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ABSTRACT 
When a slug test is performed in a monitoring well, the test data of the water column Z(t) versus time t may be analyzed 
using several methods.  These use three types of graphs, which provide a clear diagnosis for the test data when used all 
together.  According to experience, most test data contain a systematic error H0 on the water column data, which is due 
to five sources of error.  According to experience, most plots of log Z(t) versus t yield an upward curvature, a minority 
give a downward curvature, and very few provide a straight line.  The upward and downward curvatures correspond to 
positive and negative values of H0, whereas a straight line means no piezometric error. For this paper, 21 sets of slug 
test data found in textbooks were analyzed, using the three diagnostic graphs.  For these textbook data, the plots of log 
Z(t) vs. t are either curved upward or straight, but no data set has the downward curvature.  The optimization method 
easily found the H0 value in all cases, and the velocity graph for almost all sets. Therefore, the authors of textbooks have 
ignored the upward curvatures, and often have provided an incorrect interpretation for their examples.  
 
RÉSUMÉ 
Quand on fait un essai de perméabilité à niveau variable dans un piézomètre, les données  de la colonne d'eau Z(t) vs le 
temps t peuvent être analysées par diverses méthodes. Celles-ci utilisent trois types de graphes qui, lorsque utilisés 
ensemble, donnent un diagnostic clair.  Selon l'expérience, la plupart des données contiennent une erreur systématique 
H0 sur les valeurs de colonne d'eau, qui est due à cinq sources d'erreur.  Selon l'expérience, les graphes de log Z(t) vs t 
sont en majorité courbés vers le haut, en minorité vers le bas, et très peu donnent une ligne droite.  Les courbures vers 
le haut et le bas correspondent à des valeurs positives et négatives de H0, tandis qu'une droite signifie qu'il n'y a pas 
d'erreur piézométrique.  Pour cet article, 21 ensembles de données trouvées dans des livres ont été analysés, avec les 
trois graphes diagnostiques. Pour les données des livres, les graphes de log Z(t) vs t sont soit courbés vers le haut soit 
rectilignes, mais aucun n'avait une courbure vers le bas. La méthode d'optimisation a facilement trouvé la valeur de H0 
pour tous les cas, et la méthode des vitesses pour la plupart des cas. Les auteurs des livres ont donc ignoré les 
courbures vers le bas, et ont souvent fourni des interprétations incorrectes pour leurs exemples. 
 
 
 
1 INTRODUCTION 
 
For at least one century, specialists in geotechnique and 
groundwater have routinely performed slug tests in driven 
flush-joint casings, driven field permeameters, monitoring 
wells, and between packers in boreholes.  Slug tests 
assess the local value of hydraulic conductivity K in tested 
aquifers.  After the initial rapid change in water level, the 
water column Z varies versus time t within the solid pipe. 
A slug test has a major advantage over pumping tests: it 
is fast and does not require disposal of large volumes of 
potentially polluted groundwater.  Its major drawback is 
that it tests a small volume of aquifer, at a small radial 
distance around the monitoring well (MW) filter pack, 
where the material has been most remoulded by drilling 
operations (Chapuis 2001; Chapuis and Chenaf 2002, 
2003, 2010).  All advantages and drawbacks can be 
assessed by examining in detail the drilling procedures, 
MW installation procedures, testing methods, and aquifer 
characteristics (Nielsen and Schalla 2005). 

This paper deals with the slug test data of examples 
used in textbooks. All data here are for overdamped slug 
tests, in which the water column slowly returns to 
equilibrium.  There is no underdamped test here, where 
the water column oscillates back to equilibrium.  

The paper briefly presents the available theories and 
current findings relative to overdamped slug tests in 

aquifers.  Then, it analyzes in detail a few examples of 
textbooks before making a general picture of all examples 
used in textbooks. 
 
