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ABSTRACT
This paper presents the solution for the undrained expansion of a cylindrical cavity in a non-linear workhardening soil. The
solution is obtained using an inverse hyperbolic sine law to represent the relation between applied radial pressure and shear
strain induced at the cavity wall. As in the case of a linearly elastic perfectly plastic (Tresca) material, three parameters are
required to implement the solution, the initial horizontal pressure po, the undrained shear strength Su, and the maximum
shear modulus Gmax. The values of these parameters are estimated in a particular case by linear regression analysis.
Comparisons are also made with solutions obtained by means of power law, simple hyperbolic and linearly elastic perfectly
plastic stress-strain relationships.

RÉSUMÉ
Cet article présente la solution pour l’expansion non-drainée d’une cavité cylindrique dans un sol non linéaire. La solution est
obtenue en utilisant une loi sinus hyperbolique inverse décrivant la relation entre la pression radiale et la déformation de
cisaillement. Comme dans le cas d’un matériau de type Tresca, trois paramètres sont nécessaires, la pression horizontale
initiale p0, la résistance au cisaillement non-drainé Su, le module de cisaillement à l’origine Gmax. Ces paramètres sont 
estimés dans un cas particulier à l’aide de régressions linéaires. Des comparaisons sont aussi effectuées avec des solutions
obtenues en utilisant une loi de puissance, une relation hyperbolique simple, et un modèle Tresca.

1. INTRODUCTION

When the preconsolidation pressure ’p of soft natural clays,
which is measured by means of constant strain rate (CRS)
consolidation tests, is plotted as a function of the strain rate

used, the resulting experimental relationship can be
described by an inverse hyperbolic sine curve of the form
(Silvestri et al. 1986):

1'
sinhp [1]

where  is the value of ’p that would be measured in a CRS
consolidation test performed at a strain rate  is a
viscosity coefficient, and  is a time coefficient. Such an 
equation is encountered when soil deformation is 
considered as a rate process (Mitchell 1993).

Curiously enough, when the applied total pressure p in a
self-boring pressuremeter (SBP) test in clay is plotted as a
function of the current shear strain  inducted at the cavity
wall, the resulting relationship is found to be quite similar to
that given by Eq.1, except that the strain rate is replaced
with the current shear strain , that is: 

1
sinhp  0  1  [2] 

where, now,  is the value of the pressure p (i.e., 
represents the horizontal geostatic stress po, when the
borehole is not disturbed prior to the performance of the
test), and  and  are material parameters.

It will be shown in the next section that the use of Eq.2
results in a non-linear workhardening stress-strain curve for
clay.

2. STRESS-STRAIN RESPONSE

From the work of Hill (1950), Ladanyi (1972), and Palmer
(1972) it is found that the stress-strain curve of clay may be
obtained from the experimental measurement of radial
pressure and shear strain, by using the following
relationship:

d

dp
  [3] 

where  is the shear stress induced at the cavity wall,  is 
the corresponding current shear strain (0  1), and dp/d
is the slope of the radial pressure-shear strain curve. 

Introducing Eq.3 into Eq.2 yields

2/122
1

  0 1   [4] 

Examination of this equation shows that when  is very large
(i.e., = 1), the shear stress is given by

2/12
1

  [5] 
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Since  1 for most soft clays, as indicated below, then 
 when = 1. Thus, the material parameter  represents the

undrained shear strength of the clay, Su.

Differentiation of Eq.4 with respect to  allows to determine
the tangent shear modulus G:

2/322
1

G
d

d
[6]

Substituting  = 0 into this equation permits to find the
maximum shear modulus Gmax:

max

0

G
d

d
 [7] 

The second material parameter  is thus equal to:

r

u

I
S

GG
maxmax  [8] 

where Ir is the rigidity index of the clay.

Because  = Su and  = Ir from above, Eq.2 may also be
written as: 

ru ISpp 1

0
sinh   [9]

The limit pressure plimit is found by putting  = 1 in this 
equation leading to:

ru ISpp 1

0
sinh [10]

In addition, as the rigidity index Ir, which is equal to ,
ranges between a minimum value of about 50 to a
maximum value of 150 for soft clays, it follows that Ir  1. 
As a consequence, when a SBP test is pursued to strains of
even as low as 10%, the inverse hyperbolic sine term in
Eq.9 may be approximated by an exponential function of the 
form (Mitchell 1993):

rr II 2lnsinh
1  [11]

yielding

ruo ISpp 2ln   [12] 

which shows that the undrained shear strength can be
obtained from the gradient (i.e., slope) of a plot of total
applied pressure versus the natural logarithm of the current
shear strain induced at the cavity wall.

