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ABSTRACT 
 
The study of time dependent response of beams on visco-elastic foundations subjected to dynamic loads has important 
applications in many engineering disciplines such as geotechnical, pavement and railway engineering. Most existing 
analyses of this class of problems consider the soil as a bed of Winkler springs. A difficulty with this approach is that the 
spring constants are often empirically determined and not accurate enough so that the resulting beam-soil responses are 
often not reliable. In this paper, a simplified continuum model for analysis of beams resting on a layered elastic soil 
subjected to a moving load is developed using the variational principles of mechanics. The coupled differential equations 
describing the beam vibration and soil displacements are obtained using the calculus of variations and solved following an 
iterative algorithm. The resulting differential equation for beam vibration resembles that of a beam interacting dynamically 
with a two-parameter foundation. However, it is shown that the two soil parameters can be mechanistically related to the 
soil Young’s modulus and Poisson’s ratio, thereby eliminating any need for empirical estimation of the soil parameters. 
Interestingly, the two soil parameters change with time even though the soil elastic constants remain constant – this is 
novel and verified with the results of equivalent finite element analysis. Examples illustrate the use of the method.  
 
RÉSUMÉ 
L'étude de la réponse en fonction du temps des faisceaux sur des fondations visco-élastiques soumises à des charges 
dynamiques a d'importantes applications dans de nombreuses disciplines d'ingénierie telles que la géotechnique, la 
chaussée et l'ingénierie ferroviaire. La plupart des analyses existantes de cette catégorie de problèmes considèrent le sol 
comme un lit de sources Winkler. Une difficulté avec cette approche est que les constantes de ressort sont souvent 
déterminées empiriquement et pas suffisamment précises pour que les réponses faisceau-sol résultantes ne soient 
souvent pas fiables. Dans cet article, un modèle de continuum simplifié pour l'analyse de poutres reposant sur un sol 
élastique stratifié soumis à une charge mobile est développé en utilisant les principes variationnels de la mécanique. Les 
équations différentielles couplées décrivant la vibration du faisceau et les déplacements du sol sont obtenues en utilisant 
le calcul des variations et résolues suivant un algorithme itératif. L'équation différentielle résultante pour la vibration du 
faisceau ressemble à celle d'un faisceau interagissant dynamiquement avec une base à deux paramètres. Cependant, il 
est montré que les deux paramètres du sol peuvent être reliés mécaniquement au module de Young du sol et au coefficient 
de Poisson, éliminant ainsi tout besoin d'estimation empirique des paramètres du sol. Il est intéressant de noter que les 
deux paramètres du sol changent avec le temps, même si les constantes élastiques du sol restent constantes - ceci est 
nouveau et vérifié avec les résultats d'une analyse par éléments finis sophistiquée équivalente. Des exemples illustrent 
l'utilisation de la méthode. 
 
 
 
1 INTRODUCTION  
 
The problem of beams on elastic or viscoelastic 
foundations is widely studied because of its wide range of 
applications in different fields of engineering (Avramidis 
and Morfidis 2005). In geotechnical engineering, the 
concept is widely used to analyze the behavior of flexible 
footings and structural elements, e.g., strip footings, grade 
beams, and concrete pavements, resting on the underlying 
soil (Barber 2010). Different models with different degrees 
of idealization have been proposed to simulate the 
behavior of the foundation (soil). The simplest and oldest 
idealization is to represent the soil as a bed of closely 
spaced linear springs, as proposed by Winkler (1867). The 
Winkler spring model (also often termed as the one-
parameter model) is characterized by the spring constant 
ks, which represents the compressive resistance of soil 
against applied vertical loads and can be related to the 
modulus of subgrade reaction of soil. The main drawback 

of the Winkler model is that the vertical springs are 
assumed to work in isolation with respect to each other 
because of which the resistance of soil obtained through 
shear stresses are neglected.   

An improvement over the Winkler model was proposed 
by several researchers like Hetenyi (1946), Filonenko-
Borodich (1945), Pasternak (1954), and Terzaghi (1955) 
by introducing a second parameter ts, which essentially 
captures the shear interaction between adjacent Winkler 
springs (this model is often referred to as the two-
parameter model).  