2 BACKGROUND, THEORIES 
 
Several methods are used to analyze overdamped slug 
tests in aquifers.  They are known to yield different results 
for the K value, and to be user-dependent.  The methods 
belong to either group 1, which neglects the influence of 
solid matrix strains, or group 3, which tries to consider 
them, whereas group 2 is for aquitards with delayed and 
irreversible consolidation strain (Chapuis 1998), thus not 
used below. Chapuis (2015) proposed to clarify which 
theory should be used by using three diagnostic graphs, 
including the derivative or velocity graph (Schneebeli 
1966). The diagnostic graphs are non dimensional when 
using the ratio Z* = Z(t) / Z(t = 0). After analyzing 
thousands of tests, two major conclusions emerged. The 
first major conclusion, all field test data follow a single 
theory, that of group 1 (Lefranc 1937; Hvorslev 1951; 
Bouwer and Rice 1976). This is a practical proof that the 
group-3 theory (Cooper et al. 1967), which involves 
storativity, S, is incorrect, mostly because it mistreats 
solid mechanics. The second major conclusion is that the 
three-diagnostic graphs approach yields a user-
independent K value. 



 

For an overdamped response, CAN/BNQ 2501-135 is 
the standard in Canada (CAN/BNQ 1988, 2008, 2014). 
Although slightly modified along the years this standard 
has always retained the derivative or velocity graph 
method.  The derivative method is also used in old French 
standard NF P94-132 (AFNOR 1992) and the present 
European standard 22282-2 (ISO 2012). 
 
2.1 The three diagnostic graphs 
 
Chapuis (2015) introduced the three diagnostic graphs as 
follows.  The first graph, usually called Hvorslev's graph, 
is much older than the report by Hvorslev (1951).  It 
appears in Fig. 1 with several possibilities including the 
straight line as predicted by theory, and the two types of 
curves as obtained in the field with either upward or 
downward curvature.  
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Figure 1. First diagnostic graph: six examples are 
presented with symbols S1 to U6 (S = straight; D = 
downward curvature; U = upward curvature). 

 
The second diagnostic graph is the non-dimensional 

graph of the group-3 basic theory (Cooper et al. 1967).  It 
appears in Fig. 2, similar to that of the original paper.  

The third diagnostic graph is the derivative or velocity 
graph, of Z(t) vs. dZ/dt, useful for the derivative sensitivity. 
Derivatives are used for pumping tests (Bourdet et al. 
1989; Bourdet 2002; Renard et al. 2009).  For slug tests, 
the derivative plot was proposed by Schneebeli (1966) 
and improved by Chapuis et al. (1981) for several aspects 
of field tests in flush-joint driven casings.  These include 
assessing seepage conditions within a succession of 
aquifer and aquitard layers, and also hydraulic fracturing 
or separation.  The 3rd diagnostic graph appears in Fig. 3 
for the group-1 theory (Lefranc 1937; Hvorslev 1951; 
Bouwer and Rice 1976) and for the group-3 theory 
(Cooper et al. 1967).  

The 3rd diagnostic graph uses a normalized derivative 
defined as V* = (dZ*/dt)/(dZ*/dt)95 where (dZ*/dt)95 is the 
velocity when Z* = 0.95 (Fig. 3).  A 0.95-value was 
retained instead of 1 because initial readings are rarely 
reliable, due to dynamic initial effects and release of 
bubbles, which are not considered in theories. In Fig. 3, 
the group-1 or Hvorslev's solution is a straight line. 
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Figure 2.  Second diagnostic graph for the group-3 theory. 
The group-1 theory plot is slightly to the right of the last 
master curve for α = 10-10. The abscissa involves the 
aquifer transmissivity T. 
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Figure 3. Third diagnostic graph for the group-1 and 
group-3 theories.  
 

The main role of the 3rd graph is to verify whether the 
derivative is straight (group-1 theory) or smoothly curved 
(group-3 theory). If the data do not converge towards the 
origin of axes but towards x = 0 and y = H0, then H0 is the 
error made when assessing the piezometric level for the 
test. There are at least five reasons to make an error H0 
(Chapuis 2009a). When the data are inaccurate, the best-
fit method of Chiasson (2005) gives better results than the 
derivative or velocity graph method.  The latter has some 
advantage when dealing with special cases such as initial 
consolidation (irreversible strains) at the beginning of a 
test in an aquitard, and for identifying special cases such 
as hydraulic fracturing or separation, and hydraulic short-
circuiting along a poorly sealed monitoring well. 

