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ABSTRACT 
The objective of this paper is to describe a new continuum-based analysis for predicting the nonlinear response of pile 
foundations, subjected to static lateral loads. In the analysis, the pile is modeled as an elastic Euler-Bernoulli beam and 
the soil as a continuum with nonlinear elastic properties that is described by a modulus degradation relationship. The soil 
displacements are assumed to be a product of separable functions and the principle of virtual work is applied to obtain 
the governing differential equations describing the pile and soil displacements, which are solved numerically using the 
one-dimensional finite difference method, in an iterative scheme. The reliability of the results obtained from the present 
analysis is verified with the results equivalent 3-D finite element analysis.  
 
RÉSUMÉ 
L’objectif de cet article est de décrire un nouveau continuum basé analyser pour prédire la réponse non linéaire des 
fondations de pieu, soumis à des charges statiques de difuso. Dans l’analyse, la pile est modélisée comme un faisceau 
Euler-Bernoulli élastique et le sol comme un continuum avec propriétés d'élasticité non linéaires qui est décrite par une 
relation de dégradation du module. Les déplacements du sol sont considérées comme un produit de fonctions 
séparables et le principe des travaux virtuel est appliqué pour obtenir les équations différentielles décrivant les 
déplacements de pile et le sol, qui sont numériquement de riposter en utilisant la méthode des différences épicycloïdes 
unidimensionnel, dans un schéma itératif. La fiabilité des résultats obtenus de la présente analyse est vérifiée avec 
l’analyse par éléments finis 3D équivalent de résultats. 
 
1 INTRODUCTION 
 
Structures like tall buildings, transmission towers, oil and 
gas platforms, and wind turbines have piles as their 
foundation elements that are subjected to large lateral 
loads from wind, waves, water currents, and traffic. An 
interest in the analysis of such pile foundations lies in the 
prediction of nonlinear pile response subjected to the 
aforementioned lateral loads. 
In the geotechnical foundation engineering practice, the p-
y method (Reese et al. 1975, O’Neill et al. 1990, Zhang 
and Ahmari 2013) is widely used by engineers to predict 
the nonlinear response of these laterally loaded piles.  
The p-y method for the analysis and design of laterally 
loaded piles is also included in the API (2011) design 
code of practice. However, there are a few limitations to 
the p-y method (i) the p-y curves are modeled as 

uncoupled springs and are characterized by the spring 
constant k (compressive resistance of the soil) along the 
pile-shaft, they do not account for the shear transfer 
(characterized by t) between adjacent soil layers; thus, 
neglecting the continuum nature of the pile-soil interaction 
problem, (ii) the p-y curves reported in the aforementioned 
design code were developed from a few full-scale field 
pile-load tests and they are site-specific, and (iii) 

parameters such as the 50 used for stiff clay (Reese et al. 
1975) criterion for the development of p-y curves is 

empirical and arbitrarily determined by users based on 
experience. The continuum-based methods with FE or FD 
solution techniques (Baguelin et al. 1977, Kooijman 1989, 
Trochanis et al. 1991, Achmus et al. 2009) using 
commercially available software’s or self-developed codes 
used by several researchers can handle various 
geometry, boundary conditions, and elastic-plastic 
constitutive models and can be used to predict the 

nonlinear response of piles accurately and realistically. 
However, their use in the design is limited because of (i) 
the modelling knowledge required to develop such 
solution techniques or the expertise to use a particular 
software and (ii) such techniques require considerably 
large computational effort. The FE software’s (e.g., 
ABAQUS) facilitate the use of sophisticated constitutive 
models based on elasticity and plasticity theory to model 
the nonlinear soil behaviour; however, such models based 
on plasticity theory are only useful when the design 
interest is the estimation ultimate load capacity. For 
laterally loaded pile problems the primary interest in 
design is the estimation of head response under working 
load conditions (e.g., head displacement and rotation is 
often the design criterion); thus, the use of such 
sophisticated constitutive models based on plasticity 
theory might not be necessary.  
In this paper, a new method is developed for the analysis 
of laterally loaded pile foundations subjected to a static 
force and/or moment at the pile-head. In the analysis, the 
pile is assumed to be an elastic Euler-Bernoulli beam and 
the soil is characterized by a nonlinear elastic relationship, 
available in the literature. The displacement within the soil 
mass is considered to be a product of separable functions 
and the principle of virtual work is applied to obtain the 
governing differential equations describing the pile and 
soil displacements which are solved using a 1-D FD 
scheme. The results obtained from the analysis are 
verified with the results of equivalent 3-D FE.   
 
