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ABSTRACT 
A research program was initiated to provide key microscopic information about the field surrounding ellipsoidal particles 
and gain a better insight into granular media under earthquake conditions.  Numerical studies of steady streaming flows 
are presented for spheroidal particles oscillating in a viscous fluid. Several aspect ratios and angular positions of the 
spheroids were studied with respect to the Reynolds number. The results were compared with the published 
experimental data of Kotas et al. (2006). Additional simulations were performed to verify the predicted value of the drag 
force acting on ellipsoids in creeping, laminar, and separated flows. Results of the simulations were compared with a 
correlation formula based on a large volume of experimental data published by Hölzer and Sommerfeld (2008). A 
discussion on the use of ellipsoidal particles for computer simulations of soil behavior at the micro scale concludes the 
article.  
 
RÉSUMÉ 
Un programme de recherche a été établi pour fournir des informations clés à l’échelle microscopique du champ 
entourant les particules ellipsoïdales et obtenir ainsi un meilleur aperçu des milieux granulaires sous sollicitations 
sismiques. Des études numériques d’écoulements stationnaires sont présentées pour des particules sphéroïdales 
oscillant dans un fluide visqueux. Plusieurs rapports de diamètres et positions angulaires de particules sphéroïdes ont 
été étudiés par rapport au nombre de Reynolds. Les résultats ont été comparés aux données expérimentales publiées 
de Kotas et al. (2006). Des simulations supplémentaires ont été effectuées pour vérifier la valeur prédite de la force de 
traînée agissant sur les ellipsoïdes dans les écoulements rampants, laminaires et décollés. Les résultats des simulations 
ont été comparés avec une formule de corrélation basée sur un grand volume de données expérimentales publiées par 
Hölzer et Sommerfeld (2008). Une discussion sur l'utilisation de particules ellipsoïdales pour des simulations 
informatiques du comportement du sol à l'échelle micro conclut l'article. 
 
 
1 INTRODUCTION 
 
The motion of particles in viscous fluids plays an 
important role in soil science and river mechanics, 
involving, for instance, such phenomena as sediment 
transport, erosion, sedimentation, liquefaction and slopes 
stability. The presence of moving particles causes 
changes in the flow field characteristics through pressure 
and velocity. The liquid also influences the moving 
particles by the addition of a hydrodynamic force resulting 
from the pressure and viscosity fields acting on individual 
particles. Modeling of this process has mostly relied to 
date as per previous studies on spherical particles (Fries 
et al., 2011, Zhao et Shan 2013, Kloss et al., 2012). 
However, actual soil particles are usually non-spherical 
and their motion can be strongly affected by their shape. 

Flow is governed by the incompressible Navier-Stokes 
equations and particle interactions obey Newton’s laws. In 
this study, simulations were performed using SiGran, a 
virtual laboratory that was developed at the Research 
Institute of Hydro-Quebec (IREQ). SiGran is based on 
coupling of two methods: the Marker and Cell (MAC) 
method and the Discrete Element Method (DEM). The 
MAC method is a robust method that models unsteady 
flows ranging from creeping flows to high Reynolds 
number flows. DEM was designed to simulate interactions 
between particles. More details about SiGran can be 
found in Roubtsova et al. (2015), which focused on an 
energy balanced DEM method using SiGran. Simulations 

to analyze specific properties of channel flows at the pore 
scale are also described in Chekired and Roubtsova 
(2014).  

Three-dimensional numerical simulations using MAC 
and DEM are computationally intensive, due to the need 
to process large numbers of interparticle contacts when 
dealing with dense soils and to solve the Poisson’s 
equation for the fluid pressure within the complex 
geometry of pore channels at each time step, which 
requires access to substantial computing resources. In 
order to keep both simulation time and computational 
resource requirements to a minimum, the model was 
parallelized using GPUs (Graphics Processing Units). For 
portability, the OpenCL (Open Computing Language) 
framework was used, which offers an abstract view of the 
parallel architecture. This allows one to take advantage of 
both the CPU (Central Processing Units) and the GPU 
backend (Roubtsova et al., 2012). 
 
