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ABSTRACT 
 
The next edition of the Canadian Highway Bridge Design Code will contain a table of geotechnical resistance factors to 
be used for seismic design. This paper will investigate how the geotechnical resistance factors should change as a result 
of the target maximum acceptable failure probability, which in turn, depends on the severity of failure consequences. The 
investigation will include consideration of design lifetime with a goal being to achieve a design reliability which properly 
accounts for the rare and extreme-value nature of the seismic loading. The preliminary results suggest resistance factors 
which are lower than commonly used at the moment in Canada and the failure probability is not greatly dependent on the 
return period of the design earthquake. 
 
RÉSUMÉ 
 
La prochaine édition du Code canadien de conception des ponts routiers contiendra un tableau des facteurs de 
résistance géotechnique à utiliser pour la conception sismique. Cet article examinera comment les facteurs de 
résistance géotechniques devraient changer en fonction de la probabilité de défaillance maximum acceptable cible, qui à 
son tour, dépend de la gravité des conséquences de la défaillance. L'étude comprendra la prise en compte de la durée 
de vie de la conception dans le but d'obtenir une fiabilité de conception qui tient compte de la nature rare et extrême de 
la charge sismique. Les résultats préliminaires suggèrent des facteurs de résistance qui sont inférieurs à ceux 
couramment utilisés actuellement au Canada et la probabilité de défaillance ne dépend pas beaucoup de la période de 
retour du séisme de conception. 
 
 
1 INTRODUCTION 
 
Fenton and Naghibi (2017) presented a preliminary 
reliability analysis of the seismic design of geotechnical 
systems using total probability theorem of the form: 
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where F  is the event that the footing fails, mp  is the 
maximum acceptable failure probability, R  is the random 
return period of the earthquake, and ir  is a specific 
realization of R . Larger values of ir  imply stronger 
earthquakes. In their work, a  lognormal distribution was 
assumed for the conditional failure probability [ ]P | iF R r=  
in Eq. 1, and a Poisson distribution was employed for the 
unconditional probability [ ]P iR r= in Eq. 1. In the present 
study, the bearing capacity failure probability of a strip 
footing under seismic loading is estimated by comparing 
the actual load on the footing (random) to the actual 
resistance of the footing (also random). The actual 
resistance is estimated using local averages of the soil 
properties beneath the footing. 

The goal of this work is to determine resistance 
factors required to achieve certain target failure 
probabilities for extreme limit state seismic design of 
shallow foundation by means of the Load and Resistance 

Factor Design (LRFD) approach. Load factors used are 
as prescribed by the Canadian Highway Bridge Design 
Code (CHBDC) (CSA, 2014). 

The resistance factors required to achieve target 
failure probabilities are estimated as a function of the 
return period of the earthquake being designed against. 
For example, if the foundation is being designed to resist 
an earthquake with return period 975 years, then seismic 
forces, or accelerations, are imposed on the foundation 
and the design aims to achieve a target failure probability 
consistent with the performance criteria of the CHBDC. 
This target failure probability will change as the return 
period changes, so that the required resistance factor 
may also change. The failure probability of the foundation, 
designed using a specific resistance factor, is estimated 
using theory and Monte-Carlo simulation. If the failure 
probability is excessive then the resistance factor needs 
to be reduced. 

The load and resistance factor design of shallow 
foundations against bearing failure has been studied 
previously by Fenton et. al (2008). The geotechnical 
design proceeds by ensuring that the factored 
geotechnical resistance at least equals the effect of 
factored loads, i.e: 
 ˆ ˆ ˆ

g u i TiR F Fϕ α≥ =∑   [2] 
  
in which gϕ is the geotechnical resistance factor at ULS, 
ˆ

uR is the characteristic ultimate resistance, and ˆ
i iFα  is 

the ith factored load. The load factors, iα , typically 
account for uncertainty in loads, and are greater than 1.0 
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for ultimate limit states while the geotechnical resistance 
factor, gϕ , is typically less than 1.0 and accounts for 
uncertainties in geotechnical parameters and prediction 
models used to estimate the characteristic geotechnical 
resistance. 

