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ABSTRACT 
Microseismic monitoring is common in the mining and petroleum industries. Pattern recognition to identify faults, fractures, 
and damage zones in the microseismic data can be a challenge due to the density and number of observations and their 
multiple attributes. This study applies unsupervised machine learning techniques to identify features in a dataset from a 
hydraulic fracturing program in the Duvernay Formation. It compares partitional, hierarchical, and density based clustering 
methods using various validation statistics and with multiple subsets of data attributes. The study shows that lower 
dimensional datasets tend to yield the best results, and that it is possible to cluster microseismic data using unsupervised 
techniques.  
 
RÉSUMÉ 
La surveillance microsismique est importante pour les industries minières et pétrolières. La reconnaissance des formes 
pour identifier les failles, les fractures et les zones endommagées dans les observations microsismiques est difficile en 
raison de la densité et le nombre d'observations et de leurs multiples attributs. Cette étude applique des techniques 
d'apprentissage machine sans supervision pour identifier les caractéristiques des observations d'un programme de 
fracturation hydraulique dans la Formation Duvernay. Il compare les méthodes de classification par partition, hiérarchique, 
et basée sur la densité en utilisant diverses statistiques de validation et avec plusieurs sous-ensembles d'attributs de 
données. L'étude montre que les ensembles de données avec moins d’attributs donner les meilleurs résultats, et qu'il est 
possible de regrouper les observations microsismiques en utilisant des techniques non supervisées. 
 
1 INTRODUCTION 
 
This study investigates the applicability of unsupervised 
machine learning for identifying discrete fracture networks 
(DFNs) from microseismic data. DFNs can be the primary 
control on numerous subsurface processes. Contaminant 
transport in fractured rock occurs almost exclusively 
through fractures (Berkowitz 2002). Fracture networks are 
essential for enhanced geothermal energy and 
unconventional resources (Tezuka and Nittsuma 2000). 
They control the stability of most underground mining 
structures and block caving (Hudyma 2008). Pressure 
propagation through fractures is also one of the most likely 
causes of induced seismicity during hydraulic fracturing 
(Maxwell et al. 2015).  

Subsurface characterization and engineering produce 
a lot of temporal and geospatial data. A ‘lot’ is a relative 
term that ranges from several hundred data points to big 
datasets that quickly overwhelm the memory of a single 
processor. Engineers use pattern recognition as a key tool 
for interpreting this data, but the amount and variety of the 
data sources can quickly overcome conventional or manual 
pattern identification techniques. This problem is also 
compounded by multivariate or multidimensional data sets, 
where engineers need to interpret multiple attributes with 
each other.  

The large number of hydraulic fracturing stages and 
density of microseismic events makes manual pattern 
recognition nearly intractable in microseismic data from 
hydraulic fracturing or block caving problems. The 
objective of this study is to show that an unsupervised 
machine-learning pipeline can be used to group 
microseismic events for further analysis and DFN 
characterization. This type of approach is essential for 
providing an unbiased, automated, and scalable method of 
interpreting microseismic data. 

 
Fortunately, this problem is routinely tackled by 

machine learning - a set of rules that allows systems to 
learn directly from examples, data, and experience (Royal 
Society 2017). Machine learning can be supervised or 
unsupervised. Supervised learning consists of training 
models to predict or classify new data based on labeled 
training data sets. Unsupervised learning, which is also 
referred to as clustering or pattern recognition, groups data 
based on similarities in attributes. 

 
1.1 Study Area & Dataset 

 
The data in this study came from an operator-processed 
dataset that was collected during an eight well hydraulic 
fracturing program in the Duvernay Formation. The 
microseismic cloud generated during the stimulation is 
illustrated in Figure 1. The Duvernay is an unconventional 
oil and gas play located at a depth of approximately 2,500 
metres below sea level (mbsl). Its lithology roughly consists 
of siliceous clay-rich mudstones, interbedded carbonate 
and mudstone, and dolomitic carbonate facies. The 
Duvernay is a prolific producer due to its high reservoir 
pressure and susceptibility to hydraulic stimulation. 
 
