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ABSTRACT 
The performance of oil sands reclamation covers is evaluated through the simulation of long-term water balance using 
calibrated soil-vegetation-atmosphere-transfer models. Conventional practice is to develop a single set of calibrated 
properties based on few monitoring data sets. The ability to characterize spatial or temporal variability in the cover 
properties is therefore limited. This study utilizes inverse modelling (IM) to optimize the hydraulic properties for 12 prototype 
covers, replicated in triplicate, at Syncrude’s Aurora mine site. IM was used to optimize the hydraulic parameters for three 
soil types (peat, sandy subsoil, and lean oil sand) for each monitoring site from 2013-2016. 155 optimized parameter values 
helped define parameter uncertainty for each soil. Calibrated models were used to evaluate variations in the maximum 
sustainable LAI and quantify uncertainty associated with long-term water balance based on calibrated parameters and LAI 
values.   
 
RÉSUMÉ 
La performance des couvertures de remise en état des sables pétrolifères est évaluée grâce à la simulation du bilan 
hydrique avec des modèles calibrés de transfert sol-végétation-atmosphère. La pratique conventionnelle est de développer 
un ensemble de propriétés calibrées basées sur quelques ensembles de données de contrôle. La capacité de caractériser 
la variabilité spatiale ou temporelle des propriétés des couvertures est donc limitée. Cette étude utilise la modélisation 
inverse pour optimiser les propriétés hydrauliques de 12 prototypes de couvertures, répétés en trois exemplaires, au site 
minier Aurora de Syncrude.  Elle a optimisé les paramètres hydrauliques pour trois types de sols (tourbe, sous-sol 
sablonneux et sables légèrement pétrolifères) pour chaque site de contrôle de 2013 à 2016.  155 valeurs de paramètres 
optimisées ont aidé à définir l’incertitude des paramètres de chaque sol.  Les modèles calibrés ont permis d’évaluer les 
variations d’ISF maximum durable et de quantifier l’incertitude associée au bilan hydrique à long terme basé sur les 
paramètres calibrés et les valeurs ISF.  
 
 
 
1 INTRODUCTION 
 
The two key measures of success for oil sands mine 
reclamation covers are the water balance components of 
actual transpiration (AT) and net percolation (NP). AT 
quantifies the ability of the cover to support re-vegetation, 
while NP quantifies the release of water to adjacent 
wetlands or surface water and is central to estimates of 
chemical flushing from the underlying mine waste.  

Conventional practice has been to monitor covers for a 
short-term period (e.g. 5-10 years) and then calibrate 
SVAT models to simulate the water balance over the long-
term (e.g. 60 years). Previous studies (Huang et al. 
2011a,b,c, 2015a; Keshta et al. 2009, Price et al. 2010; 
Qualizza et al. 2004) have relied on data from a single 
monitoring station to calibrate the SVAT models and 
consequently, the ability to characterize the spatial or 
temporal variability in cover properties was limited. 

Temporal variability in hydraulic conductivity (Ks) was 
measured in reclamation covers over saline-sodic 
overburden at Syncrude’s Mildred Lake Mine by Meiers et 
al. (2011) and was detected by Inverse Modelling (IM) by 
Huang et al. (2015b). Such observed temporal variability 
was assumed to be due to the changes in density and pore-
size distribution as a result of freeze/thaw or wet/dry cycles, 
and vegetation establishment.  Spatial variability would be 

expected to occur in reclamation covers as a result of 
material heterogeneity, cover construction/placement 
conditions, topography, or vegetation establishment. For 
example, Huang et al. (2016) were able to characterize the 
spatial variability of Ks using air-permeability testing of 
covers.   

Quantifying spatial and temporal variability would be of 
value when the performance of reclaimed oil sands closure 
landscapes is being evaluated. However, the estimation of 
spatial and temporal variability (i.e. uncertainty in the model 
parameters) is not conventionally incorporated in the 
calibration of SVAT models or in the modelling of long-term 
cover performance.  