The paper is organized as follows: In Section 2, the 
random fields used to model the soil supporting the 
foundation are described along with random load model. 
In Section 3, the reliability-based footing design approach 
is discussed and a theoretical model is developed to 
estimate the failure probability of a footing. The simulation 
model used to access footing failure probability is 
described in Section 4. The results are presented in 
Section 5 and Conclusions are summarized in Section 
6. 
 
2 RANDOM MODELS 
 
A random field ( )X t



is a collection of random variables 

1 21 2( ), ( ),...X X x X X x= =
 

, whose values are associated 
with each spatial location x



.  In this paper, two random 
fields are used to represent the soil properties cohesion 
and friction angle. The cohesion field, c , is assumed to 
be lognormally distributed while friction angle field, φ , is 
assumed to be bounded between 10 and 30 degrees 
using a bounded tanh distribution (see Fenton and 
Griffiths, 2008). 

Values within each random field are correlated with 
one another as a function of the distance between them. 
In this paper, an isotropic exponentially decaying Markov 
correlation function is used, defined by 

 
2

( ) exp ij
ij

τ
ρ τ

θ

 − =  
  

  [3] 

where ijτ is the distance between any two points, iX  and 

jX , in the field, andθ is the correlation length (Fenton 
and Griffiths, 2008). The same correlation length is used 
for both cohesion and friction angle fields. 

Since the cohesion field is lognormally distributed 
with mean and standard deviation cµ  and cσ , then ln c is 
normally distributed with parameters  
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where /c c cv σ µ=  is the coefficient of variation of c .  
The random load applied to the footing is equal to the 

sum of the maximum life time live load, LF , and the 
relatively static dead load, DF , i.e.  
 T L DF F F= +   [5] 
where LF  and DF  are each assumed to be lognormally 
distributed. The mean and variance of the total load, TF , 
assuming live and dead loads are independent, are given 
by  

 2 2 2,T L D T L Dµ µ µ σ σ σ= + = +   [6]  
  

3 THEORETICAL MODEL 
 
In this section, a theoretical model for estimating the 
designed footing width as well as the failure probability of 
the footing is developed. The objective is to estimate the 
resistance factor required to achieve a certain maximum 
tolerable failure probability, mp . 
 
3.1 Design footing 
 
In general, the seismic design of a footing involves both 
the seismic loading and the static loading. The static 
loading in turn generally involves both dead and live 
loads. Live loads are usually deemed to lead to negligible 
horizontal inertial forces on a foundation, due to the fact 
that the live loads are typically able to move. However, it 
is almost certain that there will be at least some vertical 
live loading during an earthquake event. In this paper, we 
will take the vertical design load during an earthquake 
event to be equal to: 
 ˆ ˆ ˆ

T L L D DF F Fα α= +   [7] 

where ˆ
LF  is the characteristic live load, ˆ

DF  is the 
characteristic dead load, and Lα and Dα are the live and 
dead load factors, respectively. For earthquake loading, 
the load factors given by the CHBDC (CSA, 2014) are  

0Lα =  and 1.25Dα = . We will conservatively use 1Lα = to 
account for both vertical seismic loading as well as the 
component of live load that is present during an 
earthquake event. The characteristic loads, ˆ

LF  and ˆ
DF , 

are obtained by applying bias factors to the means of the 

load distribution: ˆ ˆ,
0.9 1.05

L D
L DF Fµ µ
= = (Fenton et al.,2015), 

where Lµ  and Dµ  are the means of the maximum lifetime 
dead and live loads, respectively. 

The bearing capacity of a strip footing subjected to 
static loading is formulated by Meyerhoff (1963) as 
 
 0.5u c c c c q q q qq cN s d i qN s d i BN s d iγ γ γ γγ= + +   [8] 
 
where uq  denotes the ultimate bearing capacity of the 
foundation under a vertical centered load, c  is the soil’s 
cohesion, q Dγ=  is the total pressure on the unit length 
of the bearing surface, B  is the footing width, γ  is the 
soil’s unit weight, D  is the depth of foundation, , ,c qs s sγ  
are the shape factors, , ,c qd d dγ are the depth factors, 

, ,c qi i iγ are the load inclination factors, and , ,c qN N Nγ are 
the bearing capacity factors which only depend on the 
soil’s friction angle, φ , defined as follows:  