The dataset consisted of 17,681 microseismic 
observations, 153 hydraulic fracturing stages, and 
numerous attributes including location, time, magnitude, 
and moment tensor data, etc. This microseismic catalogue 
is depicted by a cumulative distribution and probability 
density histogram in Figure 2. The magnitude of 
completeness of the dataset was approximately -1.5, with 
a b-value between 0.8 and 1.1. The catalogue of 
observations below -1.5 (the highest density of 
observations) is considered incomplete due to the 
detection threshold of the buried surface array. 



 

Observations above magnitude 2.0 exceed the saturation 
limit of the geophones and should be considered non-
conservative (i.e. the events are likely larger than reported 
in the microseismic data). This catalogue, with the above 
limitations, will be used to characterize the subsurface 
DFN, since the magnitude of the microseismic events can 
be roughly correlated to the size of discontinuity slip 
(Brune, 1970).  

 
 

Figure 1. Plan view showing the study’s microseismic 
observations that are coloured by stage and sized by 
seismic magnitude. Wells are numerated in the white 

boxes. Black lines illustrate the well trajectories and red 
dots show the hydraulic fracturing stages. Anomalous 

triggered events are highlighted in yellow. 
 

 
 

Figure 2. Cumulative magnitude distribution plot of the 
microseismic data. The probability density is plotted in 

grey and the cumulative distribution in black.  
2 METHODS 
 

There are many types of unsupervised learning methods. 
This study uses portioning, hierarchical, and density-based 
methods, the most common types of clustering for 
geospatial data. A dimensionality reduction technique is 
also used to explore the data. The analysis was conducted 
using R (Becker at al. 1988) with several external packages 
that used vectorized operations that are essential to reduce 
computational time. For example, a non-vectorized 
distance calculated between the hydraulic fracturing 
stages and microseismic events (2.7 million operations) 
took 45 minutes whereas vectorized distance between 
microseismic events and themselves (31.3 million 
operations) took 72 seconds. 
 
2.1 Pre-Processing and Standardization 
 
The dataset used in this study was already processed to 
be free of null or non-numeric values. The date and time 
were formatted into a numeric POSIXct format, required for 
numerical interpretation in R. The data and operator 
selected stage clustering are visualized three-
dimensionally using Plotly (Sievert et al. 2017). 
 
Standardization is essential for clustering due to the widely 
differing range and variance of each attribute. 
Standardization also makes the similarity matrix more 
consistent across different distance metrics (Kassambara 
2017). Each attribute of the data was standardized using a 
z-score transform, subtracting each attribute value (𝑥𝑖) by 

its mean (𝑥) and dividing by its standard deviation (𝑠𝑑(𝑥)) 
(Equation 1). 
 

𝑥𝑖−�̂�

𝑠𝑑(𝑥)
  [1] 

 
Well surveys and hydraulic fracturing intervals were 
imported with GeoSCOUT™ using publically available 
data. A non-linear spline function was used to interpolate 
between survey stations. 
 
2.2 Correlation Analysis 
 
A correlation matrix was used to investigate and visualize 
the dependence between attributes. The Pearson 
parametric correlation (Pearson 1897) is the most 
commonly applied criteria in data science, but it requires a 
standardized and normally distributed dataset. The 
Spearman non-parametric correlation (Spearman 1904) 
can be applied to non-normal datasets. A modified 
Shapiro-Wilk normality test (Shapiro and Wilk 1965, 
Rahman and Govidarajulu 1997) was used to assess the 
data for normality and select the appropriate analysis. 
Razali and Wah (2011) showed that the Shapiro-Wilk 
analysis is the most powerful normality test. It is very 
sensitive to outliers and large sample sizes, so a low 
significance level (0.01) was used to accept or reject the 
null hypothesis of normality and differentiate between the 
Pearson and Spearman analysis. A correlation plot was 
generated using the corrplot package after correlation 
matrix computation (Wei and Simko 2013). 
2.3 Principal Component Analysis 
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PCA (Pearson 1901, Hotelling 1933) is a widely used data 
science technique that produces linear combinations of 
attributes, analogous to deriving principal stresses in 
mechanics. These combinations, or principal components 
(PCs), reorganize the attributes such that each PC is 
orthogonal to itself. This eliminates cross-correlation 
between the PCs and allows them to explain a high amount 
of the data variance with fewer dimensions. In many 
clustering applications it also separates the data into 
distinct clusters for easier clustering. PCA is used to reduce 
the dimensionality of datasets with many attributes and/or 
identify the most important factors influencing the 
observations in the data. 