2 NONLINEAR ELASTIC SOIL MODEL 
 
The degradation of soil modulus with strain (nonlinear soil 
behaviour) can be expressed as a ratio of Gs/Gs0 where 
Gs is the secant shear modulus at any strain and Gs0 is 



 

the initial (linear elastic or small-strain) shear modulus. In 
this paper, the nonlinear elastic soil model developed by 
Osman et al. (2007) expressed in the form of a power-law 
(Eq. [1]) is used, which is given by  
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q is the deviatoric strain, rr, , zz, r, z, and zr are the 

strain components for a 3-D strain state in soil for a r--z 

coordinate system, q0 is the maximum deviatoric strain of 

linear elastic behavior at  10-5, and b (=  0.5) is a curve 

fitted parameter describing the nonlinear variation of soil 
with deviatoric strain. 
 
3 FORMULATION 
 
3.1 Problem definition 
 
Figure 3 shows a circular pile embedded in a multi-
layered nonlinear elastic soil deposit where the pile is 
assumed to be an elastic Euler-Bernoulli beam of length 
Lp, radius rp, area of cross-section Ap, second moment of 
inertia Ip, and characterized by Young’s modulus Ep. The 
soil layers are characterized by the modulus degradation 
relationship given by Eq. [1]. Each soil layer extends to an 
infinite distance along the radial and the nth soil layer 
extends to an infinite distance in the vertical direction.  A 

cylindrical r--z coordinate system is chosen for the 

purpose of analysis where the origin of the coordinate 
system lies at the centre of the pile-head. Further, in the 
analysis, no slippage or separation between the pile and 
the surrounding soil is assumed. The objective of the 
analysis is to predict the nonlinear pile response–
displacement (w) and rotation (dw/dz) under the 
application of the static horizontal force Fa and/or moment 
Ma at the pile-head. 
 
3.2 Soil displacement, strain, stress-strain functions 

 
The horizontal soil displacement generated by the pile 
displacement w(z), is described as a product of separable 
functions. The effect of vertical soil displacement uz for 
laterally loaded pile analysis is assumed negligible 
(Nogami and Novak 1977). Thus, the radial ur and 

tangential u displacements are mathematically expressed 

as (Basu et al. 2009, Gupta and Basu 2017)  
 

     ( , ), cosr ru w z rr z         [3] 

 

      , -( ) sin,ru w z rz
 

 [4] 

wherer and  are dimensionless functions of the radial 

coordinate that are both assumed to be equal to 1.0 at r  

rp and are both assumed to be equal to zero at r  .  The 
sine and cosine functions ensure that the variation of the 
soil displacements in the tangential direction is compatible 
with the horizontal pile displacement. 
Using the soil displacement field, the infinitesimal soil 
strains (with contractive strains assumed positive) is 
expressed as 
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Further, using the stress-strain relationship, the stress 
state at any point within the soil mass is given by 
 

     2pq s pq ll s pqG       [6] 

 

where pq and pq are soil stress and strain tensors and 
the summation is implied by the repetition of the indices p 

and q, ll is the volumetric strain, and pq is the 
Kronecker’s delta. 

 

 

Figure 1. Laterally loaded pile in a multilayered nonlinear 
elastic soil deposit 
 
3.3 Application of principle of virtual work  
 
Applying the principle of virtual work to the pile-soil 
system (Figure 1) the following equation is obtained 
 

Layer 1
Layer 2

Layer i

Layer n-1

Layer n

H1 H2 Hi-1

Hi

Hn-2

Hn-1

Fa

Ma

Ma

rp

Fa
θ

r0

r

Lp

z

 





 

 

      

 

  





   
       

   

 
   

 

  
2 2

2 2

2 2

0 0 0 0 0

0

0

0

L r

p p pq pq pq pq

r L

a az

z

p p

p p

d w d w
E I dz rdrd rdrd

dz dz

dw
F w M

dz

           

      [7] 
 
where the first, second, and third integral on the left-hand 
side of Eq. [7] denotes the internal virtual work done by 
the pile, the soil except the cylindrical soil domain below 
the pile base, and the cylindrical soil domain of radius rp 
below the pile base, respectively.  The fourth and the fifth 
term on the left-hand side of Eq. [7] denotes the external 
virtual work done by the applied force and moment, 
respectively.    
Substituting Eqs. [5] and [6] in Eq. [7] and introducing 
layering, the following equation is obtained 
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Note, that the nth layer is artificially split into nth and (n+1)th 

layer. Further, in Eq. [8], Gsi {= Esi/(2  (1 + si))} and si {= 

2Gsi(1  si)/(1  2si)} varies with strain at each point 
within the soil mass i.e., they are functions of the radial r 

and tangential  coordinate (i.e., Gsi = Gsi(r,) and si = 

si(r,)). For the circular soil domain of rp below the pile 

base, the shear modulus is assumed to equal to the 
small-strain shear modulus (i.e., Gsn = Gsn0, see Eq. [1]). 
 