Chapuis (2015) proved, with thousands of field test 
data, that the group-3 theory (Cooper et al. 1967), which 
involves storativity, S, is incorrect, mostly because it 
mistreats solid mechanics. Recently, Chapuis (2017) 
added a theoretical proof to this previous practical proof. 



 

He proceeded with the stress-strain analysis around the 
injection zone during a slug test in an aquifer. The 
complete stress-strain analysis has shown that the soil (or 
rock) radial contraction (or dilation) is fully compensated 
by the tangential expansion or contraction. As a result, 
there is no volumetric strain for either a cylindrical cavity 
or a spherical cavity in an elastic medium, infinite or of 
radius R. This outcome is valid for slug test conditions 
that yield purely elastic strains, which is usually the case 
in aquifers. This means that the conservation equation to 
be used for slug tests is the Laplace equation (used by 
the group-1 theory) and not the too simplified diffusion 
equation of the group-3 theory. This has shown that the 
group-2 theory is the only one to be physically correct for 
slug tests in aquifers. 

In a soil or rock undergoing some irreversible strain, a 
small zone adjacent to the cavity has permanent strain for 
a certain time at the beginning of the slug test. This yields 
a non-linear derivative graph at the beginning of the test, 
caused by a “geometric” drop in water level. However, 
after a few hours for soft rock aquitard, or 1 or 2 days for 
clay, the material becomes normally or over consolidated, 
and thus, the elasticity assumption prevails, which yields 
a straight-line derivative graph.  After a long time, the 
derivative graph may also change its shape. This is due to 
the long lag-time of the general response in an aquitard, 
and the fact that a “static” water level in the riser pipe of 
any MW in an aquitard is never a piezometric level 
(Chapuis 2009a; Chapuis et al. 2012). 

In this paper, we use the three diagnostic graphs to 
find the correct and not user-dependent interpretation for 
each slug test example in textbooks.  
 
2.2 First example: Todd and Mays (2005, p. 266) 
 

The first example comes from the textbook of Todd 
and Mays (2005, page 266).  The usual "Hvorslev" plot 
presents an upward curvature (Fig. 5).  The textbook 
qualifies this shape as a double straight-line effect. The 
supporters of the group-3 theory incorrectly interpret this 
curve as an influence of specific storage, Ss.  

The derivative plot, however, does not show a nice 
regular curve as those in Fig. 3, but two parts: an initial 
part with high velocities, and then a straight-line plot.  The 
initially high velocities are usually due to dynamic effects 
of slugging (these are not taken into account by the 
theories), initial degassing of the water column after swift 
injection of a water volume, or inexact data (too fast for 
the manual readings, or transducer readings). The 
straight-line long-duration portion of the derivative plot is 
the part used to derive the K value for the test. 

Finally, the best fit plot for the first example (Fig. 6) 
plots the raw data for Z* (they are curved upward), and 
the corrected data after detection of the systematic error, 
H0. The optimized data with determination of the H0-value, 
form a straight line, except for early times, due to dynamic 
slugging effects, and probably initial degassing.  
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Figure 4. First plot, ln (Z) vs. t, for the 1st example. Note 
the curvature, and the inaccuracy of initial data. 

Velocity graph - Todd - p. 266

y = 228.64x + 9.47

R2 = 0.98

0

10

20

30

40

50

60

70

0.00 0.20 0.40 0.60 0.80 1.00

velocity or derivative dH/dt  (cm/s)

m
ea

n
 v

al
u

e 
o

f 
H

 (
cm

) 
d

u
ri

n
g

 d
t

early time

late time data

Best fit (late)

degassing?

 
Figure 5. Third plot, derivative graph, for the 1st example. 
Note that all data form a straight line, with a H0 value, 
after the inaccurate initial data. 

Optimisation - all data - Todd - p. 266
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Figure 6. Best fit plot for the corrected data of the 1st 
example. Note that the uncorrected raw data, with an 
upward curve shape, appear in black. 