Since  = Su and  = Ir as before, the stress-strain curve of
Eq.4 becomes:

2/12

max

1 rI

G
  [13] 

The curve described by this equation represents a non-
linear workhardening constitutive relationship, as shown in 
Fig.1.

S
u

G
max

 Figure1. Non-linear workhardening stress-strain curve.

3. APPLICATION

3.1 Inverse Hyperbolic Sine Low

The relationships given by Eqs.9 and 13 were applied to sel-
boring (SBP) test data reported by Bolton and Whittle
(1999). The results are compared with those obtained by
these authors using a power law function. Further
comparisons are carried out by assuming a simple
hyperbolic stress-strain curve as well as a linearly elastic
perfectly plastic response.

The experimental radial pressure versus shear strain curve
is shown in Fig.2. The data was obtained by scanning and
digitizing the original results of Bolton and Whittle (1999). In
order to get the best fit to the data, the value of the
undrained shear strength was first determined from the
slope, at large strain, of the linear portion of the p-log
relationship of Fig.2. This yielded Su = 178 kPa, as also
found by Bolton and Whittle (1999). Secondly, Eq.9 was
transformed into: 

r

u

I
S

pp
0

sinh   [14] 

Linear least-squares analyses were then carried out by
assuming different values for p0. Eq.14 was thus 
approximated by the straight line relationship:
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iii xbay ˆˆˆ [15]
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Figure2. Radial pressure-logarithm of current shear strain
relationship.

where     is the estimated mean of sinh [(p - p0) / Su] for each 

xi = i,    is the intercept, and    is the slope (i.e., the

estimated mean of Ir).

It was found that the values of the parameter p0 reported in
the first three rows of Table1 resulted in a very satisfactory
fit to the data. Examination of the entries in this table
indicates that the choice of p0 = 460 kPa yields a slightly
better fit, because it gives the highest value for the
coefficient of correlation r (i.e., r = 0.99916). In this case, the
estimated mean value of the rigidity index Ir equals 320.3.

However, as it would be expected that sinh [(p – p0) / Su] in 

Eq.14 should be zero when  = 0, implying a straight line

approximation passing through the origin (i.e.,    = 0 in 

Eq.15), additional analyses were performed by forcing the

regression line to pass through the origin. The results which

are reported in the last four rows of Table 1 indicate that the

choice of p0 = 450 kPa yields, this time, a slightly better fit 

than the other values of p0. The solutions given in Table 1

are, however, practically equivalent in that they all give a

very good fit to the data, for the whole range of shear strains

(i.e.,  0.1353). This notwithstanding, it was found that the

initial part of the radial pressure versus shear strain

relationship of Fig.2 (i.e., for  0.002) was better

approximated by using p0 = 470 kPa with either =0 and

=Ir =340.6 (r=0.99760) and  = 0.0170 and   =Ir
= 302.7 (r=0.99908). The curve shown in Fig.2 corresponds

to Eq.9 with Su = 178 kPa, p0 = 470 Kpa,   = 0,      = Ir = 

304.6. As these parameters imply Gmax = SuIr = 54219 kPa

(54.2 MPa), the corresponding stress-strain curve is: 

2/12

6.3041

54219
kPa  [16] 

Examination of the curve described by this equation, which

is shown in Fig.3, indicates that the shear stress  reaches a

horizontal asymptote for large strain. As for the values of the
limit pressure plimit, calculated on the basis of Eq.10, Table 1
shows that these are quite insensitive to the choice of the
parameters    and     . Indeed, the limit pressure varies
from 1610.1 kPa to 1611.5 kPa. 
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Figure3. Stress-strain curves. 

3.2 Power Law Representation

The radial pressure versus shear strain relashionship of
Fig.2 was approximated using the power law of Bolton and
Whittle (1999). These authors proposed that the stress-
strain curve be represented by:

y  [17a] 

and

uS y   [17b] 

where  and  are material parameters, with  1 and y = 
(Su/ )1/  is the shear strain at yield. It should be also noted
that complete solutions for the expansion of both spherical
and cylindrical cavities, based exactly on this same
assumption, were published by Ladanyi and Johnson
(1974), and Ladanyi (1975). The power law function in
Eq.17 describes a non-linear elastic perfectly plastic
(Tresca) model. The corresponding radial pressure versus
shear strain curve is: 

0
pp y   [18a] 

and

iŷ

iâ ib̂

iâib̂

iâ ib̂

ib̂
iâ

iâ

iâ ib̂
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y

uSpp ln
1

0 y [18b]

In addition, the limit pressure is found by putting  = 1 into
Eq.18b.

