroscopic displacement of the 
solid skeleton and the saturating fluid, in the elementary 
macroscopic volume (EMV), are designated by the vectors 
𝑢𝑖 and 𝑈𝑖, respectively.  The relevant physical parameters 
are listed as follows:  

 𝛽 is the first Biot coefficient; 

 𝑚 is the second Biot coefficient representing the 
macroscopic elastic coupling;  

 𝜆, 𝜇 are the Lame constants of the solid skeleton; 

 𝜙0is the porosity; 

 𝐾0 is the bulk modulus of a dry skeleton, i.e., for 

an “open” system, 𝑝0 = 0; 

 𝐾𝑠 is the bulk modulus of the material constituting 
the elastic matrix; 

 𝐾𝑓𝑙 is the bulk modulus of the saturating fluid;  

 𝐾𝑓 is the bulk modulus of the "closed" system; 

 𝜌11, 𝜌12 and 𝜌22 are frequency independent 

effective densities;  

 𝜌𝑓 is the density of the saturating fluid;  

 𝜌𝑠  the density of solid particles;  

 𝛼∞ is tortuosity (structure factor) of the porous 
medium; 

 𝐾 = 𝑘/휂𝑑 is the coefficient of permeability 
representing the macroscopic viscous coupling 

due to the relative motion between the Poiseuille-
type flow and the solid matrix on the microscopic 
scale; 

 휂𝑑 dynamic viscosity of a saturating fluid; 

 𝑘 is the hydraulic conductivity; 
 
For each homogeneous and isotropic layer, the above-
mentioned parameters do not depend on the spatial 
coordinates. 

 
2.1 Kinematic Assumptions 
 
Kinematic assumptions include the infinitesimal 
deformations of the elastic skeleton,𝑢𝑖, are subjected to the 

linearized Green-Cauchy strain tensor, 휀𝑖𝑗, so that  

 

휀𝑖𝑗 =
1

2
 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).       [1] 

 
Similarly, the strain tensor, 𝑒𝑖𝑗, corresponding to fluid’s 

particle displacement, 𝑈𝑖 , becomes  
 

𝑒𝑖𝑗 =
1

2
 (𝑈𝑖,𝑗 + 𝑈𝑗,𝑖).      [2] 

 
Hence the second order deformation gradients are 
neglected.  

 
2.2 Macroscopic Constitutive Equations 
 
The constitutive equations for a fluid saturated porous 
medium based on the Biot theory is  

 

 𝜎𝑖𝑗 = (𝜆𝑓𝑢𝑖,𝑖 + 𝛽𝑀0𝑤𝑖,𝑖)𝛿𝑖𝑗 + 2𝜇휀𝑖𝑗                                         [3a]                         

 

 𝑝 = −𝑀0 (𝑤𝑖,𝑖 + 𝛽𝑢𝑖,𝑖)                                                      [3b] 

 
in which 𝜎𝑖𝑗 and 𝑝 are the macroscopic stress tensor and 

the mean pore fluid pressure, respectively. Moreover, 𝑤𝑖 =
𝜙0(𝑈𝑖 − 𝑢𝑖) is the relative filtration displacement vector.  

The subscript (),𝑖 denotes a spatial derivative. 
Furthermore,  
𝜆𝑓 = 𝐾𝑓 − 2𝜇/3 

𝐾𝑓 =

𝜙0 (
1

𝐾𝑠
−

1
𝐾𝑓

) +
1

𝐾𝑠
−

1
𝐾0

𝜙0

𝐾0
 (

1
𝐾𝑠

−
1

𝐾𝑓
)

 

𝑀0 =
1

(
(𝛽 − 𝜙0)

𝐾𝑓
+

𝜙0

𝐾𝑓
)
 

𝛽 = 1 −
𝐾0

𝐾𝑠
 .                                                                                     [4] 

 
(Johnson, et al. 1986) approximated this parameter as 𝜒 ≈
1/2 for a medium consisting a set of non-intersecting 

tubes. Consequently, the viscous characteristic length Λ ≈

√8𝛼𝜅/𝜙0, which exclusively depends on a frame geometry, 

has become as a widely accepted. It has been shown to be 
valid for a wide range of transport properties especially in 
soil dynamics.       
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2.3 Conservation of Linear Momentum 
 
Conservation of the linear momentum for an elastic 
skeleton is 
 

𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = (1 − 𝜙0)𝜌𝑠𝑢𝑖̈ + 𝜙𝜌𝑓�̈�𝑖                                             [5]         

    
whereas for a saturating fluid, it becomes 
 

𝑝,𝑖 = −
𝜙0

𝐾
𝑏(𝑡) ⊗ (𝑈𝑖

̇ − �̇�𝑖) + 𝜌𝑓(𝑎∞ − 1)𝑢𝑖̈ + 𝜙𝜌𝑓�̈�𝑖       [6] 