 

( )

tan 2tan
4 2

( 1) / tan

2 1 tan

q

c q

q

N e

N N

N N

π ϕ

γ

π ϕ

φ

φ

 = + 
 

= −

= +

  [9] 
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Budhu and Al-karni (1993) introduce seismic factors 
in Eq. 8 to account for seismic loading as follows: 

 
 0.5uE c c c c q q q qq cN s d e qN s d e BN s d eγ γ γ γγ= + +   [10] 
or alternatively 
 
 0.5uE cE c c qE q q Eq cN s d qN s d BN s dγ γ γγ= + +   [11] 
where the seismic factors are defined as: 
 

 ( )

1
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 
 −

= −  
− 

 − = −    −   

  [12] 

  
and hk  and vk are horizontal and vertical acceleration 
coefficients, , ,cE c c qE q q EN N e N N e N N eγ γ γ= = = are seismic 
bearing capacity factors, and  

 0.5 exp tan
2cos

4 2

BH Dp φ
p φ

 = +    + 
 

  [13] 

is the depth of the soil’s failure zone from the ground 
surface under the seismic loading. As far as the authors 
can tell, the seismic factors developed by Budhu and Al-
karni (1993) include the effects of load inclination arising 
from the seismic inertial forces, and so the horizontal 
seismic loads do not need to be explicitly considered. The 
bearing capacity predicted by Eq. 10 is to be compared to 
the vertical component of the applied load on the footing, 

TF .  
The choice of design hk  and vk depends directly on 

the peak ground acceleration (PGA) calculated as (Melo 
and Sharma, 2004): 

 
ˆ ˆ0.5
ˆ ˆ0.25

h p

v h

k a

k k

=

=
  [14] 

where ˆ pa  is the PGA. The following regression was fit to 
the PGA values estimated for the Vancouver area by 
NRCan website for the four earthquake return periods 
100, 475, 975, and 2475 years  
(http://www.earthquakescanada.nrcan.gc.ca/hazard-
alea/interpolat/index_2015-en.php), 
 
 ( ) ( )2ˆ 0.15505 0.075897ln 0.014632lnp m ma r r= − +   [15] 
 
where mr  is the return period of an earthquake having 
magnitude at least m .  

In this work, D , the embedment depth of the footing  
in Eq. 13 is assumed to be zero for simplicity, and all 
shape and depth factors are set to 1. Thus, the simplified 
equation 

 
 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ0.5 0.5uE cE E c cq cN BN cN e BN eγ γ γγ γ= + = +   [16] 

will be used here for the seismic design of a strip footing 
under earthquake loading. The characteristic ultimate 
geotechnical resistance of the strip footing becomes,  
 ˆ ˆuE uER Bq=   [17] 
 
The hat parameters in Eq. 16 are obtained by sampling 
the soil in the vicinity of the footing leading to m observed 
values of the soil’s properties as shown in Figure 1. For 
instance, ĉ  is estimated as the geometric average of m  
observations 1 2ˆ ˆ ˆ, , ..., mc c c  of soil cohesion taken at the 
site: 

 
1/
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1ˆ ˆ ˆexp ln
mm m

i i
ii

c c c
m ==

   
= =   

  
∑∏   [18] 

Similarly, φ̂ , is computed as the arithmetic average of m   

observed friction angle values, 1 2
ˆ ˆ ˆ, ,..., mφ φ φ , as 

 
1

1ˆ
î

m

im
φ φ

=

= ∑   [19] 

The earthquake parameters ˆce  and êγ in Eq. 16 are 
obtained by Eq. 12 using the design earthquake 
coefficients ˆ

hk  and v̂k . 
The goal of the design is to determine the footing 

width, B̂ , which satisfies the LRFD Eq. 2, using ˆ
uR

replaced by ˆ
uER . Since the seismic factors in Eq. 12 

involve the footing width (see Eq. 13), the determination 
of B̂  involves an iteration. The one-point iteration method 
was found to converge very quickly. The basic idea of 
one-point iteration is to start with an initial guess, compute 
seismic coefficients in Eq. 12, then solve for an updated 
B̂ using the LRFD equation, and repeat until B̂ remains 
stable. A trial design footing width of   
 ˆ /o T g c NcB F ϕ µ µ=   [20] 

with a moderate resistance factor of 0.7gϕ =  was used as 
the initial guess where Ncµ is approximated by using 
mean soil properties ( cµ and φµ ) in Eq. 9: 

 tan 2tan 1 / tan
4 2Nc e φπ µ φ

φ

µπµ µ
   = + −  
   

  [21] 