3.4 Numerical solution of pile displacement  
 
Performing integration by parts on the terms associated 

with (d2w/dz2) and (dw/dz), in Eq. [8], then collecting all 

the terms associated with w and equating them to zero 
results in the differential equations of w(z).  Considering 

the terms associated with w within the region 0  z  Lp, 
the governing differential equations of w is obtained, 
which is given by 
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along with the relevant boundary conditions at different 
layer interface given by  
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where the coefficients ki and ti are given by 
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Note, that the parameters ki and ti are also functions of r 

and   for a spatially varying Gsi and si. 

For the domain below the pile  base (Lp  z  ) the terms 

associated with wn+1 in Eq. [8] are equated to zero.  As 

wn+1 is not known a priori within Lp < z  , wn+1  0 

because of which the integrand in the integral between z  

Lp and z   must be equal to zero. This gives the 
differential equation of wn+1 
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At infinite vertical distance down from the pile (i.e., at z  

) wn+1  0 (this makes the term associated with wn+1 at z 

  equal to zero) and at the pile base (i.e., at z  Lp) wn+1 

 wn. Using these boundary conditions, an analytical 

solution of Eq. [20] is obtained as 
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The differential equation governing pile displacement (Eq. 
[9]) is solved using the 1-D FD scheme. The FD form of 
Eq. [9] for various set of nodes (pile is discretized into a 

set of uniformly spaced nodes of spacing z (see Figure 
3(b)) with a total number of nodes n (same as the number 
of soil layers) satisfying the boundary conditions at the 
pile-head (Eq. [10]-[11]) and at the pile-base (Eq. [16]-
[17]) are given by 
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Eqs. [22] and [23] are applicable to nodes 1 and 2 

respectively, Eq. [24] is applicable to nodes i = 3  (n - 2), 
Eqs. [25] and [26] are applicable to nodes i = (n - 1) and i 
= n, respectively. These FD equations form a system of 
linear equations whose solutions results in the pile 
displacement wi at each node along the z-axis. Note, the 
small-strain shear modulus Gs0 can be input at each node, 

which implicitly accounts for layering within the solution 
process. 
 

 

Figure 3. Finite difference discretisation of the pile-soil 
domain 
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3.5 Numerical solution of soil displacement  
 

Referring to Eq. [8], collecting all the terms associated 

with r, , (dr/dr), and (d/dr) and further, 
performing integration by parts on the terms associated 

(dr/dr) and (d/dr), an equation of the following form is 

obtained  
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Collecting the terms associated with r and , setting 

the terms associated with r and   at r  rp and r   

equal to zero (since the variations of r and   are known 

at r  rp and r  ), and within the interval rp  r    (since 

r   0 and    0 as r and   is not known a priori 

within rp  r  ) a set of coupled differential equations for 

r and  describing soil displacement are obtained. 
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The coupled differential equations (Eqs. [33] and [34]) are 
solved simultaneously using a 1-D FD scheme. The 
discretized forms of the differential equations and the 
associated coefficients are given as 
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where the superscript l represents the node number at a 

radial distance rl from the pile edge and (rl+1  rl) or (rl  rl-

1) is the discretization length (see Figure 3(b)). The FD 
discretization has its first node at the pile-soil boundary 

(i.e., at r  rp) and is chosen sufficiently long and dense so 

as to allow proper attenuation of the displacement 
functions for accurate results. 
Eqs. [42] and [43] when rewritten for nodes 2 through (m 

 1) (i.e., excluding the 1st and the last (mth) nodes at 

which the values of r and  are known) generate two 
sets of simultaneous equations with each set containing m 

 2 equations. These sets of equations can be 
represented in the matrix form as 
 

       
r

rX Y

 

 [53] 

 

    

   
rX Y

 

 [54] 

 

where 

  
 
 ( 2) ( 2)

r

m m
X and 

  
 
 ( 2) ( 2)m m
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diagonal matrices with finite difference coefficients of the 

unknown vectors {r}(m-2)×1 and {}(m-2)×1, respectively, and 
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 ( 2) 1m
Y are the corresponding right-

hand side vectors containing terms with unknowns  and 

r, respectively. As the right-hand vectors contain the 

unknowns r and , iterations are necessary to obtain 

their values.  An initial estimate of r is made and given as 

input to {Yr}, and  is determined by solving Eq. [54].  