This study used PCA through the prcomp function to 

identify covariates (i.e. related attributes) and focus the 
clustering analysis on influential variables. PCA was also 
used to identify and remove the influence of attributes that 
lacked physical significance, such as uncertainty in the 
microseismic locations. Since the dataset was 
standardized, these non-physical parameters could easily 
have as much of an influence on the clustering as location, 
magnitude, or time. PCA was not used to reduce the 
dimensionality of the dataset for further clustering analysis 
at this time, since the physical significance of the 
parameters was important. 

Each PC can be quantified by its eigenvalue or how 
much variance it captures in the data. The complete 
variance of the dataset is explained when the number of 
PCs equals the number of variables. A Scree Plot can 
visually display this, and it is common to use the principal 
components that capture large portions of the dataset 
variance, illustrated by an inflection in the scree plot 
(Peres-Neto et al. 2005), as illustrated in Figure 3). 

 

 
 

Figure 3. A Scree plot showing the variance captures by 
each principal component from a PCA of eight attributes. 

An inflection point is visible at PC3.  
 
PCA results are routinely illustrated using a unit-circle 

plot, showing the coordinates (or loadings) of each attribute 
in principal component space (Figure 4). The ggplot2 
package (Wickham 2016) was used to draw the unit circle. 

The closer an attribute is located towards the unit circle, or 
the higher its weighting, the more influence it has on the 
first two principal components, and therefore the data 
variance.  

 

 
 

Figure 4. A unit circle plot showing the loadings of each 
attribute over the first two PCs. Microseismic data is 

plotted in PC space, differentiated by moment magnitude. 
 
 
2.4 Partitional Clustering using K-Medoids 
 
Partitional Clustering divides observations into non-
overlapping clusters. K-means (MacQueen 1987) is a 
partitioning method routinely used in unsupervised 
machine learning, however it is sensitive to outliers and 
non-normality in observations. K-medoids (Kaufman and 
Rousseeuw 1990), or the most centrally located point in a 
cluster as measured by the dissimilarity between it and 
other members of the cluster, was used in this study to 
increase robustness. Dissimilarity is a key concept to all 
clustering analysis – it is generally defined as the multi-
dimensional distance between all the attributes of one 
observation and the attributes of every other observation. 
An abstraction for larger datasets (clara) was used for the 
analysis. There are several dissimilarity measures, but the 
Euclidean distance, which is the most common, was used 
in this study and defined in Equation 2, where 𝑑(𝑎, 𝑏) is the 

dissimilarity or distance, 𝑎𝑖 and 𝑏𝑖 are attributes of 
observations a and b, and n is the total number of 
attributes.  
 

𝑑(𝑎, 𝑏) = √∑ (𝑛
𝑖=1 𝑎𝑖 − 𝑏𝑖)

2  [2] 

 
The fpc package (Hennig 2013) was used for K-

Medoids clustering, along with the other clustering 
methods used in this study. There are numerous indices 
used to validate the number of clusters used in partitional 
clustering. For example, NbClust (Charrad et al. 2014) 
uses majority rule from 30 indices to decide for example. In 
this study, two of the most common validation statistics 



 

were used to determine the optimal number of clusters – 
the Calinski-Harabasz index (CH index, Calinski and 
Harabasz 1974) and the average silhouette width (ASW, 
Rousseeuw 1987).  