         
 
where an overlying dot denotes a time derivative; 𝑓𝑖 and 

𝑏(𝑡) are body force and viscosity correction functions, 

respectively; 𝑏(𝑡) is a viscous coupling factor that accounts 
for the combined effects of macroscopic frictional 
dissipation due to the finite fluid viscosity (viscous drag 
forces) and the interaction between the fluid and solid 
movements (inertial forces). Furthermore, this factor 
describes the transition behavior from viscosity-dominated 
flow, of laminar type at low-frequency range, to inertia-
dominated flow, of turbulent type at high-frequency range 
(Mesgouez et al., 2009).  The closed form expression of 
this correction function in frequency domain is 
 

𝑏(𝜔) = √1 − 𝑖 𝜒
𝜔

𝜔𝐽𝐾𝐷
,    𝜔𝐽𝐾𝐷 =

휂 𝜙0

𝜌𝑓𝑎∞𝑘
                               [7]  

 
where 𝜔𝐽𝐾𝐷 is the radial frequency governing the viscous 

interaction transition regime which was proposed by 
(Johnson, et al. 1986). The effective damping changes 

when the viscous skin depth √2휂/𝜌𝑓𝜔  becomes smaller 

than the pore size as the frequency increases beyond the 
characteristic frequency 𝜔𝐽𝐾𝐷 .  Furthermore, 𝜒 is a 

dimensionless parameter accounting for a pore geometry. 
 
2.4 Governing Equations’ Assembly  

 
By combining the kinematic assumptions, conservation of 
the linear momentum a long with the constitutive equations, 
the governing equations of the system emerges as  
(𝜆 + 2𝜇)  𝛁𝛁. 𝒖 + 𝑄 𝛁𝛁. 𝑼 − 𝜇 𝛁 × 𝛁 × 𝒖 

= 𝜌11�̈� + 𝜌12�̈� + 𝑏(𝑡) ⊗ (�̇� − �̇�)                     [8a] 

 
𝑄 𝛁𝛁. 𝑼 + 𝑅𝛁𝛁. 𝑼 

               = 𝜌11�̈� + 𝜌12�̈� + 𝑏(𝑡) ⊗ (�̇� − �̇�)                         [8b] 

 

in which 𝝈 is the Cauchy stress tensor.  Furthermore  

 𝜌 = 𝜙0𝜌𝑓 + (1 − 𝜙0)𝜌𝑠; 𝜌11 = 𝜌 + 𝜙0𝜌𝑓𝑙(𝛼∞ − 2); 𝜌12 =

𝜙0𝜌𝑓(1 − 𝛼∞); 𝜌22 = 𝜌 − 𝜌11 − 2𝜌12 = 𝛼∞𝜙0𝜌𝑓; 𝑅 = 𝜙0
2𝑀0; 

𝑄 = 𝜙0𝑀0(𝛽 − 𝜙0); 𝜆 = 𝜆𝑓 + 𝜙0𝑀0(𝜙0 − 2𝛽); 𝛽 = 1 − 𝐾/

𝐾0.  
 
2.5 Helmholtz Decomposition  
 
Resolution of the displacement field into two Helmholtz 
decomposition theorem allows us to resolve the solid and 
relative displacement fields as superposition of longitudinal 
and transverse vector components as follows, 

𝒖 = 𝜵𝜙 + 𝜵 × 𝝍  and                                            [9a] 

𝒘 = 𝜵𝜒 + 𝜵 × 𝜽 ,                   [9b] 
 

where 𝜙 and 𝜒 are the scalar compressional wave 

potentials and 𝝍 and 𝜽 are the vectorial shear wave 
potentials.  For the uniqueness of the solution the following 
Gauge conditions shall be satisfied as 
 
𝛁. 𝝍 = 0,   𝛁. 𝜽 = 0.                        [10] 
 
This condition ensures the equivoluminal shear motion.  
Substituting Eqs. (9a) and (9b) into Biots' field equations of 
motion, Eqs. (8a) and (8b), we obtain two sets of uncoupled 
partial differential equations relative, respectively, to 
compressional waves P1 and P2 connected to Helmholtz 
scalar potentials 𝜙 and 𝜒, and to shear wave S connected 

to Helmholtz vector potentials 𝝍 and 𝜽 as follows, in the 
Laplace domain with zero initial conditions 