The calculated  values are then given as input to {Y} to 

obtain r from Eq. [53]. The newly obtained values of r 

are again used to obtain new values of , and these 
iterations are continued until the convergence is reached. 
The criteria set for convergence are 
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where  previousl
 and   currentl are the values of the  functions 

(i.e., r and ) at the lth node for the previous and current 

iterations, respectively. 
        
3.6 Solution algorithm 
 

The soil parameters k and t which are functions of r and 

 must be known to obtain w from the differential 
equation (Eq. [9]) describing the pile displacement.  

Moreover, the parameters 1-8 (Eqs. [35]-[42]) must be 

known to obtain r and  from Eqs. [33]-[34] and these 
parameters depend on wi through ms1, ms2, ms3, ns1, and 
ns2 (Eqs. [28]-[32]). Therefore, the differential equation 

describing pile displacement wi and soil displacement r 

and  are coupled and an iterative algorithm is required 
to obtain a solution. 

An initial guess of 1.0 is made for 1-8 (Eqs. [45]-[52]) at 

each grid point (see Figure 3(a)) along r using which r 

and  are determined using an iterative algorithm that 

satisfy the boundary conditions r and  = 1 at r  rp and 

r and  = 0 at r  . After obtaining r and  at each grid 

point, the strain components are calculated (using Eq. (5)) 

with which the secant shear modulus Gs(r,) are 
evaluated (using Eqs. [1] and [2]), at each grid point in the 

soil domain along r and   and at each node along the z-

axis (see Figure 3(b)). It is important to note that the 
induced displacement and strain varies at each point in 
the pile-soil domain because of which the secant shear 
modulus also varies at each point (because of the non-
linear stress-strain behaviour of soil), which implies that 
the deformation induced in the soil mass because of pile 
movement renders the soil heterogeneous.  

Using the calculated values of Gs(r,), r and , the 
values of ki and ti (Eqs. [18]-[19]) are obtained at each 
node along the pile length using the trapezoidal rule of 
integration where the integration is first performed along 

the r-direction with step length (rl+1  rl) or (rl  rl-1) at any 

tangential distance , followed by a subsequent 

integration over  with step length  (see Figure 3(a)).  
With the calculated values of ki and ti the pile 
displacement wi and rotation dwi/dz is evaluated (using 
Eqs. [22]-[26]) at different node points along the pile 
length with which the parameters ms1, ms2, ms3, ns1, and 
ns2 (Eqs. [28]-[32])) is evaluated numerically following the 

trapezoidal rule of integration, along the  and z-direction. 

First, the integration is performed along  at any radial 

distance rl with a step length rl; the value of the 
integration obtained is further integrated along the z-

direction with a step length z. After obtaining ms1, ms2, 

ms3, ns1, and ns2, new values of 1-8 are evaluated at 
each grid point and compared to the assumed initial 
values. If the differences are more than the prescribed 
tolerable limit of 0.001 at each grid point, the calculations 
described so far are repeated with the calculated values 

of 1-8 as the new initial guesses. Iterations are continued 

until the values of 1-8 between successive iterations fall 
below the prescribed limit at each grid point.   
 
 



 

4 RESULTS 
 

In order to verify the accuracy and computational 
efficiency of the present mathematical formulation, a 
comparison of the pile response obtained from the 
present analysis is done with the results of equivalent 3-D 
FE analyses using the nonlinear elastic relationships 
described by Eq. [1].   
In the 3-D FE analysis (performed using ABAQUS), the 
pile and soil are modeled as a single cylindrical part with 
appropriate partitioning to represent the pile and soil 
separately, which ensures no slippage or separation 
between the soil and pile. The top soil surface is flush with 
the pile-head and the bottom soil surface is extended to a 
finite depth below the pile base.  The horizontal radial 
extent of the soil domain is selected to be approximately 
30 times the pile diameter from the pile axis. Different 
boundary conditions are prescribed at the boundaries of 