Several studies on beams resting on one- and two-
parameter foundations subjected to static and dynamic 
(vibrating and moving) loads have been performed 
(Timoshenko et al. 1974, Fryba et al. 1993, Teodoru & 
Musat 2010, Uzzal et al. 2012, Patil et al. 2013). In most of 
these studies, beam responses (e.g., deflection and 
bending moment) were investigated as functions of 
magnitude, frequency or velocity of applied loads and 



damping present in the system. The difficulty, however, in 
using these models is that the foundation parameters ks 
and ts cannot be reliably obtained from measurable soil 
properties and are often inaccurately determined from ad 
hoc, empirical equations (Bowles 1996). Further, for 
dynamic analysis, geometric damping cannot be explicitly 
considered using the one- or two-parameter models.  

Improvements to the one- or two-parameter models 
have been proposed by some researchers in which the soil 
is idealized as an elastic continuum with simplified 
assumptions regarding its stress or displacement fields 
(Reissner 1958, Kerr 1964, Vlasov & Leont’ev 1966). Out 
of these simplified continuum approaches, the one by 
Vlasov and Leont’ev (1966) leads to the same differential 
equation as that of the two-parameter model and has the 
additional distinct advantage that the parameters ks and ts 
are rigorously related to the elastic constants of the soil 
without any ad hoc empiricism involved. Because of its 
ability to capture the continuum nature of soil, the model by 
Vlasov and Leont’ev (1966) has been widely used (Akoz 
and Ergun 2012, Omolofe 2013, Worku 2012, Limkatanyu 
et al. 2013).  Notwithstanding, the model has a limitation 

that the value of a coefficient  describing the rate of 
attenuation of vertical soil displacement with depth has to 
be assumed a priori without a very sound basis. Vallabhan 
and Das (1989) removed this limitation by developing an 

iterative approach such that the value of  is determined as 
part of the solution and no a priori ad hoc assumption is 
necessary.  Studies using the improved model have been 
mostly restricted to beams subjected to static loads 
(Vallabhan & Daloglu 1999, Liu & Ma 2013, Haldar and 
Basu 2016). Studies related to dynamic response of beams 
using the improved model were performed by Liang and 
Zhu (1995), Ayvaz and Ogzgan (2002), and Ogzgan 
(2012), but one of these studies is conceptually flawed and 
the others only focused on natural frequency of vibration of 
beams resting on single-layer soils. As far as the authors 
know, there is no study performed by using the improved 
model of Vlasov and Leont’ev (1966) that comprehensively 
considers both the free and forced vibration of beams 
resting on soils with explicit multiple layering, which is the 
focus of this paper. 

In this paper, the improved model of Vlasov and 
Leont’ev (1966) is further developed for analysis of beams 
resting on multi-layered soil subjected to moving loads. The 
analysis considers both steady-state and transient 
vibration of beams under moving loads. A layered soil 
continuum under the beam is considered and the vertical 
soil displacement is expressed as a product of separable 
functions maintaining continuity and compatibility with the 
overlying beam. The differential equations describing the 
beam motion and soil displacement are obtained using 
Hamilton’s principle and calculus of variations, and are 
solved following an iterative algorithm. The resulting 
differential equation for beam motion resembles that of a 
beam interacting dynamically with a two-parameter 
foundation with parameters ks and ts. These two soil 
parameters are mechanistically related to the soil Young’s 
modulus and Poisson’s ratio, and, interestingly, change 
with time even though the soil elastic constants remain 
constant – this is a novel feature of the model. The 
accuracy of the analysis is verified by comparing the results 

of the analysis with those of equivalent finite element 
analysis. Examples illustrate the application of the method 
for different moving loads.   