(
𝜆 + 2𝜇 𝑄

𝑄 𝑅
) (

∇2𝜙

∇2𝝍
) = 

(
−𝜌11𝑠2 + 𝑠𝑏 −𝜌12𝑠2 − 𝑠𝑏

−𝜌12𝑠2 − 𝑠𝑏 −𝜌22𝑠2 + 𝑠𝑏
) (

∇2𝜙

∇2𝝍
)    [11] 

 

(
𝜇 0
0 0

) (
∇2𝜙𝑟

∇2𝝍𝑟) = 

(
−𝜌11𝑠2 + 𝑠𝑏 −𝜌12𝑠2 − 𝑠𝑏

−𝜌12𝑠2 − 𝑠𝑏 −𝜌22𝑠2 + 𝑠𝑏
) (

∇2𝜒

∇2𝜽
).    [12] 

 
Using standard methods of wave analysis, the above 
systems may be manipulated to yield Helmholtz equations: 
 

∇2𝜙𝑓,𝑠 − 𝑘𝑓,𝑠
2 𝜙𝑓,𝑠 = 0                              [13a] 

 

∇2𝝍𝑓,𝑠 − 𝑘𝑡
2𝝍𝑓,𝑠 = 0                               [13b] 

 
where 𝑘𝑓 , 𝑘𝑠 and 𝑘𝑡 denote the wave numbers of the fast 

compressional, slow compressional, and the elastic shear 
waves, respectively, in Laplace domain. They are defined 
as 

𝑘𝑓𝑠
2 =

𝐵𝑚√𝐵2 − 4𝐴𝐶

2𝐴
 

𝑘𝑡
2 =

𝐶

𝜇(−𝜌22𝑠2 − 𝑠𝑏)
                                                                [14] 

 
where 

𝐴 = (𝜆 + 2𝜇)𝑅 − 𝑄2                                                       

𝐵 = 𝜔2(𝜌11𝑅 + 𝜌22(𝜆 + 2𝜇) − 2𝜌12𝑄) − 

𝜔𝑏(𝜆 + 2𝜇 + 2𝑄 + 𝑅)                              

𝐶 = 𝜔2(𝜔2(𝜌11𝜌22 − 𝜌12
2 ) − 𝑠𝜌𝑏)                                            [15]                                                      

 
Next by introducing Eqs. (9) into (8), with some 
manipulations, the potentials 𝜙, 𝜒, 𝜽  and 𝝍  can be 

expressed as 𝜙 = 𝜙𝑓 + 𝜙𝑠 , 𝜒 = 𝜇𝑓𝜙𝑓 + 𝜇𝑠𝜙𝑠and 𝜽 = 𝛼0𝝍  

where 

𝜇𝑓𝑠 =
−𝑠2(𝜌11𝑅 − 𝜌12𝑄) − 𝑘𝑓𝑠

2 ((𝜆 + 2𝜇)𝑅𝑄2) − 𝑠 𝑏(𝑄 + 𝑅)

−𝑠2(𝜌22𝑄 − 𝜌12𝑅) − 𝑠𝑏(𝑄 + 𝑅)
 

 

𝛼0 = −
𝑠𝑏 + 𝑠2𝜌12

𝑠2𝜌22 + 𝑠 𝑏
                                                               [16] 
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Gauge condition leads only to independent shear wave 
potentials. The loading symmetry of problem in 
circumferential direction, also, leads to reduction of another 
shear wave potential.  Consequently, only one scalar shear 
wave potential remain as, 𝜓. By substituting 𝑈𝑖  with 𝑢𝑖 +
𝑤𝑖/𝜙0 in equations (11) and (12) along with applying the 
resolution of equation (9), alternatively, the system of wave 
equations can be reduced into 
 

[𝑀] [
�̈�

𝜙�̈�
] + [𝐶] [

�̇�

𝜙�̇�
] − [𝐾𝑝] [

∇2𝜙

∇2𝜙𝑟] = [
0
0

]                       [17a] 

 

[𝑀] [
�̈�

𝜓𝑟̈
] + [𝐶] [

�̇�

𝜓𝑟̇
] − [𝐾𝑠] [

∇2𝜓

∇2𝜓𝑟] = [
0
0

]                       [17b] 

 
where 

[𝑀] = [
(1 − 𝜙)𝜌𝑠 + 𝜙𝜌𝑓 𝜌𝑓

𝜌𝑓 𝑎𝜌𝑓/𝜙
],               

[𝐾𝑃] = [
(𝜆 + 𝜇 + 𝑚𝛽2) 𝑚𝛽

𝑚𝛽 𝑚
],                 

[𝐾𝑆] = [
𝜇 0
0 0

]   and              

 [𝐶] = [
0 0

0
1

𝐾
𝑏(𝑡) ⊗].                                                        [18]     

  
The solution to the wave equations (12) are treated in two 
different ways and then their performance in terms of 
computational costs for the same accuracy is compared. 
These two methods differ in the way they treat the radial 
coordinate: in the first one a Hankel transform is used while 
in wave potentials are relaxed at a large distance form the 
loading center.   However in both approaches a Laplace 
transform is applied to the time coordinate.           
 