 
2 FLOW MODELING 
 
The basic equations governing the flow of an 
incompressible fluid are as follows. Conservation of 
momentum is satisfied by: 

 

� ������� + 	
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�     [1] 

 



 

where ρ is the density of the liquid (kg/m3), t is the time 
(s), 
� is the flow velocity (m/s), p is the pressure (Pa), and 
η is the dynamic viscosity (Pa.s). Continuity is given by:  

 
∇ ∙ 
� = 0                                        [2] 

  
 The Marker and Cell (MAC) method is employed to 
approximate these equations. The method was developed 
by Harlow and Welch (1965) for the simulation of free 
surface flows. Based on a structured and staggered grid 
system (Figure 1), the MAC method is a finite difference 
solution technique for investigating the dynamics of an 
incompressible viscous fluid. The primary dependent 
variables are pressure and velocity. The pressure variable 
is evaluated at the center and the velocity on the faces of 
the cells, respectively.  
 

 
Figure 1. 3D MAC grid cell 
 

Boundary conditions along solid walls are prescribed 
as non-slip and non-penetration conditions. The grids are 
constructed so that the grid points corresponding to the 
normal velocity components lie on the walls. To calculate 
the parallel velocity components, a special approximation 
near the walls for temporal velocity is employed 
(Belotserkovsky, 1994). This method prevents the 
addition of fictive layer cells in each particle which is 
necessary in MAC and SMAC schemes. Boundary 
conditions for the pressure is of the Neumann type. At the 
inflow boundaries, one prescribes the normal velocity 
component while the other components are set to zero. 
Finally, free boundary conditions are prescribed at the 
outflow boundaries. 

The force due to the flow around a particle is 
estimated by integrating the pressure-viscous stress 
tensor over the particle surface: 

 

�� = 	∮ 	−�� + �� ∙ �����                           [3] 
 

where �� is the hydrodynamic force (N) that accounts for 
the drag, lift, and buoyancy forces, Ι is the identity matrix, 
��� is the unit normal vector to the particle surface, S  
denotes a particle surface (m2), and τ is the viscous 
stress tensor (Pa):  

 
� = 	�	∇
 + ∇
                                     [4] 

 

Note that the stress tensor depends only on the 
pressure and the strain tensor and is independent of the 
antisymmetric vorticity terms (Landau and Lifschitz, 
1959). 

 
 

3 OSCILLATING ELLIPSOIDAL PARTICLES 
 

Liquefaction is the phenomenon by which the strength 
and stiffness of a saturated soil is reduced by earthquake 
shaking or other rapid loading. 

During the cyclic loading process, the particles 
oscillate and generate a specific surrounding flow field. 
Adequate simulation of the flow around an oscillating 
particle constitutes the first step in the modeling of the 
liquefaction process at the micro scale, i.e. the scale at 
which the problem is described in terms of individual 
particles that interact with each other and with the fluid.   

Experimental studies of steady streaming flows near 
oscillating ellipsoidal particles were carried out by Kotas 
et al. (2007). In these experiments, the particles had a 
maximum dimension of 2.54 cm and were immersed in a 
25 x 50 x 30 cm glass tank containing a working fluid 
(10% water and 90% glycerin by weight). The kinematic 
viscosity and density of the fluid were 1.69x10-4 m2/s and 
1.23 g/cm3, respectively. The particles were glued to 0.2 
or 0.4 cm diameter stainless steel mounting rods passing 
through the center of the particles and rigidly mounted to 
the table of an electrodynamic shaker subjected to 
sinusoidal oscillations. 

SiGran considers uniform grids, which is pertinent for 
the typical geotechnical problems for which the code was 
written. From previous numerical studies using SiGran, 
the pore-channels require at least five MAC-cells by width 
in order to adequately calculate the flow. On the other 
hand, each particle must be surrounded by at least 10 
MAC-cells in order to obtain a good integration of the drag 
force.   Usually the pore channels are evenly distributed in 
a soil sample, meaning that the same grid should be used 
to simulate all samples with the same precision. This is 
usually the case for applications involving seepage, 
permeability, or stress-strain tests. Another type of 
problem in soil science is that of large displacements of 
soil particles under flow forces. In this case, the evolution 
of particles cannot be predicted a priori and adaptation of 
the grid during the simulation may require more time than 
simply discretizing the full domain with a fairly fine grid. 
This is in particular the case when considering erosion, 
liquefaction, or sediment settling problems. There are 
exceptions to these typical problems. The shear stress 
test is one where the region of interest is a small layer 
along a shear surface. Another example is surface 
erosion where the zone of interest is a boundary layer 
between the soil and the fluid. 