The values of the parameters  and were determined by
Bolton and Whittle (1999) using unload / reload loops. On 
the basis of the last two loops reported by these
investigators, which resulted, respectively, in ln 1 = 8.326
and 1 = 0.5758, with r = 0.99955 and ln 2 = 8.3505 and 2

= 0.573, with r = 0.99960, the corresponding average values
of ln  and  are: ln  = 8.3383 or  = 4181 kPa and  = 
0.5744. As y = (Su/ )1/  from Eq.17, the shear strain at
yield is equal to 0.01078 for Su = 178 kPa,  = 4181 kPa,
and  = 0.5744. However, Bolton and Whittle (1999)
retained  = 0.57 and y = 0.0086, corresponding to  = 
4698 kPa. In addition, these authors found that p0 = 449 
kPa, represented a satisfactory geostatic stress value.
Eq.18 was, therefore, used with p0 = 449 kPa, Su = 178 kPa,

y = 0.0086,  = 4698, and  = 0.57 to plot the radial
pressure versus shear strain relationship. This curve is also
shown in Fig.2. Comparison between the numerical
relationship based upon Eq.18 with that obtained using the
inverse hyperbolic sine indicates that the two are quite
similar.

The corresponding stress-strain curve, based upon Eq.17, is
reported in Fig.3. Comparison between the curves shown in
this figure indicates that the strain-stress relationship
obtained by means of the inverse hyperbolic sine law is
stiffer than the one based upon the power law, in the range
0.001  0.007.

Furthermore, in order to determine whether the material
parameters  and  could be also obtained from the initial
portion of the pressure-expansion curve (i.e., for y

0.01087), without having to use the unload / reload loops,
Eq.18 was first transformed into: 

lnlnln
0
pp   [19]

and then approximated by the regression line of Eq.15,
where   is now the estimated mean of ln (p-p0) for each 
value of xi = ln i,   = ln  is the intercept, and  =     is the
slope. Regression analyses were again performed by
assuming different values for p0. The results are reported in
Table 2. In this table are also given the values of y = 
(Su/ )1/ Examination of the various entries indicates that
the choice of p0 =420 kPa constitutes the best fit to the data
with  = ln  = 8.3688 or = 4308 kPa,     =  = 0.535,
and r = 0.99969. Recalling that the results retained by
Bolton and Whittle (1999) were  = 4698 kPa,  = 0.57, y = 
0.0086 with r = 0.9996, it appears that these correspond to
a choice of p0 close to 430 kPa in Table 2. 

As for the values of the limit pressure plimit, determined on
the basis of Eq.18b for  = 1, Table 2 indicated that these
vary between 1602.6 kPa and 1610.1 kPa. 

3.3 Simple Hyperbolic Representation

In order to determine whether a simple hyperbolic stress-
strain curve of the form: 

rI

G

1

max  [20] 

could also be successfully used, this equation was
substituted in Eq.2 to obtain the radial pressure versus
shear strain curve. This resulted in: 

ru ISpp 1ln
0

[21]

For  very large, Ir  1, and Eq.21 may be approximated
by:

ru ISpp ln
0

[22]

indicating, once again, that the undrained shear strength
can be obtained from the slope, at large strain, of a plot of
total pressure versus the natural logarithm of the shear
strain. In order to carry out linear regression analyses,
Eq.21 was first transformed into: 

r

S

pp

Ie u
1

0

  [23] 

and then approximated by the regression line of Eq.15,
where this time is the estimated mean value of

[e(p-p0)/Su-1] for each value of xi = i,   is the intercept, and
iŷ

iâ
  = Ir is the slope. Results of these regression analyses

are summarized in Table 3 for different values of p0.
Although the calculated values of the coefficient of
correlation r reported in this table are quite high, it was
found that none of the regression equations could
satisfactory approximate the radial pressure versus shear

strain relationship for shear strain  0.01316. This is due to

the presence of the negative      term. As a consequence,
additional regression analyses were performed by forcing
the regression line to pass through the origin (i.e., = 0). 
The results are also reported in Table 3. Examination of the
entries shown indicates that the choice of p0 = 450 kPa
constitutes  the  best  fit  to the  data (r = 0.99793), yielding

ib̂

iâ

iâ

= Ir = 669.5. These parameters (i.e., p0 = 450 kPa, Ir = 

669.5, Su = 178 kPa and Gmax = Ir Su = 119171 kPa) were

then introduced into Eqs.20 and 21 to plot both the stress-
strain curve and the radial pressure versus shear
relationship, as shown in Figs.2 and 3. Examination of the

ib̂

iŷ

iâ ib̂

iâ ib̂
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predicted values of the total pressure p in Fig.2 indicates
that they overestimate the actual trend at low moderate

shear strain (i.e., for  0.03). Concerning the hyperbolic

stress-strain curve plotted in Fig.3, it appears that it is
initially much stiffer than both the power law and inverse
hyperbolic sine relationships.