2.6 Double Transformed Solution  
 
The solution of the wave potentials can be more 
conveniently treated if a double Laplace (𝑡 → 𝑠) 

ℒ{휃(𝑡)} = 휃̂(𝑠) = ∫ 휃(𝑡)𝑒−𝑠𝑡  𝑑𝑡

𝛾+𝑖∞

𝛾−𝑖∞

                                   [19] 

 

and Hankel transform (𝑟 → 휁) applied to equations of (17a) 
and (17b) as 

휃̂(휁) = ∫ 휃(𝑟)𝐽𝑝(휁 𝑟)휁 𝑑휁

∞

0

.                                                    [20] 

Hence that ℒ{a(t) ⊗ b(t)} = 𝑠 𝑎 ̅(𝑠) �̅�(𝑠)  if the system is at 

rest initially at 𝑡 = 0.  conditions are zero. Subsequently, 
the equation (17) turns into 
 

((휁2 −
𝑑2

𝑑𝑧2) [𝐾𝑝] + 𝑠2[𝑀] − 𝑠[𝐶]) (
�̂�

�̂�𝑟
) = (

0
0

)              [21a] 

 
And 
 

((휁2 −
𝑑2

𝑑𝑧2) [𝐾𝑠] + 𝑠2[𝑀] − 𝑠[𝐶]) (
�̂�

�̂�𝑟
) = (

0
0

) .             [21b] 

 

Solution of the second order above mentioned system 

of equations, simply, will be periodic in the 𝑧 direction, such 
that 

(
�̂�

�̂�𝑟
) = 𝐴1

𝑖𝑛𝑐 (
1

𝐵1
) 𝑒−𝑘𝑝1𝑠 + 𝐴1

𝑟𝑒𝑓
(

1
𝐵1

) 𝑒−𝑘𝑝1𝑠

+ 𝐴2
𝑖𝑛𝑐 (

1
𝐵2

) 𝑒−𝑘𝑝1𝑠 + 𝐴2
𝑟𝑒𝑓

(
1

𝐵2
) 𝑒−𝑘𝑝1𝑠 

      
                   [22] 
 
where 

𝐵𝑖 = −
(𝑘𝑝

2
𝑖

+ 휁2) 𝛼𝑀 + 𝑠2𝜌𝑓

(𝑘𝑝
2

𝑖
+ 휁2) 𝑀 +

𝑠2𝜌𝑓𝛼∞

𝜙0
− 𝑠

𝑏(𝑠)
𝐾

                               [23] 

 

in which 𝑖 refers to a layer and its material properties. 𝐴𝑖
𝑖𝑛𝑐 

and 𝐴𝑖
𝑟𝑒𝑓

 are unknown coefficients.  These wave potentials 

are related to displacements through the Helmholtz 
decomposition of equation (10).  Then the displacements 
are transferred to strains elements through Green-Cauchy 
equations (1) and (2). Finally, the stress elements can be 
retrieved by using the constitutive equations (3).   

Next by enforcing the continuity of layer through the 
displacement (𝑢𝑟 , 𝑢𝑧) and stress (𝜎𝑧𝑧, 𝜎𝑟𝑧) elements, those 
unknown coefficients are determined.  Indeed a local 
transfer matrices for bounded and half space layers are 
constructed first.  A global stiffness matrices is assembled 
following equations (11), (12) and (13) in Kausel and 
Roesset (1981) in a way to swap these unknown 
coefficients with the interface displacements and stresses. 
A similar procedure is followed by Mesgouez and 
Mesgouez (2009) but by using a triple Fourier transform in 
Cartesian coordinates 𝑥 and 𝑦 as well as in time 𝑡 rather 
than a joint Laplace and Hankel transforms. Inversion 
schemes for these double transform is explained next.  
 