 
The CH index (Equation 3) is defined by the between-

ground dispersion matrix (𝐵𝑞) for data clustered into q 

clusters (Equation 4) and the within-group dispersion 
matrix (𝑊𝑞) for data clustered into q clusters (Equation 5), 

where 𝑐𝑘 is the centroid of cluster 𝐶𝑘.  
 

trace(Bq)(q−1)

trace(Wq)(n−q)
  [3]  

 
∑ nk
q
k=1 (ck − x̂)(ck − x̂)T  [4]  

 
∑ ∑ (iϵCk
q
k=1 xi − ck)(xi − ck)

T [5]  

 
The silhouette index is defined in Equation 6, where 

𝑐(𝑖) is the average dissimilarity of each object to all of 
objects its cluster 𝐶𝑘 and 𝑑(𝑖) is the minimum average 
dissimilarity of each object to all other clusters (Charrad et 
al. 2014).  

 

   ∑ [𝑛
𝑖=1

𝑐(𝑖)−𝑑(𝑖)

𝑚𝑎𝑥(𝑐(𝑖),𝑑(𝑖))
]  [6] 


The fpc algorithm provides a clustering classification by 

maximizing each index. One more analysis was conducted 
using the number of fracturing stages in the well as 
specified by the operator. 
 
2.5 Hierarchical Clustering using Ward’s Method 
 
This study used the hclust function and fpc package for 
agglomerative hierarchical clustering. This technique is 
computationally and memory intensive relative to 
partitional clustering. Each observation starts as it’s own 
cluster and pairs of clusters are merged step-wise as the 
hierarchy tree grows. The nodes with the minimal pairwise 
distances are merged and the distance recomputed at 
every hierarchy step. This process repeats until all nodes 
are merged into a single cluster. There are many 
agglomeration methods including single-linkage (Florek 
1951), complete-linkage (Sorensen 1948), centroid based 
(Sokal and Michener 1958), and minimum energy based 
(Ward 1963). Several trials indicated that Ward’s method, 
which is the minimum energy based hierarchical equivalent 
of k-means, yielded the most distinct clusters relative to 
those selected by the operators. 

As with partitioning based methods, the dissimilarity 
matrix is key for successful clustering. Additionally, it is 
important to select appropriate criteria for “cutting” the 
hierarchical tree – or identifying how many clusters to 
select. This process is illustrated in Figure 5. The same 
metrics that were applied to the K-Medoids technique (the 
CH index and ASW) were applied to cut the hierarchical 
tree. Unfortunately, these criteria tended to minimize the 
numbers of clusters regardless of agglomeration method.  

 
Figure 5. A dendogram showing the hierarchical 

agglomeration of 32 clusters using Ward’s method. Eight 
clusters are outlined, based on the maximization of the 

CH index and ASW. 
 
2.6 Density Based Spatial Clustering with Noise 
 
Partitioning and hierarchical clustering methods can fail 
when clusters aren’t spherical or convex, and can be 
severely affected by noise and outliers. Ester at al. (1996) 
developed an algorithm titled ‘density-based spatial 
clustering with noise’ (DBSCAN), which is based on human 
intuitive clustering where points of high density are visually 
clustered. It is one of the most common clustering 
algorithms and can identify arbitrary and linear shapes with 
a common density. It has a notion of noise and is robust to 
outlier. DBSCAN requires two parameters – the 
reachability distance (ε) and the minimum number of points 
for forming a cluster (pmin). It is sensitive to differences in 
density and it can struggle with datasets that display large 
differences in density, as well as the reachability distance; 
where the minimum number of points simply serves to 
designate core clusters for further agglomeration. Two 
points are considered to be a cluster if the distance 
between the points is lower or equal to ε. As a general rule, 
the minimum number of points should be greater than the 
number of dimensions / attributes in a data set and was set 
as the number of attributes +1 for this study.  
 
Setting bounds for the reachability distance is the key 
constraint for implementing DBScan. A plot of k-Nearest 
Neighbours (kNN) distance versus connections between 
points provides a measure of the appropriate bounds for ε. 
The distance from one point towards kNNs ranging from 1 
to pmin is plotted against the connections, as illustrated in 
Figure 6. The inflection of the curve serves to distinguish 
meaningful connections / clustering from noise, with the 
bounds being carried forward into this study’s analysis. 
Once the ε value was bounded, a ‘hybrid’ DBSCAN 
algorithm was used, which computed partial distance 
matrices from raw input data to speed computation. The 
dbscan package (Hahsler 2017) was used for this purpose. 