 
2 ANALYSIS 
 
2.1 Problem definition 
 
A uniform Euler-Bernoulli beam of length L, width b, and 
depth (thickness) d, mass density ρb, and Young’s modulus 
Eb is assumed to be resting on a layered elastic continuum 
(Figure 1). A dynamic load P(x) is assumed to act on the 
beam (x = horizontal space coordinate) which moves from 
left to right (as x increases) with a velocity v.  The beam is 

in full contact with the layered continuum at all times during 
the loading. The continuum (soil) beneath the beam is split 
into n layers with the bottom nth layer resting on a rigid layer 
(e.g., bed rock). The ith soil layer extends vertically 
downward to a depth Hi such that the thickness Ti of the ith 
layer is Hi – Hi-1 (H0 = 0). The total thickness of the soil 

deposit comprising of the n layers is Htotal 



1

( )
n

i

i

T . Each 

soil layer i is homogeneous and isotropic with mass density 

ρsi, Young’s modulus of Esi, and Poisson’s ratio of si.   
A Cartesian x-z coordinate system is considered 

attached to the left end of the beam with x direction positive 
to the right and z direction positive vertically downward. For 
analysis, it is sometimes necessary to consider a domain 
extending beyond the two ends of the beam into the 
continuum in order to capture the displacements in the 
continuum (soil) that occurs beyond the loaded beam 
(Figure 1). Accordingly, the analysis domain is extended to 
a length βL  in positive and negative x directions (where β 
≥ 1), respectively, from the right and left ends of the beams 
to produce accurate beam response and soil displacement, 
and eliminates boundary effects (β is typically determined 
by trial and error).  A continuum strip of width b beneath the 

beam is considered as the analysis domain perpendicular 
to the x-z plane. This implies a plane-strain condition, 
similar to that assumed by Vlasov and Leont’ev (1966) and 
Vallabhan and Das (1989).  

 
2.2 Soil displacements, strains and stresses  
 
For the plane-strain problem considered, it is assumed that 
the soil displacement ux in the horizontal direction caused 
by the vertical forces are negligible and that the vertical soil 
displacement uz can be expressed as a product of 
separable functions (Figure 1): 



 
Figure 1. Dynamic Beam-Soil interaction model 
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where w(x, t) is the displacement of the top surface of the 
continuum (t = time), which is the same as the beam 

displacement for 0  x  L, and (z) is a dimensionless 
displacement function varying with depth. It is assumed in 

the analysis that (0) = 1, which ensures perfect contact 
between the beam and the underlying continuum and that 

(Htotal) = 0, which ensures that vertical displacement in the 
continuum arising from applied forces decreases with 
increase in depth and becomes zero at the interface with 
the rigid layer. 

The displacement field described in Eq. [1] can be used 
to obtain the strain tensor within the soil, and elastic 
constitutive relationship relates the strain tensor at any 
point within the soil to the stress tensor (Figure 1): 
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2.3 Differential Equations for Beam and Surface-Soil 

Displacements 
 
The extended Hamilton principle of least actions is used to 
obtain the differential equations of motion of beam and the 
continuum under dynamic equilibrium:  
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t
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
where K and U are the kinetic and strain energies of the 
beam-soil system participating in the vibration, Wnc is the 
work done by the non-conservative forces acting on the 
system, t1 and t2 are any arbitrary times at which the 

equilibrium configuration of the beam-soil system is known, 
and δ is the variational operator.  

Using Eqs. [2] and [3], applying the variational operator 
δ on the resulting equation, and considering the variation 
of w gives the differential equations respectively for the 
beam and surface soil displacements adjacent to the 
beams as 
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with the associated boundary and continuity conditions 
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and initial conditions w = 0 and ∂w/∂t = 0 at t = 0 (d in Eq. 
[4] is the Dirac’s delta function). 

 
The parameters in the above equations are given by 
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where subscript i corresponds to the ith layer, and Ēsi and 
Gsi are given by 
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Considering the variation of the function  in Eq. [3], the 

Euler-Lagrange equation (the differential equation) of (z) 
within the ith layer can be obtained as:   


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which make the dimensionless parameter  
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For the boundary conditions corresponding to 

differential equation [9], it is assumed that (0) = 1, which 
ensures perfect contact between the beam and the 

underlying soil. It is also assumed that (HTotal) = 0, which 
ensures that the displacement in soil decrease with depth 
and become zero at the boundary with the rigid bedrock. 
The continuity across the soil layers is also ensured with 

the continuity condition that i =i+1 at z = Hi. 
 