2.6.1 Inversion of the Transformed Solutions  
 
A zero order and first order Hankel transforms of the first 
kind are used to transform the vertical and radial 
displacements, respectively. Therefore, the inverse Hankel 
transform of respective orders must be carried out for the 
two displacements. A numerical integration scheme is 
adopted here which was originally proposed by (Cornille, 

1972). An inverse Hankel transform of 𝑝𝑡ℎ  order can be 
defined as 

𝑢(𝑟) = ∫ �̂�(휁)𝐽𝑝(휁 𝑟)휁 𝑑휁

∞

0

                                                    [25] 

 
where 𝐽𝑝(휁) is the 𝑝-th order Bessel function of first kind. 

This integral can be broken down to multiple intervals of 휁, 
such as that 
 



 

5 
 

𝑢(𝑟) = ∫ �̂�(휁)𝐽𝑝(휁 𝑟)휁 𝑑휁

∞

0

= ∫ �̂�(휁)𝐽𝑝(휁 𝑟)휁 𝑑휁

𝑏2

𝑏1 

+ ∫ �̂�(휁)𝐽𝑝(휁 𝑟)휁 𝑑휁

𝑏3

𝑏2 

+ ∫ �̂�(휁)𝐽𝑝(휁 𝑟)휁 𝑑휁

𝑏4

𝑏3 

+ ⋯            [26] 

 
where 𝑏𝑖 are the zeros of Bessel function (𝑝 + 1)-th kind of 

the first order, 𝐽𝑝+1(𝑏𝑖) = 0 (). Each of the sub-integrals 

should be evaluated by dividing [𝑏𝑖 , 𝑏𝑖+1] to ten sub 
integrations as well to achieve a reasonably stable 
numerical convergence (Cornille, 1972).  Each of those 
intervals are integrated by a Gaussian Quadrature 
approach with ten nodes which corresponds to a degree of 
exactness of 17.  A Gauss-Lobatto Quadrature is chosen 
since it includes the nodes on the boundary as well.  This 
integration scheme is outlined for an arbitrary interval of 

[𝑎, 𝑏].  First the abscissa are the root of 𝑃𝑛−1
′(𝑦𝑖) = 0, 

where 𝑃𝑛(𝑥) is the associated Legendre function of the 𝑛 − 

th order.  Then these nodes are normalized to [-1,1] by 𝑥𝑖 =
𝑏−𝑎

2
𝑦𝑖 +

𝑏+𝑎

2
 .   The corresponding weights are  

𝑤1 = 𝑤𝑛 =
2

𝑛 (𝑛−1)  
,     

𝑤𝑖 =
2

𝑛 (𝑛−1)  𝑃𝑛−1
′(𝑦𝑖)2 ,                                                   [27] 

 
Finally, this integration formula can be written in closed-
form as 
 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏 − 𝑎

2
∫ 𝑓 (

𝑏 − 𝑎

2
𝑦 +

𝑏 + 𝑎

2
) 𝑑𝑦

1

−1

𝑏

𝑎

≈
𝑏 − 𝑎

2
(𝑤1𝑓(𝑎) + 𝑤𝑛𝑓(𝑏)

+ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛−1

𝑖=2

)

=
𝑏 − 𝑎

2
(𝑤1𝑓(𝑎) + 𝑤𝑛𝑓(𝑏)

+ ∑ 𝑤𝑖𝑓 (
𝑏 − 𝑎

2
𝑦𝑖 +

𝑏 + 𝑎

2
)

𝑛−1

𝑖=2

)       [28] 

where 𝑛 = 10. 
The Laplace inverse transform of an arbitrary function 

is carried on by using a Fourier series based approach due 
to Durbin (Abate and Valko, 2004).  The linear operators of 
Laplace transform and its subsequent complex inversion 
can be defined, respectively, as 

ℒ−1{휃(𝑡)} = 휃(𝑠) = ∫ 휃̃(𝑠)𝑒𝑠𝑡 𝑑𝑡

∞

0

                                           [29] 

 

𝛾 is an arbitrary real number greater than the real parts of 

all singularities of 𝛩(𝑠).   
 

�̃�(𝑡) ≈
1

2
𝑐0(𝑡) + ∑ 𝑐𝑛(𝑡)𝑁

𝑛=1 ,               𝑡 ∈ [0, 𝑇]                  [30] 

 

where 𝑐𝑛(𝑡) = (𝑒𝛾𝑡/𝑇)𝑅𝑒{𝑒𝑖 𝑛𝜋 𝑡/𝑇𝛩(𝛾 + 𝑖 𝑛 𝜋/𝑇)}. The 

convergence rate is enhanced through a Lanzo’s filter. The 
second method of solving equations (17) is briefly 
discussed next.  
 