Alam et al. (2017) undertook a preliminary evaluation 
of the uncertainty in the hydraulic properties of reclamation 
covers on the long-term water balance of oil sands 
reclamation covers. In that study, IM modelling was 
undertaken for four different reclamation covers (replicated 
in triplicate) over three monitoring years. The calibrated 
parameters showed that parameter uncertainty (variability) 
could be linked to both spatial and temporal variability but 
was dominated by spatial uncertainty.   

The impact of vegetation development on AT was 
quantified using the leaf area index (LAI). Huang et al. 
(2017) found that LAI had the largest influence over the 
range of the water balance components, AT and NP. 



 

Uncertainty in the soil hydraulic parameters also led to 
uncertainties in the range of LAI that was sustainable for a 
given cover design.   

HYDRUS-1D has been used previously to characterize 
spatial and temporal variability in the soil hydraulic 
parameters (Harman et al. 2011; Qu et al. 2014; Alam et 
al. 2017).  The objectives of this study were to use the IM 
modelling implemented in HYDRUS-1D to: (i) characterize 
uncertainty in the optimized parameters and LAI, and (ii) 
evaluate the impact that these sources of uncertainty have 
on the predicted long-term cover performance.    

 
                      

2 MATERIALS AND METHODS 
2.1 Study Sites 
 

The study used soil monitoring data and meteorological 
data from the Aurora Capping Study (ACS) located at 
Aurora North Mine in Alberta. Syncrude Canada Ltd. 
(SCL). The ACS is comprised of a series of 12 alternate 
cover designs, replicated in triplicate, placed over LOS. 
The primary purpose of different cover designs was to 
compare the performance of alternate materials and cover 
thicknesses in supporting vegetation and net percolation 
(OKC, 2017).  

The layout of the 12 covers (replicated) are shown in 
Figure 1 and are designated as T#, where T denotes 
treatment cover and # denotes position from 1 to 12. Each 
of the replicated cover system designs is known as a “cell” 
with a total of 36 cells in the ACS. The 36 cells, 
representing 12 alternate cover designs randomly placed 
across a watershed as 36 one-hectare cells. The treatment 
covers were constructed with different reclamation 
materials including a variety of placement configurations 
and reclamation capping thicknesses, all over lean oil sand 
(LOS) substrate: i) an upper layer (coversoil) of either 
salvaged peat or upland leaf/folic/humic (LFH) plus a 
portion of the underlying A and possibly B horizons, and (ii) 
three types of sandy subsoil varying in their salvage depth. 
The various soil cover designs are summarized in Table 1.  
All of the subsoil materials have sandy textures (mean 
loamy sand texture) (Soil Classification Working Group, 
1998). All of the 13 treatment covers (which includes two 
sub-categories of T12) were included in this study. 
Composition of the treatment cover materials and 
vegetation types can be found in Alam et al. (2017).  

 
2.2 Field Monitoring Data 
 
A climate monitoring station (Aurora Met) was established 
in 2012 to measure precipitation, air temperature, wind 
speed, net radiation, and relative humidity at the study site. 
In addition, each cell had a soil monitoring location where 
soil volumetric water content, temperature, and suction 
were measured at multiple depths within the treatment 
covers and the underlying LOS. Both meteorological and 
soil monitoring data for four consecutive growing seasons 
(2013-2016) were used to calibrate the physically-based 
SVAT model for each cell. This provided 155 optimized 
parameter values, which were interpreted to define spatial 
and temporal uncertainty in the hydraulic conductivity (Ks) 
and water retention curves (WRC). For the IM, the focus 

was on the three soil types such as peat (combining with 
LFH) overlying subsoil (combining one salvage depth, 
rather than discrete salvage depths) and LOS, as this has 
been typically used in oil sands reclamation cover design.    
 
 

 
 

Figure 1. Soil cover design treatments (T) at ACS (O’Kane 
Consultants Inc., 2017). LOS underlies all treatments   
 
 
2.3 Parameter Estimation Using Inverse Modelling  
 
IM is a mathematical approach that estimates unknown 
causes (e.g. model parameters) using observed variables 
(e.g. water content or pressure heads) during a historical 
period by iteratively solving the governing equation 
(Hopmans et al. 2002).  