3 SOLUTION OF THE DIFFERENTIAL EQUATIONS 
 
Solutions of the differential equations [4] & [5] of w are 

obtained by using the finite element method. Two-noded 
rod (bar) elements with linear Lagrangian shape functions 

 
2 1L

N  are used to discretize the domains βL ≤ x ≤ 0 and 

L ≤ x ≤ βL (i.e., the domains in x direction with no beam), 

and two-noded beam elements with cubic Hermitian shape 

functions  
4 1H

N  are used to discretize the domain 0 ≤ x ≤ 

L (i.e., domain in x direction in which the beam is present) 

to obtain a set of algebraic equations of the form 

                  
e e e e

e e e e

m w c w k w f  where [m]e, 

[c]e and [k]e are the elemental mass, damping and stiffness 
matrices, respectively, {f}e is the elemental force vector, {w} 
is the global degrees of freedom vector (consisting of the 
unknown displacements w and slope ∂w/∂x for the portion 

of the beam) at the nodes,  w  is the global acceleration 

vector,  w  is the global velocity vector, and 
e

represents assembly. The Wilson-θ method (Bathe 1996) 
is used to perform the dynamic time integration scheme 
required for obtaining solution.  

Solution of the differential Eq. [9] of  is obtained 
analytically, and is given by 
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where the integration constants A and B are obtained from 

the corresponding boundary conditions.  For a single layer 

problem (i = 1),  is given by  
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4 ITERATIVE SOLUTION ALGORITHM 
 
The soil parameters ks, ts and ɳs must be known in order to 
solve the differential equations for w (Eqs. [4] & [5]) and 

these parameters depend on .  At the same time, the 
parameters msi, nsi and ξi must be known in order to obtain 

 (from Eqs. [13] or [14]) and these parameters depend on 

w. Therefore, the equations of w and  are coupled and are 
solved simultaneously following an iterative scheme. The 

function (z) is first determined iteratively for static loading 

condition (static) with the same magnitude of load placed at 
the mid-span of the beam. 

In order to obtain static(z), an initial guess for the spatial 

distribution of  is made by assuming a linear distribution 

of . With this assumed distribution, ks and ts are calculated 
(note that ɳs is zero for static loading as inertia forces are 
negligible under static conditions) using Eqs. [7a], and [7b], 
and these parameters are then used to calculate the 
displacement w and its slope ∂w/∂x. Using the calculated 
w and ∂w/∂x, parameters msi and nsi are calculated from 

Eqs. [11a], and [11b] (note that si is zero under static 
loading). The parameters msi and nsi are then used to 

obtain a new static(z). These newly calculated static(z) is 

compared with the assumed static(z) and, if the difference 
is greater than a prescribed tolerance (10-5), the 

calculations are repeated with the calculated static as the 
new guess. The iterative calculations are continued until 

the assumed and calculated static values fall within a 
tolerable limit.  

For dynamic beam response, iterations similar to that 
described above are performed to obtain solutions.  For the 
first time integration step, an initial position xi of the applied 

moving load, geometry, material properties, and static(z) 



are given as inputs and the soil parameters ks, ts and ɳs are 

calculated. Using these parameters, the transverse 
displacement w, slope ∂w/∂x, velocity ∂w/∂t, and 
acceleration ∂2w/∂t2 are calculated. These values are used 

to calculate msi, nsi and si, which are used to calculate a 

new distribution dynamic(z) of the function . The newly 

obtained dynamic is checked against the previous  (which 

is static for the first iteration of the first time increment), and 
iterations are continued until the difference between two 

consecutive distributions of dynamic(z) are within tolerable 
limits (10-5). At this point, the calculated w, ∂w/∂x, ∂w/∂t, 
and ∂2w/∂t2 are the final values for the given time step, and 
the next increment of time is then applied and the whole 
iterative process is repeated with each subsequent time 
steps until the final time increment is complete to reach the 
final time tfinal.  