2.7 Relaxed Potential Solution  
 
The rational here is that all wave function are set to zero at 
𝑟 = 𝑟∞ so there is no reflections in the radial direction 
instead of a Hankel transform. Compressional waves are 
expressed in terms of the zero order Bessel functions of 

the first kind, 𝐽0(𝑧), while the shear waves are defined by 

the first order Bessel functions of the first kind, 𝐽1(𝑧).  
Consequently following characteristic equations form as  
 

𝐽0(𝑘𝑚
𝑃 𝑟∞) = 0,    𝑚 = 1,2, …                                                          [31a] 

 
in the case of compressional waves, whereas 
 

𝐽1(𝑘𝑚
𝑆 𝑟∞) = 0,     𝑚 = 1,2, …                                                        [31b] 

 
𝑘𝑚 are determined by solving to latter equations. As the 
characteristic equation for shear waves.  Obviously each 
𝑘𝑚 corresponds to 𝑚-th vibratory mode. A similar approach 
was taken by Al-Khoury, et al (2001 and 2007) multilayered 

system. However shear wave modes corresponding 𝑘𝑚
𝑆  

were not included in the construction of the final total 
solution through the assembly of the transfer and global 
stiffness matrices. The global stiffness matrix is developed 
in a similar way as the pervious subsection. 
 
2.8 Excitation Characteristics Modification   
 
Description of the loading is modified in order to better 
including characteristics of an actual impact at the surface. 
Cauchy’s traction stress vector is defined as 𝒕𝑛 = 𝝈𝑛 . 𝒏𝑧, 

where 𝒏𝑧 = −𝒆𝑧 is perpendicular to the surface and points 
outwards. In case of pure normal loading, a surface 

traction force can be decomposed to temporal and spatial 
components such that  
 
𝜎𝑧𝑧(𝑡, 𝑟, 𝑧 = 0) ≡ −𝐹(𝑟, 𝑧)

= −𝑓𝑡(𝑡) {
𝑓𝑟(𝑟),     0 < 𝑟 < 𝑟0

0,       𝑟 > 𝑟0
           [32]   

 
where 𝑟0 is the radius of a circular impactor. Furthermore  

𝑓𝑡(𝑡) is the time dependency of an excitation. Discussions 
are made to improve the accuracy and numerical stability 
of these two parts separately. 
 
 
2.8.1 Spatial Description of the Impact 
 
Spatial description of a load can be described in terms of 
the vibratory modes of the system as Fourier-Bessel 
series, such that 
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𝑓𝑟(𝑟) = ∑ 𝐹𝑚

∞

𝑚=1

𝐽0(𝑘𝑚
𝑃 𝑟).                                                            [33] 

where  
 

𝐹𝑚 =
2

𝑟∞
2  𝑘𝑚

𝑃  𝐽1
2

(𝑟∞𝑘𝑚
𝑃

)
∫ 𝑟𝑓𝑟(𝑟)𝐽0(𝑘𝑚

𝑃  𝑟)𝑑𝑟
𝑟∞

0

.               [34] 

 
Pervious publications assumed a distribution, such that, 

𝐹𝑚 =
2 𝑟0 𝐽1(𝑟0𝑘𝑚

𝑃 )

𝑟∞
2  𝑘𝑚

𝑃  𝐽1
2(𝑟∞𝑘𝑚

𝑃 )
 .                                                     [35] 

 

This simplified assumption, however, is far from the actual 
distribution.  This can be improved by applying a Hertzian 
contact force description of a cylinder over a half space 
within the elastic domain.  This distribution is reported by 
Sneddon (1965) as  
 

𝑓𝑟(𝑟) =
1

√1 − (
𝑟
𝑟0

)
2

 .                                                         [36] 

 
The corresponding modal component by inserting the latter 
equation in equation (19), in closed-form, becomes 
 

𝐹𝑚 =
2 𝑟0 𝑠𝑖𝑛(𝑟0𝑘𝑚

𝑃 )

𝑟∞
2  𝑘𝑚

𝑃  𝐽1
2(𝑟∞𝑘𝑚

𝑃 )
 .                                                     [37] 

  
In the case of the dual transform approach, the Hankel 
transformed of this distribution turns into 

 

𝑓�̂�(휁, 𝑠) =
𝑟0

휁
𝐽1(휁 𝑟0)                                                          [38] 

 
for uniform distribution while it becomes  
 

𝑓�̂�(휁, 𝑠) = √𝜌2
𝑒𝑖𝜁𝜌

𝑖휁
                                                            [39] 

 
For the Hertzian contact model.  The Fourier-Bessel series 
in equation (33) has an extremely slow convergence rate 
as reported by Al-Khoury, et al. (2001) and (2007).  They 

used 𝑀 = 1700 terms (modes) to get to a somehow 
acceptable convergence. We are proposing the 
implementation of a Cesearo summation approach, which 
is basically a filter.  See, for example, Zhang and Geers 
(1993).  The convergence rates of the classical versus the 
current proposed approach for a uniform distribution 
assumption a uniform distribution is depicted in Figure 1.  
Three truncation numbers of 𝑀 = 500, 1000 and 1700 are 
considered. The convergence rate of the proposed method 
is very good even in 500 modes while the classical one 
struggles even with 1700 modes.  This observation is 
augmented even further in the case of Hertzian distribution 
of the contact force as illustrated in the Figure 2.    