HYDRUS-1D is a numerical solution to Richard’s 
equation for water flow in unsaturated soils. Potential 
evapotranspiration (PET) is calculated from climatic 
conditions using the Penman-Monteith equation (Brutsaert, 
1982). It is then apportioned into potential evaporation (PE) 
and potential transpiration (PT) based on a prescribed LAI 
value. The actual evaporation (AE) from the ground surface 
is calculated from the PE and some limiting water stress 
(i.e. suction) at the top of the soil profile. Whereas actual 
transpiration (AT) is calculated by distributing PT over a 
prescribed rooting zone where root water uptake is limited 
by water stress, as calculated by a root water uptake model 
(Feddes et al. 1974). 

HYDRUS-1D embeds an IM method into the numerical 
solution of the Richard’s equation. The IM method uses the 
Marquardt-Levenberg gradient-based approach (Simunek 
et al. 2013) in which the value of the five individual model 
parameters (i.e. θr, θs, α, n, Ks) are varied for each 
material until a combination is found that provides an 
optimal fit to the observed water content dynamics within 
the cover (Hopmans et al. 2002). How well these individual 
parameters are estimated determines the overall accuracy 
of parameter estimation. Details of IM used in HYDRUS-
1D can be found in Simunek et al. (2013).     
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2.4 Discretization of Model Domain 
 
The soil profile used in HYDRUS-1D had a maximum 
height of 2.5 m with a minimum of 1 m of LOS overlain by 
the various soil profiles (Table 1). The 2.5 m profile depth 
was chosen consistently for all the treatment covers so that 
parameter estimation was not a function of cover depth in 
addition to the cover material types. The spatial 
discretization used for all the model domains was 1-cm. 
 
2.5 Vegetation and Root Distribution 
 
Maximum LAI values for each treatment cover were 
estimated from photographs taken on site (OKC 2017) and 
varied from 0.2 at T5 to 1.5 at T2, T7, and T8. The 
distribution of LAI over the growing season was the same 
as that used by Huang et al. (2015): (a) a linear rise in the 
spring from zero to a maximum value, (b) maximum in the 
summer, and (c) linear decrease from the maximum value 
to zero in the fall. 

The roots were assumed to be distributed within the 
cover soils using an exponential function of root mass with 
depth the maximum root mass at surface decreasing to 
zero at the base of the cover. The maximum root depths 
were measured to be 0.3 m at T5; 0.5 m at T1, T2, T3, T4, 
T6, T7, T8, T10, T11, T12a, T12b; and 1.0 m at T9 
(Bockstette and Bockstette, 2016). 

 
 

Table 1: Discretization of model domain for all treatment 
covers 
 

Treatment Depth (cm) 

 Peat or LFH Subsoil** LOS 

T1 30 120 100 
T2* 10 140 100 
T3 10 140 100 
T4 30 30 190 
T5 30 - 220 
T6 30 120 100 
T7* 20 130 100 
T8* 20 130 100 
T9* 20 130 100 
T10 30 120 100 
T11 30 70 150 
T12a - 150 100 
T12b - 150 100 

 *Denotes treatment covers with LFH 
**Subsoil material types vary with treatment, but are not 
described in the table 

 
 

2.6 Estimation of Parameter Uncertainty 
 
The IM modelling was undertaken using the monitored 
water content profiles at all the cells along with the site-
specific meteorological data in each individual monitoring 
year. Since one cell of T5 was missing data in 2013, a total 
of 155 HYDRUS-1D models (12 treatments, 3 replicated 
cells, and 4 years of data) were calibrated by optimizing 
five soil hydraulic parameters for each soil type. The set of 
155 optimized parameters for each soil type was used to 
characterize the uncertainty (both spatial and temporal) in 
estimating soil hydraulic parameters and the impact of this 

parameter uncertainty on the long-term cover 
performance.   
  
2.7 Maximum Sustainable LAI 
 
The key water balance components, AT and NP, are 
largely controlled by the selected LAI values (Huang et al. 
2011b, 2017). Huang et al. (2011b) used literature-based 
relationships between above-ground net primary 
production (ANPP), LAI, and AT to constrain LAI_Max in 
the long-term simulations. Since the parameter uncertainty 
is expected to influence the long-term water balance (AT 
and NP) of the treatment covers, the ANPP-LAI-AT 
relationships are also expected to be influenced by the 
parameter uncertainty. Consequently, the uncertainty in 
the LAI_Max has an influence on long-term cover 
performance in combination with the parameter 
uncertainty.  
 