 

2.3 Second example: Butler (1999, pp. 61-62) 
 
The 2nd example is from Butler (1998). To illustrate the 
method of (Cooper, Bredehoeft and Papadopulos 1967), 
or CBP method, Butler (1998, pp. 61-62) used the data of 
a test performed in a MW of Lincoln County, for which the 
initial Z (t = 0) value was very large, exceeding 10 m. 

Butler (1998) showed a doubtful fit for the CBP theory, 
and obtained K = 3.69 x 10-4 m/d. If you read rapidly, this 
seems to be a good number for an aquifer. However, 
Butler (1998) did not use the common unit of m/s.  His 
result gives K = 4.3 x 10-9 m/s, which is a value for an 
aquitard, not an aquifer as written in Butler (1998). For 
this test, one could have used the group-2 theories to 
derive the geotechnical consolidation parameters; sadly, 
the group-2 theories are ignored in Butler (1998).  

The common plot of ln (Z) vs. t, (Fig. 7) is curved 
upwards. The supporters of the group-3 theory incorrectly 
interpret this curve as an influence of Ss. The linear best 
fit seems good (R2 = 0.97), but the curvature is obvious. 

Semi-log plot ) Butler pp. 61-62
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Figure 7. First plot, ln (Z) vs. t, for the 2nd example. Note 
the curvature, and the inaccuracy of initial data. 

Velocity graph - Butler pp. 61-62
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Figure 8. Third plot, derivative graph, for the 2nd example. 
Note that all data form a straight line, with a H0 value, 
after the inaccurate initial data. 

The derivative plot (Fig. 8) is not typical of an aquifer. 
It is rather typical of an aquitard (Chapuis 2009a). Data 
plot as a curve during the first hours and then as a 
straight line for the next 3 days with a high H0 value. This 
is a usual shape for a test in an aquitard. This plot does 
not look like those in Fig. 3, and the K value is much too 
low for an aquifer and a testing time of 4 days.  

The H0 value of this second example is high. This is 
"normal" for an aquitard where a MW never gives the 
piezometric level (Chapuis 2009a; Chapuis et al. 2012), 
and also for a test that started with an initial Z(t = 0) 
exceeding 10 m = 1000 cm.   

Finally, the test data, when plotted as ln (Zr) vs. t, yield 
a small curve for the first 4 h, and then a central straight 
line (Fig. 9). This central part is the part to be used to 
derive the K value for this aquitard as confirmed by using 
numerical modeling and other independent verifications 
(Chapuis et al. 2012). Note that the late data, after 2 days, 
show a divergence from the straight central portion (red 
dotted line), which is also typical of late time effects for 
slug tests in aquitards.  
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Figure 9. Best fit plot for the 2nd example. The uncorrected 
data, with an upward curve shape, are also plotted. 

 
For this test, Butler (1998) found Ss = 4.38 x 10-4 m-1, 

and estimated that this value was "reasonable for the 
material through which the well is screened.” However, 
the material is mudstone and very fine sandstone, thus 
soft rock. Considering the correspondence between Ss 
and Es, the elastic modulus of the solid matrix (Chapuis 
2017), it appears that the previous Ss-value corresponds 
to an Es-value typical of peat, thus at least three orders of 
magnitude too low for the tested soft rock.  

Thus, this second example from a textbook did not 
use m/s for K, but m/d, which may confuse any reader. 
The textbook selected this test to illustrate the CBP 
method for slug tests in aquifers, whereas the tested 
material was clearly an aquitard, not an aquifer. In 
addition, the CBP method severely underestimated the Es 
values. By not providing the value of elastic modulus, and 
the mechanical context, which is needed to understand, 
this second example has simply hidden how poor the 
results obtained with the CBP method are. 



 

3 GENERAL RESULTS 
 
The following textbooks provided twenty-one examples of 
overdamped slug tests: Butler (1998), Dawson and Istok 
(1991), Fetter (2001), Hudak (2004), Schwartz and Zhang 
(2003), Todd and Mays (2005), and Weight (2008). Not all 
examples given in textbooks were solved in textbooks. All 
examples in textbooks ignored the derivative or velocity 
graph method, and therefore assumed that the observed 
water level before the test was a piezometric level.   