The problem of simulating an oscillating particle in a 
large box is not a typical problem for SiGran. The flow 
field around the particle consists of inner and outer 
regions rotating in opposite directions (see Figure 2).  
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0.0                           0.2 m/s   -25 mPa                  25 mPa 
Figure 2. (a) numerically determined steady streaming 
flows and (b) pressure field around a vertically oscillating 
spheroidal particle.  

 
The size of the inner region depends on the Reynolds 

number calculated from maximal velocity during 
oscillation as follows: 

 
!" = 2$%&'/μ     [5] 

 
where f is the oscillating frequency (Hz), A is the 
oscillating amplitude (m), D is the typical body length 
scale (m), and µ is the kinematic viscosity (m2/s). 

Comparison of the simulation results with published 
experimental data was carried out for the inner regions 
only. Plotting the streamlines near a particle was indeed 
challenging because of the staggered grid system.  

The algorithm proposed by Mogilenskikh and Pavlov 
(2002) was used to draw the streamlines. The particularity 
of SiGran is that the algorithm is implemented in parallel: 
all lines that have the same vertical coordinate at start 
point are calculated simultaneously. The approximation of 
the velocity at point (x, y) is presented in Figure 3. As 
previously mentioned the particle boundary which 
coincides with the cell walls gives non smooth surface of 
particle and complicates the streamlines drawing.  

Results for an ellipsoidal particle with major axis equal 
to 2.54 cm and the other two axes equal to 1.905 cm are 
shown in Figure 4. Here, the Reynolds number is set to 
40 and the oscillation amplitude is 0.5 cm.  

A second example deals with an obliquely oscillating 
ellipsoidal particle with a major axis equal to 2.54 cm and 
the other two axes equal to 1.27 cm. The Reynolds 
number is set to 10 and the oscillation amplitude is 0.5 
cm. The authors (Kotas et al. 2007) noted that the oblique 
oscillation destroys the axisymmetric configuration of the 
flow. Rotation of the oscillating particle also induces a 
rotation of the inner region but at a lesser angle than that 
of the particle. Figure 5 compares the experimental 
streamlines with those obtained from the simulations. 

 
 

 
 

Figure 3. Schematic of the velocity approximation for 
streamline tracing in the 2D case. 
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Figure 4. Streamlines around ellipsoidal particles that 
oscillate in the vertical direction. (a), (c): Experimental 
data obtained by Kotas et al. (2007) and reproduced with 
permission from Springer International Publishing; (b),(d): 
Numerical results obtained with SiGran. 
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Figure 5. Streamlines around ellipsoidal particle oscillating 
in the vertical direction. (a), (c), (e), (g) show the 
experimental data obtained by Kotas et al. (2007) and 
reproduced with permission from Springer International 
Publishing. (b), (d), (f), (h) show the numerical data 
obtained with SiGran. The angular position was measured 
counterclockwise as shown in (g): (a), (b) θ = 0o; (c), (d) θ 
= 15o; (e), (f) θ = 30o; (g), (h) θ = 45o. 

 
Differences between the simulated and experimental 

streamlines can be explained by the presence of the rod 
in the experiment, phase lag between the experiments 
and numerical simulations (i.e. the particles were not at 
the center of oscillation), and discretization errors due to 
the SiGran grid, as discussed above. 

 For the time being, the current simulations of 
oscillating ellipsoidal particles have put in evidence a new 
issue, namely, that of reducing the numerical viscosity of 
the numerical scheme. This is crucial due to the fact that 
the fluid in geotechnical processes usually consists of 
water. Water has a small viscosity, about 1 mPa.s at 
20oC, which is comparable to the numerical viscosity. One 
way to improve the dissipative properties of the numerical 
scheme is to use a High Resolution Scheme (HRS) for 
the discretization of convective flows (Volkov, 2004).    