 

 

 
Figure 1. Convergence behavior of uniform distribution by 
using classical vs improved Ceasaro summation for 
different number of modes. 
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Figure 2. Convergence behavior of Hertzian distribution by 
using classical vs improved Ceasaro summation for 
different number of modes. 
 
2.8.2 Temporal Description of the Excitation  
 
For the particular application of the FWD, the temporal 
behavior of the load is described by a truncated half sine 
wave. See, for example, Al-Khoury, et al. (2001) and Lee 
(2014).   However the discontinuities at the beginning and 
end of the half sine are nonphysical. Furthermore they lead 
to a numerical convergence issue for inversion back to time 
domain. There are some more physical alternatives which 
address those issues.  A Gaussian pulse, for example, has 
a continuous and smooth temporal behavior which fits 
better to an actual excitation due to an impact load.  The 
temporal expression of the pulse is 

𝑓𝑡(𝑡) = 𝑒
−

(𝑡−𝑡0)2

2 𝑡𝐺
2

                                           [24] 
where in Laplace domain becomes  

𝑓�̃�(𝑠) =  𝜇17 𝑒𝑠2𝜇20−𝑠 𝑡𝐺0   𝐸𝑟𝑓𝑐 (
𝑠 𝑡𝐺𝜔

2 − 𝑡𝐺0

𝜇19
) . 

Time history of a Gaussian pulse is depicted in Figure 3 for 

𝑡𝐺ω =
1

20
, 𝑡𝐺0 =

1

5
.  This modification leads to much less 

numbers of required terms 𝑁 in Laplace inversion, from 700 
to as low as 200 terms.  
  
 
3 VISCOELASTIC AND ELASTIC LIMIT CASES 
 
By having the porosity 𝜙0 → 0, the 𝑏(𝑡) → 1and the 
governing equation (6b) disappears while (6b) turns into 
 

(𝜆 + 2𝜇)  𝛁𝛁. 𝒖 − 𝜇 𝛁 × 𝛁 × 𝒖 = 𝜌𝑠�̈�              [25] 

 

which is the well-known Navier equation for the elastic 
wave propagation. If the Lame constants taken as 
functions of time, 𝜆 = 𝜆(𝑡) and 𝜇 = 𝜇(𝑡), the viscoelastic 
version of Navier equation appears, such that 
 
(𝜆(𝑡) + 2𝜇(𝑡))  ⋇  𝛁𝛁. 𝒖 − 𝜇 (𝑡) ⋇  𝛁 × 𝛁 × 𝒖 = 𝜌𝑠�̈�        [26] 
 
Where ⋇ b represents the Stieltjes convolution which may 
be expressed as  
 

𝑓 ⋇ 𝑔 = ∫ 𝑓(𝑡 − 𝜏)
𝑡

0

𝜕

𝜕𝜏
𝑔(𝜏) 𝑑𝜏 . 

 
See, for example, Rizzi (1989).   This operator, in Laplace 
domain deconvolves.  Subsequently, under zero initial 

conditions, it becomes 𝑠 𝑓(̅𝑠) �̅�(𝑠).    
This brief limit-case discussion shows that the 

computer code based on the presented porous model, 
easily can be transformed to a fully elastic or viscoelastic 
one by setting the porosity ratio as very small value and 
some changes in Lame parameters. 
 
 
4 A NUMERICAL CASE STUDY  

   

Considering some interesting features of the frequency 
spectrum of Ricker impulse, in order to check the 
robustness of our code a case study is performed on this 
pulse. This Pulse is illustrated in Figure 3 with similar 
constants of Gaussian pulse.   Two layered system with a 
bed rock considered in which the thickness of layers is 

15𝑐𝑚 and 25𝑐𝑚.  These numbers are chosen to have a 
stronger reflection form to the surface instead of dissipating 
wave into half space. A snapshot of the surface 
displacement is shown in Figure 4 at 𝑟 = 10 𝑐𝑚.  The arrival 
of the longitudinal wave is followed by head waves which 
finally continues with the Reighley and shear waves.  
Normal displacement response 𝑢𝑧 to this Ricker pulse at 

the loading center of 𝑟 = 0 is illustrated in Figure 2.   
 