In the one-point iteration, the design footing width, B̂ , is 
obtained by substituting Eq.’s 7 and 17 into the LRFD Eq. 
2, solved at the equality, which in turn leads to solving the 
following quadratic equation  
 2ˆ ˆ ˆ ˆ ˆˆ0.5 0E g cE gN B cN B Fgg ϕ ϕ+ − =   [22] 

for B̂ , giving the following solution: 
 

 
2 2ˆ ˆ ˆ ˆˆ 2 /ˆ

ˆ
cE cE E g

E

cN c N F N
B

N
g

g

g ϕ

g

− + +
=   [23]  

3.2 Estimation of actual footing resistance 
 
Fenton et. al (2008) found the effective averaging domain 
to be best approximated by local average of the soil 
properties over a region of size V W W= × , centered 
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directly under the footing. W  is taken as 80% of the 
average mean depth of the wedge zone, as given by the 
classical Prandtl (1921) failure mechanism: 

 0.8 tan
2 4 2BW φµπµ

 
= + 

 
  [24] 

 
where φµ  is the mean friction angle (in radians), within 
the zone of influence of the footing, and Bµ is an estimate 
of the mean footing width obtained by using mean soil 
properties ( cµ and φµ ) in Eq. 23. 

The actual ultimate resistance is thus estimated to 
be,  
 ( )ˆ ˆ ˆ0.5uE uE cE ER Bq B cN BNγγ= = +   [25] 

 
where the bar parameters in Eq. 25 are obtained by 
averaging the soil properties c  and φ  over the region 
V underneath the footing, as depicted in Figure 1. For 
instance, c  is estimated as the geometric average of soil 
cohesion over V according to:  

 ( )1exp ln
V

c c x dx
V
  =  
  
∫

 

  [26] 

 

  
Figure 1: Averaging regions used to predict probability of 
bearing capacity failure 
 
Similarly, φ , is computed as the arithmetic average over 
the same region 

 ( )1

V

x dx
V

φ φ= ∫
 

  [27] 

The bar parameters are now defined as: 

 

( )

tan 2tan
4 2

( 1) / tan
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c q
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N e
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N N
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π φ
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 
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  [28] 

 
3.3 Estimation of Failure Probability 
 

Since the earthquake magnitude and its corresponding 
return period are unknown, we must make use of the total 
probability theorem to compute the failure probability of 
the designed foundation for a given resistance factor, gϕ , 

and design ˆ
hk : 

 [ ]
1

P | P
rn

f uE i i
i

Tp F R R r R r
=

 = > = = ∑   [29] 

The conditional probability of failure of a footing for a 
given return period iR r=  is: 

 P | P |
iT uE u hTi EF R R r F R k  > = = >      [30] 

Eq. 30 has no analytical solution, so far as the authors are 
aware, and so is estimated by simulation as described in 
the next Section.  

The unconditional probability [ ]P iR r=  used in Eq. 29 
is obtained as follows: 
  

 

[ ] ( )

{ } { }
max max
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  [31] 

 
where, according to Fenton and Naghibi (2017), 
 
 ( ) { }max

exp /
iM i mF m l r= −   [32] 

( )maxM l  is the maximum earthquake magnitude 
experienced over lifetime l and 

maxMF is the cumulative 

distribution function of ( )maxM l .  
In order to compute the sum in Eq. 29, we must 

discretize the range in return periods. For simplicity, rn is 
selected to be 41 subdividing the range ( )ln mr from 4.0 to 
8.0, corresponding to return periods ranging from 55 to 
3000 years, into 40 intervals such that,   
 

 

( ){ }

{ }

= exp 4.0 ( 1) ln

8.0 4.0exp 4.0 ( 1)
1

exp 4.0 0.1( 1)

im

r

mr i r

i
n

i

+ − ∆

 −
= + − 

− 
= + −

  [33] 

Once the probability of failure is computed via Eq. 
29, it can be compared to the maximum acceptable failure 
probability, ( )1

mp β−= Φ − , where β  is the target 

reliability index corresponding to mp , and Φ  is the 

standard normal cumulative distribution function. If fp  

exceeds mp , then the resistance factor needs to be 
reduced. 