 
5 RESULTS 
 
Four numerical examples are considered to assess the 
accuracy of the proposed model and to demonstrate the 
use of the model. The accuracy of the proposed model is 
evaluated by comparing the results obtained from the 
analysis presented here with the results of equivalent finite 
element (FE) analysis in which the same constitutive 
relation and boundary conditions are used. The FE 
analysis is performed using PLAXIS 2D software.  
 
Example 1: Time dependent response of a finite beam 

subjected to a moving load at constant velocity 
 
A 6 m long strip footing of width 1 m and thickness 1m, and 
with a Young’s modulus of 150 MPa is assumed to be 
resting on 5 m thick continuum soil layer. The Young’s 
modulus and the Poisson’s ratio of the soil are 1.8 MPa and 
0.3, respectively. The beam is considered to be free to 
displace and rotate at both ends. A single point load of 35 
KN is assumed to move with a constant speed of 10 m/sec 
from the left to the right side of the beam. The resulted 
beam displacement along the span of the beam is shown 
in Figure 2 for two load positions: the load at the mid-span 
of the beam, and the load just about to exit the beam. It is 
clear that the results from the proposed model are in good 
agreement with those from the FE analysis.  
 
Example 2: Steady-state response of an infinite beam 
subjected to a moving load at constant velocity 
 
In order to simulate the steady state response, a very long 
(theoretically infinite) strip footing of 1 m width and 1 m 
thickness, and with a Young’s modulus of 20000 MPa is 
assumed to be resting on a 4 m thick continuum soil layer. 
The Young’s modulus and the Poisson’s ratio of the soil are 
chosen as 30 MPa and 0.25, respectively. The beam is 
considered to be free to displace and rotate at both ends. 
A single point load of 10 KN is considered to move with 
constant speed of 106 m/sec from the left to the right of the 
beam. The resulting beam displacement at the steady state 
is shown in Figure 3.  
 
Example 3: Time dependent response of a finite beam 
subjected to a moving load at variable speed 

 
A 20 m long strip footing of 1 m width and 0.5 m thickness, 
and with a Young’s modulus of 125 MPa is assumed to be 
resting on 4 m thick soil. The Young’s modulus and 
Poisson’s ratio of the soil is assumed to be 22 MPa and 
0.2, respectively. The beam is considered to be hinged at 
both ends. In order to simulate the effect of variable 
speeds, four cases are considered. In Case 1, a 5 KN point 
load moves a constant speed of 5 m/sec and traverses the 
entire beam from left to right. In Case 2, a 5 KN point load 
enters the beam from the left at an initial speed of 5 m/sec 
and decelerates uniformly at 0.625 m/sec2 such that the 
load stops at the right end of the beam. In Case 3, a 5 KN 
point load starts to move from the left end of the beam with 
zero initial velocity, and accelerates uniformly at 0.625 
m/sec2 such that it attains a speed of 5 m/sec at the right 
end of the beam. In Case 4, a 5 KN point load enters the 
beam at the left end with an initial velocity of 5 m/sec and 
decelerates uniformly at 1.25 m/sec2 so that the load stops 
at the mid-span of the beam. 
 

 
(a) 

 
(b) 

 
Figure 2. Time dependent response of a 6 m long beam 
when (a) the load is at the mid-span of the beam, and (b) 

the load is about to exit the span 
 
Figure 4 shows the dynamic amplification factor ψD versus 
the normalized load position for the four cases mentioned 
above. The dynamic amplification factor ψD is calculated as 
the ratio between the mid-span dynamic deflections to the 
maximum mid-span static deflection caused by a 5 kN load 
acting at the mid span. The normalized load position is 
calculated as the ratio between the load position for which 
the dynamic mid-span deflection is calculated (v.t) to the 
span length (L). 



 
 

Figure 3. Steady state response of infinite beam 
subjected to moving load. 