 

The CH index and ASW were computed from the results of 
the DBSCAN analysis with each incremental ε value to 
optimize the results. 
 

 
 

Figure 6. A plot showing the distance to k-nearest 
neighbours against the k times number of samples, sorted 
by distance and with k = 9.  The ε values carried forward 

in the DBSCAN analysis are annotated by the red 
rectangle. 

 
3 RESULTS 
 
The dataset used was complicated by the fact that the 
fracturing stages occurred nearly simultaneously across 
numerous wellbores with the exact stage timing 
unavailable. The nearly simultaneous completions (called 
a ‘zipper frac’ in industry) are illustrated in Figure 7. Even 
with exact start-stop times, it is difficult to cluster the events 
and attribute them to a single stage based on time alone. 
A k-nearest neighbour (kNN) algorithm was used to select 
the ten closest microseismic events to each based on 
Euclidian distance in order to label these. When compared 
to operator selected stage classifications, the kNN 
algorithm correctly identified 93% of stages. The results of 
the KNN classification are illustrated in Figure 8. 
 
The results were relatively insensitive to the distance 
metric chosen, but a consistent distance metric with scaled 
attributes was used to generate consistent results. Due to 
the poor time control for the stages, it wasn’t possible to 
compute a differential time attribute without excessive 
correlation and inaccuracy. 
 
The combination of analysis (partitional, hierarchical, or 
density based) and validation statistic (CH index, ASW, 
etc.) resulted in widely varying results. Validation statistics 
are used for hypertuning in most of these methods, where 
the number of clusters is varied to maximize the chosen 
validation statistic. The results of this study, an example of 
which is discussed below, showed that a consistent 
method is essential for using clustering to generate DFNs. 

 
 

Figure 7. Plot of treatment time versus well with marker. 
Coloured dots indicate operator stage classification. The 

kNN classifier results are indicated by “X”. 
 

 
 

Figure 8. Results of automated kNN clustering analysis 
showing the 10 closest neighbours to the hydraulic 

fracturing time based on Euclidean distance. 
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3.1 Single Well, Single Stage Example 
 
The example that follows focuses on one stage from a 
single well. The kNN classification scheme yielded 369 
events for this stage, which are illustrated in Figure 9.  
 

 
 

Figure 9. Single well, single stage example. Points are 
scaled by seismic moment, with a 50% transparency to 

illustrate dense overlays of events. 
 
The results of several trials indicated that lower 
dimensionality datasets produced more consistent and 
reliable results. For example, the average silhouette width, 
Dunn’s index, and CH index were highest for points 
clustered based on the time difference (t_dist) alone. This 
makes sense, since this is the main method used by 
operators to manually cluster into stages. This method may 
be adequate for separating data into stages. However, it 
doesn’t help differentiate closely spaced clusters and a 
more robust set of attributes is required for using clustering 
to generate DFNs. Figure 10 illustrates this, by showing the 
average silhouette width for multiple data subsets with 
various attributes. 

 
 

Figure 10. The average silhouette width for various 
methods (denoted by bar colour). Data subsets 

(horizontal axis). included euclidean distance (e_dist), all 
attributes (everything), moment tensor information (mtit), 

t_dist, coordinates (xyz), coordinates and time (xyzt), 
coordinates, time, and moment magnitude (xyztm).   

The PCA unit circle for the example (Figure 11) shows that 
distinct groups of data do exist and that the magnitude 
(mw) is correlated with the moment tensor strike 
(mti_strike). It also shows that it should be possible to 
seperate clusters using coordinates, time, and magnitude 
as attributes, since they account for a large portion of the 
variance in the first two principal components. These 
principal components account for 56% of the dataset’s 
variance. 
 

 
 

Figure 11. Principal component analysis of the example 
stage data. Red text denotes attributes with coordinates 
indicating principal component weightings and proximity 
to unit circle indicating influence on parameter variance. 