the modelall components of displacements are assumed 
to be zero along the bottom (horizontal) surface and two 
horizontal components are assumed to be zero along the 
outer, curved (vertical) surface of the soil domain. Eight-
noded reduced integration (C3D8R) brick elements are 
used to model both the soil and pile domain.  
Concentrated force or moment is applied to a reference 
point at the pile head, to which all the nodes of the pile-
head are connected. These loads (force/moment) are 
applied in several fixed increments. 
The pile in the FE analysis is modeled as an elastic 
element whereas the soil is modeled using the nonlinear 
elastic relationship. In order to implement the nonlinear 
equations i.e., the variation of secant shear modulus of 
soil with the strain the ‘‘field variable (FV)” and the ‘‘user 
defined field” options, for the material definition in 
ABAQUS is used. In the simulations, the field variable is 
assigned as the Young’s modulus and the user-defined 
field (USDFLD) FORTRAN subroutine is written in 
Microsoft Visual Studio where Young’s modulus is made 
to vary with the evaluated value of the strain following Eq. 
[1] within the integration points of each element in the soil 
domain, for each load increment. In the FORTRAN code, 
the arrays of the strain components in each direction at 
each integration point within the soil elements are 
obtained using the GETVRM subroutine at the end of 
each increment. Then, the strain corresponding to Eq. [1] 
is calculated.  Further, it is checked that if the strain is less 

than the minimum specified strain (q0  10-5) within each 

element, then the initial Young’s modulus is specified to 
those elements; else for other elements, Young’s Modulus 
is evaluated using Eq. (1). The evaluated value of 
Young’s modulus for each element at the end of each 
increment is saved as a “solution dependent variable 
(SDV)” which is then used for the material definition at the 
integration points of each element of the soil domain in 
the next load increment. This (USDFLD) subroutine 
written is linked to the model developed in the ABAQUS 
Create job option and the analysis is performed in an Intel 
Fortran environment to get the outputs.  Note, that for an 
accurate implementation of the variation of Young’s 
modulus, it is necessary that the size of the load 
increments and the size of the elements should be 
adequately chosen, based on convergence checks.  For 

the problems solved, the pile-soil domain is discretized 
using a global seed of 1.0 and the applied load is divided 
into 40 increments.  
Figures 4(a)-(b) show the comparison of the pile 

responses (head displacement wh and rotation h) for an 

applied force and moment, respectively, obtained from the 
present analysis and 3-D FE analysis. The results are 
shown both for the soil modeled as an elastic and a 
nonlinear elastic material. The details of the pile-soil 
inputs are given in the figure itself. For the problems 
analyzed, the initial (elastic) shear modulus Gs0 = 10 MPa 

with Poisson’s ratio s = 0.2 is given as input in the 

present analysis. In the 3-D FE analysis, Young’s 
modulus of soil is made to vary with the deviatoric strain, 

therefore, the initial Young’s modulus Es0 {= Gs0  2  (1 + 

s)} = 24 MPa, is given as input. From the comparisons, it 

is evident that the present analysis predicts the pile 
response with a reasonable degree of accuracy. The 
difference in the nonlinear pile responses for the range of 
applied load is approximately less than 8%.   

 

 
(a) 

 
(b) 

Figure 4. Comparison of pile response obtained from 
present and 3-D FE analysis for an applied force at the 
pile head (a) head displacement and (b) head rotation  



 

 
(a) 

 
(b) 

Figure 5. Comparison of pile response obtained from 
present and 3-D FE analysis for an applied moment at the 
pile-head (a) head displacement and (b) head rotation  
 

The major advantage of the present framework is that it is 
computationally efficient in comparison to the 3-D FE 
framework for the same level of accuracy. Table 1 depicts 
the computational efficiency (CPU processing time for 
nonlinear analysis) from the present analysis (a  MATLAB 
script is written) over the 3-D FE analysis (performed 
using ABAQUS) for the problems solved in computer with 

Intel CoreTM i5-3210M CPU @ 2.50 GHz and 8 GB RAM 
 

Table 1. Computational time required for 3-D FE analysis 
and present analysis  

Solved 
problems 

3-D FE 
analysis 
(secs) 

Present analysis, 
(secs) 

Figures 5(a)-(b)  8685 337 

Figures 6(a)-(b) 8777 356 

 

 

5 CONCLUSIONS 
 

A new continuum-based method is developed for the 
analysis of laterally loaded pile foundations embedded in 
a multilayered nonlinear elastic soil, subjected to a static 
force and moment at the pile-head.  The soil displacement 
is considered to be a product of separable functions and 
the principle of virtual work is applied to obtain the 
governing differential equations describing the pile and 
soil displacements.  An iterative algorithm is developed to 
obtain the pile and soil displacements in a 1-D FD 
scheme. The results obtained from the analysis are 
verified with the results of an equivalent 3-D FE analysis. 
A comparison of the CPU processing time is also shown 
to demonstrate the computational efficiency of the present 
analysis over 3-D FE analysis.  
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