First, it is possible to compare two H0 values: one is 
obtained using the derivative or velocity graph, and the 
other is obtained using the optimization process. The 
comparison appears in Fig. 10. The two values are very 
close for most cases, except for two cases for which the 
field data were very inaccurate. This similarity of H0 
values for correctly performed slug tests was also shown 
in Chapuis (2015). 

Fig. 10 also indicates that many data sets used as 
textbook examples were selected to have a nearly straight 
plot of log (Z) vs. t, as in the theory of Hvorslev (1951) or 
Bouwer and Rice (1976). This is obvious because many 
H0 values are very small and form a pack around the axes 
origins in Fig. 10.  By selecting such data, the example is 
"well chosen" to show that the group-1 theory works. 

A few slug test data sets used as examples gave a 
clear upward curvature in a plot of log (Z) vs. t, but none 
gave a clear downward curvature, whereas this happens 
statistically in 20-30% of cases (Chapuis 2015).  
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Figure 10. Comparison of the systematic piezometric 
error, H0, as derived using the optimization method and 
as obtained with the velocity graph method.   
 

Concerning the group-3 or CBP theory, no example 
found in textbooks could clearly fit one of the theoretical 
master curves (see Fig. 2).  All test data sets cut through 
the master curves, or could be plotted outside to the right 
of them. This confirmed one of the statistical findings of 
Chapuis (2015) that field data sets follow the group-1 
theory and not the CBP theory based upon the 
misunderstanding of stress-strain relationships, and the 
misuse of an oversimplified equation with Ss.  

Second, it is possible to compare the K values given 
by textbooks (only for those cases that were analyzed in 

textbooks), versus the K value obtained using the three-
diagnostic-graphs method. The results appear in Fig. 11. 
They indicate that most often, the K value given by 
textbooks was between 0.1 and 10 times the real K value 
for the tests, which is not a good result. The true K value 
was obtained after taking into account the piezometric 
error, initial inaccurate readings due to dynamic effects 
and gas bubble release, and other possible phenomena 
such as ignoring the initial consolidation (irreversible 
strains), thus confusing an aquifer with an aquitard.  
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Figure 11. Comparing the K values given in textbooks (not 
all examples are solved) and the K values obtained with 
the optimization method.  
 
 
4 DISCUSSION AND CONCLUSION 
 
The examples presented in textbooks reveal a variety of 
the features that are found with slug tests in monitoring 
wells.  However, they are biased, for three reasons: (1) 
they ignore the cases of downward curvature in a plot of 
log (Z) vs. t; (2) they ignore the derivative or velocity plot; 
and (3) they use visual matching instead of scientific 
methods.  A few features are discussed hereafter. 

One textbook mistakenly presents a test in an aquitard 
as an example of a test in an aquifer, while providing the 
K value in m/d instead of m/s.  The velocity plot presents 
the classical features of a variable-head test in an 
aquitard: (1) initial curve (irrecoverable strains during 
consolidation), then (2) a straight-line portion, and then (3) 
an irregular shape for the late portion, which is influenced 
by hydraulic head fluctuations caused by several external 
factors during the long duration slug test (Chapuis et al. 
2012). 

In addition, for the group-1 theory the textbooks do not 
question the shape factor values proposed by Bouwer 
and Rice (1976). These values were shown to be 
incorrect, chiefly because the water table was confused 
with a constant-head recharge, which leads to a 
systematic underestimation of the K value by about 30 to 
50% (Chapuis 2009b). 

For the group-3 theory, many persons have tried to 
obtain field data looking like the CBP predictions of 



 

Cooper et al. (1967). Many practitioners have spent time 
and put their professional liability at stake by using the 
CBP theory to interpret their field test data. Because the 
data are merely superposed (see Fig. 2), these persons 
may have had some feeling that the theory seemed to be 
correct. Alas, a simple superposition is not a proof, and 
the theory is physically incorrect (Chapuis 2017). These 
losses of time and energy are unfortunate. 
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