 
The optimal method varied depending on what validation 
statistic was used. The silhouette index, within-cluster 
distance, and between-cluster distance indices were all 
highest for the DBSCAN method with 6 clusters. The Dunn 
index was highest for Ward’s Hierarchical clustering 
method with 13 clusters. The CH Index indicated that the 
K-medoids method with 4 clusters was optimal. Once 
again, a lower dimensional dataset with only x, y, and z 
coordinates and time attributes yielded the best results. 
This is illustrated by comparing the results from a K-
medoids analysis with a nine attribute data (Figure 12) to a 
K-medoids analysis with only four attributes (Figure 13). In 
each of the figures, different colours illustrate the clustering 
results. The overlap of different colours show that the large 
dimensional dataset failed to group lineations and discrete 
clusters in the data whereas the lower dimensional dataset 
did a much better job of geospatially grouping points. This 
difference is far more significant than the inter-method 
differences, although these too can be significant. The 
results of the hypertuned hierarchical clustering (Figure 14) 
and DBSCAN (Figure 15) results from the four attribute 
data set show how the method differences affect the 
clustering results. There are still overlaps between groups; 
however, the methods bear close resemblance to each 
other.  
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Figure 12 Clustering results (differentiated by colours) 
from the K-medoids analysis using nine attributes  

(x,y, and z coordinates; moment tensor inversion strike, 
dip, and rake; time, and magnitude) 

 

 
 

Figure 13. Clustering results (differentiated by colours) 
from a K-medoids analysis using four attributes  

(x,y, and z coordinates; and time) 
 

 
 

Figure 14. Example clustering results (differentiated by 
colours) from a hierarchical clustering analysis using 

Ward’s method with four attributes  
(x,y, and z coordinates; and time) 

 

 
 

Figure 15. Example clustering results (differentiated by 
colours) from a DBSCAN analysis with four attributes  

(x,y, and z coordinates; and time) 
 

Ultimately, these methods will need to applied 
automatically to large datasets of microseismic events 
and their success will depend on computational efficiency, 
robustness to varying microseismic clouds, and ease of 
applicability. In a trial of 2644 events with 24 attributes, 
the partitional clustering took 51 seconds, the hierarchical 
clustering took 251 seconds, and the DBSCAN took 183 
seconds. The hypertuning tended to generate more 
clusters with K-medoids, which may limit its applicability to 
finding linear features. The hierarchical clustering gave 
excellent results but was computationally intensive. The 
DBScan was able to pick up noise/outliers, but required a 
manual step for each stage (selecting the eps value). 
 
4 CONCLUSIONS AND FUTURE WORK 
 
This study applied several unsupervised learning 
techniques to cluster microseismic events. It presented 
several validation statistics based on cluster betweenness 
and withinness and used these statistics to hypertune the 
unsupervised methods. Principal component analysis and 
correlation analysis was used for exploratory data analysis 
and to select an appropriate number of attributes for the 
analysis. Lower dimensionality datasets tended to yield 
better results in terms of validation statistics, but miss the 
purpose of the clustering (picking out lineation and dense 
clouds). When a low dimensional dataset with adequate 
features was used, the methods tended to perform 
adequately; however, the hierarchical and DBScan 
methods seem to generate the most reasonable results. 
 
The ultimate objective of this study is to generate a discrete 
fracture network from a dense and irregular dataset with 
tens of thousands of observations. The results indicated 
that it is indeed possible to identify discrete clusters in the 
data, but that the methods are very sensitive to the dataset 
dimensionality (i.e. number of attributes used) and 
validation statistics.  
 
Moving forward, the hierarchical clustering algorithm with 
hypertuning will be applied to the entire dataset using an 
automated algorithm. The hierarchical method is 
computationally demanding; however, it can be fully 
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automated. It can also be linked with Bayesian inferential 
methods (Heller and Ghahramani, 2005) and makes more 
physical sense in terms of seismicity generation, with 
several events linking together to form a large fault slip. 
This study indicated that the difference in methods were 
less significant than the difference in attributes and 
validation statistics used to hypertune the methods. Future 
work will look at optimizing the validation statistics and 
applying various other hierarchical methods such as graph 
theory, Bayesian methods, and structural methods linked 
the earthquake rupture physics. 
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