 

 
4 DRAG COEFFICIENTS FOR ELLIPSOIDAL 
PARTICLES 

 
The flow around a particle creates a hydrodynamic force 
that affects the motion of the particle. This force depends 
on the velocity (see Figure 2a) and pressure (see Figure 
2b) flow fields, the liquid viscosity, the particle shape and 
size, and its orientation relative to the flow direction.  As 
was noted above, SiGran calculates this force directly by 
integrating the viscous and pressure stress tensors 
around the particle (see Eq. [3]).  

Usually, the hydrodynamic force includes three 
contributions according to their action on the particle: 
buoyancy, lift, and drag forces.  Note that the lift and drag 
forces can induce a moment to the particle since their 
resulting forces do not necessarily pass through the 
center of mass of the particle. Buoyancy force results 
from the difference between the action of the gravity 
hydraulic pressure and the gravity force. Lift force is the 
component of the hydrodynamic flow force that is normal 
to the incoming flow direction and is created by a non-
symmetric flow around the particle. Drag force is the 
component of the hydrodynamic flow force that is parallel 
to the incoming flow. The components that most influence 
the motion of the particles depend on their shape and 
their position with respect to the flow as well as the 
dynamic viscosity of the fluid and the flow velocity. At 
small Reynold numbers, the drag force is greater. The 
non-symmetrical shape of the particle relative to the 
oncoming flow can create a significant lift force while a 
perfect symmetry reduces this force to zero. Here only the 
drag force is analyzed. 

 
The drag coefficient CD is a dimensionless quantity 

derived from the drag force as: 
 

*+ = |-.|
/.1234�   [6] 

       
where FD is the drag force (N) acting on the particle, u is 
the flow speed of the particle relative to the fluid (m/s), S 
is the reference area of the particle (m2).  The reference 
area is usually chosen as the largest cross-sectional area 
perpendicular to the flow. The relative speed is a 
questionable value because the velocity of the flow 
around the particle can greatly vary. The incoming or far-
field speed is used for the flow value in Eq. [6]. The 
analytical solution for the drag force of a particle is only 
available for spheres and ellipsoids at low Reynolds 
numbers (Stokes flow with Re ≤ 1) (Stokes 1851, Lamb 
1916).  

A new simple correlation formula [7] for the standard 
drag coefficient (i.e. a single stationary particle of arbitrary 
shape in a uniform flow) was established by Hölzer and 
Sommerfeld (2008) using a large set of experimental data 
from the literature and a comprehensive numerical study:  
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where Φ is the sphericity, which represents the ratio 
between the surface area of the volume equivalent sphere 



 

and that of the considered particle,  Φ|| is the lengthwise 
sphericity, which is the ratio between the cross-sectional 
area of the volume equivalent sphere and the difference 
between half the surface area and the mean projected 
longitudinal cross-sectional area of the considered 
particle,  Φ⊥ is the crosswise sphericity, which is the ratio 
between the cross-sectional area of the volume 
equivalent sphere and the projected cross-sectional area 
of the considered particle.  This correlation formula 
considers the particle orientation over the entire range of 
Reynolds numbers and has known limits of applicability 
with respect to the sphericity. The mean relative deviation 
between formula [7] and 2061 experimental data from the 
literature for a variety of particle shapes is 14.1%.  For 
more details about this formula, see Hölzer and 
Sommerfeld (2008).    

The first term in formula [7] stands for the pressure or 
form drag associated with the lengthwise sphericity, the 
second term stands for the friction drag associated with 
the surface area. These two terms dominate the drag 
force in the Stokes region (see Figure 4). In the case of a 
sphere, the three sphericity parameters defined above are 
all equal to unity and the sum of these two contributions is 
then identical to the Stokes analytical solution for the drag 
coefficient. The last two terms are provided in terms of the 
correlation formula at high Reynolds numbers. The 
graphical representation of these terms and comparison 
between formula [7] and the SiGran numerical simulation 
for a spherical particle are shown in Figure 6.  

   
 

 
Figure 6. Comparison between the correlated and the 
numerically obtained drag coefficients of spheres. 