2.8 Long-term Simulations with Parameter Uncertainty 
 
The long-term cover performance was evaluated by 
simulating long-term climate records represented by 60 
years of climate data from Fort McMurray Airport Weather 
Station. Uncertainty in the long-term cover performance 
was incorporated by simulating a hypothetical cover of 2.0-
m (20-cm peat, 100-cm subsoil, and 80-cm LOS 
overburden) with optimized soil properties. Details of 
simulating hypothetical cover designs are available in Alam 
et al. (2017). 

The impact of uncertainty in the parameters on the 
predicted long-term performance of a reclamation cover 
will be illustrated using a typical cover of peat overlying 
subsoil on LOS.  As will be shown below, peat showed the 
highest uncertainty in the WRC and the LOS has the 
greatest uncertainty in Ks.  As a consequence, three 
alternative WRCs (10th, 50th, and 90th percentile) for peat 
and five alternative Ks (10th, 25th, 50th, 75th and 90th 
percentile) for the LOS were identified from the 
distributions of optimized model parameters. These cases 
were run with eight different LAI_Max values of 0.5, 1.5, 
2.0, 2.5, 3.0, 3.5, 4.0, and 4.5. These combinations provide 
135 simulations of long-term water balance (Peat: 3 WRCs 
x 3 Ks; Subsoil: 1 WRC x 3 Ks; and LOS: 1 WRC x 5 Ks) 
for each LAI_Max scenario.  

 The use of a limited number of alternate parameter 
sets to define variability was intended to limit the simulation 
time periods.  Further advancement of this approach using 
a more generalized Monte Carlo based selection process 
is ongoing.  
 
 
3 RESULTS AND DISCUSSION 
3.1 Performance of the SVAT Models 
 
The IM modelling resulted in a mean absolute error (MAE) 
that varied from 0.005 to 0.086 and root mean square error 
(RMSE) varied from 0.006 to 0.131.  Figure 2 shows the 
scatter plots for the calibrated SVAT models at the selected 
cells where the models seem to overestimate or 
underestimate the observed water contents. SVAT models 
for a few cells (e.g. T5, T9) exhibited lower R2 values 



 

(<0.6); however, their performance in terms of MAE (<0.08) 
and RMSE (<0.09) was reasonable. Overall, the 155 cell-
specific models performed well in simulating the soil water 
contents.                  
 
 

 
 

Figure 2. Comparison of the observed and simulated soil 
water contents for the HYDRUS-1D models for the 
selected cells 
 
 
3.2 Uncertainty in the Optimized Parameters 
3.2.1 Soil Hydraulic Parameters 
 
Figure 3 shows the median of the five optimized 
parameters for three soil types with the inter-quartile box 
(i.e. 25% to 75%). The boxes were used to show the 
relative variability in the optimized parameters. The mean 
and SD values for the five parameters were used to 
calculate coefficient of variations (CV). These plots 
highlight that the peat had the highest variability in the 
WRC parameters while the LOS demonstrated the largest 
uncertainty in Ks.    
 
      

 
 

Figure 3. Distribution of the optimized hydraulic parameters 
for three soil layers of peat, subsoil and LOS overburden 
obtained from 155 calibrated models using inverse 
modelling. The box plots show: median, inter-quartile 
range, min, max, and outliers 
 

 
Figure 4 shows the WRC for the three materials as 
represented by the mean optimized WRC as well as an 
envelope representing the 10th and 90th percentile values 
for the WRC.  Among three material types, peat seems to 
show the largest uncertainty in estimating WRC. Higher 
uncertainties for the peat coversoil may be due to variable 
levels of organic matter decomposition and/or variable 
proportions of mineral inclusions.    

 
 

 
 

 
 

 
 

Figure 4. Uncertainty of estimated soil water retention 
curves (SWRC) for three material types (a) peat, (b) 
subsoil, and (c) LOS overburden, where VWC denotes 
volumetric water content 
 
 
The optimized Ks values were compared to the Ks values 
obtained from direct field measurements (Huang et al. 