 

5 CONCLUSIONS 
 
A semi-analytical solution was implemented for a multi-
layered formation.  The layers are considered to be porous 
which were fully saturated with fluid; partial saturation 
condition cannot be treated by the proposed solution. The 
response of the system due to a surface traction is 
obtained in the transformed domain.  Appropriate Laplace 
and Hankel inverse transform algorithms are utilized to 
retrieve the response in the time and space domain.   This 
can serve as a forward solver for an inversion procedure 
which aims in evaluating the material properties of the 
layered system of a pavement non-destructively.   The 
current improved forward solver enables us to target 
additional mechanical properties such as porosity and 
water content of the layered system in comparison with the 
previously applied constitutive models for fully elastic or 
viscoelastic models.  Further investigations are in progress 
in implementing an inversion algorithm which works with 
porous forward kernel. The current forward solver handles 
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a fully saturated or completely dry conditions. Partial 
saturation becomes a nonlinear system which requires 
completely a different treatment.  This can be, also, the 
subject of further improvements in the corresponding 
forward solver. 

 

 

 
Figure 3. Time histories of proposed excitation functions, 
𝑓𝑡(𝑡). 

 
Figure 4. Displacement, 𝒖𝒛, snapshots at 𝒕 =
𝟎. 𝟎𝟐 and. 𝟎𝟑 𝒔.  

 
 

6 REFERENCES 
 

Biot MA. Theory of propagation of elastic waves in a fluid-
saturated porous solid. I—Low-frequency range. The 
Journal of the Acoustical Society of America 1956; 
28(2):168–178. 
 
Biot MA. Theory of propagation of elastic waves in a fluid-
saturated porous solid. II—Higher frequency range. 

The Journal of the Acoustical Society of America 1956; 
28(2):179–191. 
 
Sneddon, I. N. (1965). The relation between load and 
penetration in the axisymmetric Boussinesq problem for a 
punch of arbitrary profile. International journal of 
engineering science, 3(1), 47-57. 
 
Kausel, E., & Roesset, J. M. (1981). Stiffness matrices for 
layered soils. Bulletin of the seismological Society of 
America, 71(6), 1743-1761. 
 
Mesgouez A, Lefeuve-Mesgouez G. Study of transient 
poroviscoelastic soil motions by semi-analytical and 
numerical approaches. Soil Dynamics and Earthquake 
Engineering 2009; 29(2):245–248. 
 
Al-Khoury, R., et al. "Spectral element technique for 
efficient parameter identification of layered media. I. 
Forward calculation." International Journal of Solids and 
Structures38.9 (2001): 1605-1623. 
 

Al‐Khoury, R., and L. J. Sluys. "A computational model for 
fracturing porous media." International journal for 
numerical methods in engineering 70.4 (2007): 423-444. 
 
Abate, J. and Valko, P.P., 2004. Multi-precision Laplace 
transform inversion. International Journal for Numerical 
Methods in Engineering, 60, 979–993. 
 
Ji, Y., Siddiki, N., Nantung, T., Kim, D. 2010. Effect of 
moisture variation on subgrade and base material Mr 
design values and its implementation in MEPDG. FWD 
User’s Group Meeting. 
 
Rizzi, S., 1989. A spectral analysis approach to wave 
propagation in layered media. Dissertation (PhD). Purdue 
University. 
 
Mesgouez, A., and Lefeuve-Mesgouez, G. 2009. Transient 
solution for multilayered poroviscoelastic media obtained 
by an exact stiffness matrix formulation. Int. J. Numer. 
Anal. Meth. Geomech. 2009; 33:1911-1931. 
 
Bourbie, T., Coussy, O., and Zinszner, B. E. 1987. 
Acoustics of porous media, Gulf Publishing, Houston. 
 
Allard, J. F. 1993. Propagation of sound in porous media, 
modeling sound absorbing materials, Elsevier Applied 
Science, London. 
 
Johnson, D. L., Koplik, J., and Dashen, R. 1987. “Theory 
of dynamic permeability and tortuosity in fluid-saturated 
porous media.” J. Fluid Mech., 76, 379–402. 
 
Cornille, P., 1972. Computation of Hankel transforms. 
SIAM Review, 14 (2), 278–285. 
 
Zhang, Peizhen, and Thomas L. Geers. "Excitation of a 
fluid‐filled, submerged spherical shell by a transient 
acoustic wave." The Journal of the Acoustical Society of 
America 93, no. 2 (1993): 696-705. 