 
5.1 Effect of the dynamic action on the soil parameters 

and soil displacement function 
 
The same geometry and material properties as that of 
Example 2 are used in the study presented in this section. 
Figure 5(a) shows the variation of the soil parameters ks 
and ts with time as obtained using the model presented in 

this paper for the infinite beam. Further, comparisons are 
made with the results obtained by using the traditional 
Vlasov foundation model (Vlasov and Leont’ev 1966). In 
the Vlasov model, the two model parameters ks and ts are 
obtained for a homogeneous foundation as 
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where  is a parameter ranging between 1 and 2 (with  
=1.5 for the presented comparison).  
 

Interestingly, the two soil parameters in the proposed 
model change with time even though the soil elastic 
constants remain constant. Initially, the new model 
produce a greater value of ks compared with the ks of the 
Vlasov model, but it stabilizes at a lower value when the 
steady state response is reached. An opposite trend is 
observed for the parameter ts.  

The soil displacement function  changes with time, as 
shown in Figure 5(b) for the problem of Example 2. The 

function  decreases with depth high at a greater rate for 
up to about 0.1 sec after which the change stabilizes and 
eventually attain a equilibrium state when the beam 
vibrates at the steady state. change in mode accompanied 
with a low rate fluctuation; progressing to some kind of 
steady state by the end of the time-dependent response 
duration. 
 

 
Figure 4. Time variation of mid-span deflection of a finite 
simply supported beam traversed by a load at variable 

speeds. 
 

 
 

(a) Soil resistance parameters 
 

 
 

(b) Soil displacement function 
 

Figure 5. Effect of dynamic action on infinite beam-soil 
system 

 
5.2 Effect of the velocity of the moving load on the soil 

parameters  
 
A 10 m length strip footing of 1 m width, 1 m thick, and 
elastic modulus of 15000 MPa is assumed to be rested on 
single soil layer. The Young’s modulus and the Poisson’s 
ratio of the soil are chosen as 18 MPa and 0.3, 
respectively. Two end support conditions are chosen: 
simply supported, and free-free.  A single point load of 40 
KN is considered to move with constant speed from the left 
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to the right side of the beam. The time step is selected to 
be 0.01 sec, and the initial positon was chosen as 0.1 m 
from the left end of the beam. The velocity of the moving 
load v is considered to vary from 10 to 25 m/sec. The time 
history of the soil parameters ks and ts resulted from the 

proposed model are plotted in Figures 6, and 7 for the both 
support conditions. In the case of free-free end support 
conditions, it’s noted that the change of the moving load 
velocity does not affect the maximum values of the soil 
parameters. However, phase differences are observed. In 
contrast, no behavior trend can be identified in case of the 
simply supported conditions. As a general observation, 
changing the end support conditions significantly affects 
both the values and the profiles of the time histories of the 
soil parameters ks and ts. 
 

 
(a) Time history of ks 

 
(b) Time history of ts 

 
 

Figure 6. Effect of the moving load velocity on the soil 
parameters for simply supported beam 

 
 

6 CONCLUSIONS  
 
A new continuum-based soil structure interaction model is 
presented for beams on elastic foundations subjected to 
moving loads. The governing differential equations for the 
beam and the soil (continuum) are obtained using 
Hamilton’s principle and calculus of variations. The soil 
displacement field is assumed to be a product of separable 
functions. The obtained differential equations of beam and 
soil are coupled and solutions are obtained iteratively at 
every time step.  

It is shown through comparison with equivalent finite 
element analysis that the new model presented in this 

paper produces accurate beam response. It is further 
observed that the mechanical behavior of the soil can be 
described by two soil parameters which are similar to the 
two-parameter foundation model. However, for the present 
analysis, these two parameters can be mechanistically 
related to the soil Young’s modulus and Poisson’s ratio, 
thereby eliminating any need for empirical estimation of the 
soil parameters. Further, the two soil parameters change 
with time even though the soil elastic constants remain 
constant – this is novel and presented for the first time in 
the literature.  Examples of infinite and finite beams 
subjected to loads with constant and variable speeds are 
presented to illustrate the use of the method. 

 

 
(a) Time history of ks 

 

 
(b) Time history of ts 

 
Figure 7. Effect of the moving load velocity on the soil 

parameters for freely supported beam 
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