 
4 SIMULATION MODEL 
 
The simulation involves 100,000simn = realizations. The 
standard deviation of the failure probability estimate is 



 

5 
 

(1 ) / 0.003f f sim fp p n p− . for small failure probability

fp . This means that if 41 10fp −= × , then the standard 

deviation of its estimate is about 53 10−×  and therefore, 
100,000simn = can reasonably resolve probabilities down to 

about 410− . The steps involved in the simulation are as 
follows: 
 

i. Simulate c  and φ  using local average subdivision 
(LAS, Fenton and Griffiths 2008). 

ii. Sample the soil at the distance r  from the footing 
center line to obtain ĉ  and φ̂ . 

iii. Obtain the design footing width, B̂ , for a given 
resistance factor, gϕ , design ˆ

hk and actual hk .  
iv. Average the c  and φ  fields over the domain V  to 

obtain c  and φ and thus the actual footing 
resistance uER  .    

v. Simulate T L DF F F= + . The footing fails if T uEF R> , 
and if so, increment the number of failures counter, 

failn . 
vi. Repeat, from step i, simn  times. 

vii. Estimate failure probability, given  gϕ , ˆ
hk and hk  as

P | /
iT fail simuE hF R k n n > ≈  . 

 
5 RESULTS AND DISCUSSION 

 
The objective of this section is to determine resistance 
factors required to achieve a maximum tolerable lifetime 
failure probability 0.01mp = , corresponding to a target 
reliability index of 2.33β = . The parameters used in this 

case study are listed in Table 1. The design values, ˆ
hk , 

are obtained for Vancouver using Eq.’s 14 and 15 for 
return periods 475, 975, and 2475mr = years. 
 
Table 1 Input parameters used in simulation 

Parameters Values Considered 
,c cµ σ  100, 50 (kN/m2) 

,φ φµ σ  20, 10 (degrees) 

,L Lµ σ
 200, 60 (kN) 

,D Dµ σ
 600, 90 (kN) 

,L Dα α
 1.5, 1.25 

ˆ
hk  0.121, 0.163, 0.228 

T̂F
 

936.5 (kN) 

r θ=  5 (m) 
γ  15 (kN/m3) 

rn  41 

simn  100,000 

 

Figure 2 depicts the conditional failure probabilities of Eq. 
30 as a function of actual lifetime maximum hk  for 

0.5gϕ =  and three design hk  values. The lines show 
some jitter due to natural sampling variability but are used 
directly in Eq. 29 to obtain the total probability of footing 
failure.  
  

 
Figure 2: Plot of failure probability vs. actual hk  for 

0.5gϕ =  and three design ˆ
hk  values 

 
Figure 3 shows the total failure probability of the footing, 
as a function of resistance factor for different values of 
design ˆ

hk . This figure can be used for design by drawing 
a horizontal line across the plot at the maximum tolerable 
failure probability, mp , and then reading off the required 

resistance factor for a given design ˆ
hk . For example, if 

0.01mp = , it can be seen that the resistance factor is 
almost between 0.3 and 0.34 for 0.121hk = . For other    

hk ’s considered, the required resistance factor is between 
0.34 and 0.4. 
 

 
Figure 3: Plot of failure probability vs. resistance factor for 
three design hk  values 
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6 CONCLUSIONS AND FUTURE WORK 

 
This paper presents a preliminary investigation into the 
relationship between geotechnical resistance factor, 
lifetime and uncertain extreme future events. In principle, 
the resistance factor should not be involved in the 
consideration of these extreme loads. However, current 
practice in Canada seems to involve adjusting the 
resistance factor to account for the rare nature of seismic 
loads. The results of the paper are somewhat surprising in 
that the suggested resistance factors are lower than 
expected. Further research is required in particular to 
compare static resistance factors obtained using the 
same approach to those obtained in this study.     
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