(a) 

(b) 

(c) 



 

2016). The field Ks values were measured using air 
permeameter (AP) and Guelph permeameter (GP) testing. 
Huang et al. (2016) showed that the Ks values from AP and 
GP testing produced very similar descriptions of variability 
although the mean Ks values were slightly offset, as might 
be expected. The distribution of Ks from the IM is 
compared to the field measured variability in Ks based on 
the cumulative frequency distributions (CFD). Figure 5 
compares the CFD of the GP- and AP-measured Ks values 
with the optimized Ks values for three soil types. The 
measured and optimized Ks values have similar CFD 
shapes, Kolmogorov-Smirnov (KS) test confirmed similar 
CFD shapes for the peat and LOS soils. However, lower 
optimized Ks values for the subsoil have similar CFD as 
GP-measured Ks, while higher optimized Ks values have 
similar CFD as AP-measured Ks.  Overall, the results 
suggest that the distribution of Ks obtained from IM do 
provide similar descriptions of spatial variability to that 
obtained from the direct testing.   
 
                

 
 

Figure 5. Comparison of the distributions of the measured 
field Ks using Guelph permeameter (GP) and Air 
permeameter (AP) with the optimized Ks values for peat, 
subsoil, and LOS   
 
 
3.3 Uncertainty in Maximum Sustainable LAI 
 
The uncertainty in the LAI_Max was evaluated by using the 
simulated annual AT values corresponding to the median, 
upper bound (90%), and lower bound (10%) of 135 
realizations of the optimized parameters as shown in 
Figure 6.  A line representing the annual AT required to 
support a particular LAI value is also plotted on this figure. 
This line represents the relationship between ANPP, AT, 
and LAI. The intersection points between the simulated and 
required AET lines designated as the LAI_Max.  The range 
of LAI_Max values had a relatively narrow range from 2.6 
to 3.4.  
       

 

 
 

Figure 6. Lower, median, and upper limits of the LAI_Max 
values for D100 cover showing the uncertainty in the LAI 
values based on the simulated annual AT with the 
parameter uncertainty from the inverse modelling. D100 
represents a hypothetical cover with a subsoil thickness of 
1.0-m for ACS 
 
 
3.4 Uncertainty in Water Balance Components 
3.4.1 Actual Transpiration (AT) 
 
The 10th and 90th percentile bounds for AT as obtained 
from the long-term simulation for each of the three LAI 
values are presented in Figure 7. These frequency 
distributions for annual AT values were obtained from the 
135 simulations conducted using each LAI. The distribution 
highlights the impact of both climate variability (the climate 
data set) as well as parameter uncertainty.  The impact of 
climate variability is represented by the range of AT values 
simulated while the relative vertical position of the three 
curves represents the impact of parameter uncertainty. The 
greatest range in AT between the upper and lower bound 
cases occurs between 20-35% of the non-exceedance 
probability.  The maximum range of AT from the base case 
(median) based on these simulations is only +/- 14%.  
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Figure 7. Frequency distribution and uncertainty of annual 
AT at the 10th, 50th, and 90th percentiles for D100 cover 
with the (a) lower (LAI = 2.6), (b) median (LAI = 3.1), and 
(c) upper bound (LAI = 3.4) of the LAI values 
 
 
3.4.2 Net Percolation (NP) 
 
The uncertainty in the simulated annual NP is shown in 
Figure 8 for three LAI values.  The maximum uncertainty in 
estimating annual NP occurs approximately between 85-
98% of the non-exceedance probability. The parameter 
uncertainty seems to result in higher uncertainty range in 
the frequency distributions of annual NP than those of 
annual AT. The maximum range of NP from the base case 
(median) based on these simulations would be +/- 212%. 
 