 
Comparison of the drag coefficient obtained by 

formula [7] and by numerical simulation in the case of an 
ellipsoidal particle whose major axis is either parallel 
(ellipsoid 1) or perpendicular (ellipsoid 2) to the incoming 
flow is shown in Figure 7. The geometrical data for the 
spherical particle of Figure 6 and for the ellipsoids of 
Figure 7 are collected in Table 1.  

The streamlines for a variety of particle shapes at 
different Reynolds numbers are shown in Figures 8-10 for 
laminar and separated flows. 
 
 
 
 
 
 
 

Table 1. Geometrical characteristics of particles 
 

Characteristics Sphere Ellipsoid 1 Ellipsoid2 
semi-
axis, 
(mm) 

a 5 5 

b 5 3 

c 5 1 

Volume of ellipsoid, (mm3) 523 62.8 

Rayon of equivalent 
sphere, (mm) 

5 2.4 

Surface area of equivalent 
sphere, (mm2) 

314 76.4 

Sections area of 
equivalent sphere, (mm2) 

78.5 19.1 

Surface area of ellipsoid, 
(mm2) 

314 109 

Crosswise section area of 
particle, (mm2) 

78.5 47.1 94.2 

Lengthwise section area of 
particle, (mm2) 

78.5 94.2 47.1 

Sphericity 1 0.7 

Crosswise sphericity 1 0.41 0.42 

Lengthwise sphericity 1 2.03 2.57 

 
 

 

Figure 7. Comparison between the correlated and the 
numerically obtained drag coefficients of differently 
shaped particles. 
 
 
5  CONCLUSIONS AND FUTURE WORK 
 
SiGran was used earlier for investigating a series of 
different geotechnical problems. For example, the full 
work-energy balance during shear-stress tests was 
analyzed by Amirpour et al., (2017) using SiGran 
simulations. In this article the transformation of energy for 
each particle into shear-box was analyzed and the inter-
particle mechanism that absorbs more energy at a shear 
plane was observed. The algorithm for the creation of 
virtual soil samples with desired density and a particle 
size-distribution was written by  Roubtsova and Chekired 
(2014). In this work, a virtual sample was used to 
determine the soil permeability and a direct calculation of 
tortuosity. All these results were obtained in the case of 
spherical particles. 

With current developments in mathematical and 
computational sciences, it is now possible to consider 
simulations with ellipsoidal particles, one step closer to 
solving actual problems. The main issue when dealing 
with ellipsoidal particles is to identify the contact point 
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using a reasonable number of iterations when solving the 
corresponding non-linear problems. This means that the 
time of calculation must remain acceptable for 
engineering problems of practical interest.  

The present work has focused on the behavior of 
individual ellipsoidal particles within a fluid flow. 
Experimental and numerical results have shown 
reasonable agreement with respect to the streamline 
patterns and values of the drag force coefficient. Further 
studies are being planned in order to continue the 
analysis of the interaction of ellipsoidal particles in a 
viscous fluid. SiGran is capable to simulate the influence 
of one particle motion on the hydrodynamic force of 
another particle by a flow perturbation thanks to the direct 
integration of this force and a precise calculation of the 
flow around particles. We also mention that the rotation of 
ellipsoidal particles perturbs the surrounding flow more 
than in the case of spherical particles.  Hence, the flow 
around the elliptical particles exhibits more complex 
patterns than around spherical particles.     

This study has also puts in evidence some 
shortcoming of SiGran, in particular the presence of 
numerical viscosity. This aspect is very important for 
liquefaction simulations where the particles oscillate in a 
very small closed volume. Higher-order numerical 
schemes will be considered in order to solve this issue. 
 

 
 

Velocity Pressure 

 
 

 

 
 

 

  
  

  
5 10-4                   0 m/s        3 10-5             -3 10-5Pa 
 
Figure 8. The streamlines and pressure fields around 
spherical and ellipsoidal particles in a Stokes flow (Re = 
0.5). 
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Figure 9. The streamlines and pressure fields around the 
spherical and ellipsoidal particles in a laminar flow (Re = 
25). 
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Figure 10. The streamlines and pressure fields around 
spherical and ellipsoidal particles in a separated flow 
behind the particles (Re = 250). 
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