 

 
 

 
 

 
 

Figure 8. Frequency distribution and uncertainty of annual 
NP at the 10th, 50th, and 90th percentiles for D100 cover 
with the (a) lower (LAI = 2.6), (b) median (LAI = 3.1), and 
(c) upper bound (LAI = 3.4) of the LAI values 
 
 
3.5 Uncertainty due to the choice of LAI 
 
Figure 9 shows the frequency distributions for the mean 
annual AT and NP cases for the median, lower and upper 
LAI_Max values.  Visual inspection of Figure 9(a) indicates 

(b) 

(c) 

(a) 

(c) 

(b) 



 

higher uncertainty in the annual AT than the range of 
uncertainty in annual NP in Figure 9(b). However, the 
simulated range of LAI values can result in maximum 
variations in the mean annual AT and mean annual NP of 
+/- 8% and 30%, respectively from the base LAI case 
(median). The maximum uncertainty in mean annual AT 
and NP occurs at non-exceedance probabilities of 50-
100% and of 80-85%, respectively.   

Figure 9 shows that the cumulative frequency 
distributions of annual NP are more skewed than those for 
the annual AT. The exceptionally skewed distributions of 
annual NP may be because wet years would produce very 
large NP, whereas AT in wet years would be constrained 
by PET. 
 
 

 
 

 
 

Figure 9. Frequency distribution and uncertainty of mean 
annual (a) AT and (b) NP during a 60-year water cycle for 
D100 cover with the lower, median, upper LAI values (LAI 
= 2.6, 3.1, and 3.4, respectively) 
 
 
3.6 Sensitivity of Parameters in Simulating Water 

Balance 
 
The simulated values of AT and NP from the long-term 
simulations were most sensitive to the selected LAI values.  

The simulated values of AT and NP were most sensitive to 
the Ks of the LOS. To illustrate this, the water balance 
simulations for a range of LOS Ks values were isolated and 
plotted in Figure 10.  This figure highlights how the median 
annual AT decreases with increasing Ks while the median 
annual NP increases with the increasing Ks values.    

Figure 10 also shows the ranges of uncertainty in the 
simulated annual AT and NP using five Ks values (0.07, 
0.18, 1.04, 3.43, and 12.84 cm/day). At larger values of Ks 
there is more NP and less AT, as expected, however, with 
greater uncertainty in both of these parameters.  As the 
value of Ks decreases both the values of AT and NP 
appear to become constant and with less uncertainty.     

   
 

 
 

Figure 10. Uncertainty in the simulated water balance 
components (i.e. AT and NP) obtained for 135 
combinations of soil hydraulic parameters, for instance, Ks 
for LOS overburden. Uncertainty of each water balance 
component is represented by the mean (red-cross) ± one 
standard deviation (blue vertical lines)  
 
 
4 CONCLUSIONS 
 
The inverse modelling of HYDRUS-1D was used to 
optimize five soil hydraulic parameters. The results from 
the IM modelling were then used in the simulation of long-
term water balance for an illustrative cover. The results 
from this simulation were used to highlight the coupling that 
occurs between parameter uncertainty and the maximum 
sustainable LAI values as well as the combined impact of 
these sources of uncertainty on the predicted distributions 
of AT and NP.    

The study revealed that peat coversoil had the highest 
uncertainty in the WRC compared to the subsoil and LOS. 
Among the three soil types and five soil hydraulic 
parameters, the Ks of the LOS had the largest uncertainty.  

The results of the long-term simulation highlighted how 
both climate variability and parameter uncertainty will result 
in quite skewed variability in both AT and NP, particularly 
NP. The maximum difference (%) of the annual AT and NP 
from the base case (median) due to the climate and 
parameter variability can be 14% and 212%, respectively. 
The maximum difference (%) due to the LAI variability can 
be 8% and 30%, respectively. This highlights that in this 
case the parameter uncertainty exerts the greatest control 
over the long-term water balance variability.  

Overall, the results of this study help to highlight that 
wide range of performance that can occur when parameter 
uncertainty is combined with climate variability.  Further 
quantification of the contributions of spatial and temporal 
variability in the hydraulic properties of the cover soils will 

(a) 

(b) 



 

improve our characterization and understanding of long-
term cover performance beyond that which is possible with 
a single optimized parameter set and presumed value of 
LAI. Nevertheless, further research must examine the 
impact of a wide range of reclamation cover thicknesses as 
well.       
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