As an additional point concerning the stress-strain curves
reported in Fig.3, discrete data points, obtained from a direct
application of Palmer’s approach (i.e., Eq.2), were scaled
from the results reported by Bolton and Whittle (1999) and
are also included in Fig.3. It appears that the latter points
follow quite closely the power law approximation.

As for the limit pressure plimit, it was determined by putting

= 1 into Eq.21 and the results are also reported in Table 3.
Examination of the various entries shows that it varies in a 
very small range, from 1608.3 kPa to 1609.6 kPa. Further,
comparison between Eqs.21 and 12 shows that for the limit
pressure to be unique, the rigidity index obtained from
hyperbolic model should be approximately equal to twice the
value determined on the basis of the inverse hyperbolic
approach. This is perfectly borne out by the results
presented in Table 1 and 3. 

3.4 Linear Elastic Perfectly Plastic Response

Finally, in order to examine the possibility that a simple
linearly elastic perfectly plastic (Tresca) stress-strain 
relationship of the form: 

G , y = Su / G [24a]

and

uS , y = Su / G    [24b] 

might be appropriate for the clay, these equations were
substituted in Eq.2 to obtain the well-known pressure-
expansion relationships (Gibson and Anderson, 1961):

Gpp
0

, y = Su / G   [25a] 

and

y

uSpp ln1
0

, y [25b]

Again, the limit pressure may be found by putting  = 1 into
Eq.25b.

Instead of performing two separate regression analyses,
that is, one for elastic phase of deformation and the other for
the plastic response, it was deemed preferable to obtain by
iteration a good fit to the experimental pressure-expansion
curve. This was done by adjusting the values of the
parameters p0 and Gmax.

Two such solutions are reported in Table 4 and are
compared in Fig.4 with the experimental pressure-
expansion curve. Examination of the data shown in this
figure indicates that the solution which corresponds to p0 = 
496 kPa, Su = 178 kPa, Gmax = 34563 kPa, and y = 
0.00515, compares well with the experimental results. In 
addition, the limit pressure plimit which was calculated on the
basis of Eq.25b for  = 1 varies between 1610.1 kPa and
1611.8 kPa. 

A stress-strain curve based upon the solution just
mentioned is also shown in Fig.3. Examination of the
various relationships reported in this figures indicates that 
although the simple linearly elastic perfectly plastic solution
is much softer than the previously obtained relationships, it
nevertheless gives a good fit to the experimental pressure-
expansion curve of Fig.4.
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Figure.4: Comparison of experimental data with linearly
elastic perfectly plastic responses.

4. DISCUSSION 

It appears at first sight that the inverse hyperbolic sine
solution obtained in this study and that of Bolton and Whittle
(1999) are quite similar. Indeed, linear regression analyses
yielded almost identical values for the coefficient of
correlation.

There is, however, a sight divergence that arises between
the two approaches. While the value of Gmax is finite in the 
present approach as found from Eq.7, that determined by
using the power law representation is infinite. Indeed,
differentiation of Eq.17a gives:
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12

d

d
G  [26] 

which, when  evaluated  at  = 0, leads to Gmax = ,  since
 1. Such a particular behaviour of the power law

representation at the origin is thought to be inappropriate for
clay.

As for the simple hyperbolic stress-strain curve, it is shown
that it is much stiffer than the inverse hyperbolic sine law. In 
addition, it is indicated that although the linearly elastic
perfectly plastic criterion fits reasonably well the
experimental pressure-expansion relationship, it
nevertheless fails to represent the non-linear stress-strain
response of the material at small strains. 

As a final point worth of discussion, it appears from the
results shown in Fig.2 and 3, that while any of the curve-
fitted relationships is more or less adequate to represent the
experimental pressure-expansion date, the derived stress-
strain curves are however all quite different. This represents
a formidable task for the geotechnical engineer because the
derived stress-strain curve is dependent upon an assumed
relationship for the pressure-expansion curve. It is thus
impossible to make an objective assumption, even if one
makes use of statistical methods. The difficulty is linked to 
the fact that the stress-strain curve is obtained from the
differentiation of the pressure-expansion relationship.
However, the reverse problem, that is, the task of obtaining
the pressure-expansion curve from a known stress-strain
relationship, is much simpler, because of the integration
procedure.

5. CONCLUSIONS

This technical paper presents a method to obtain the stress-
strain curve of clay from undrained plane-strain
pressuremeter tests. The experimental radial pressure
versus shear strain curve is approximated by an inverse
hyperbolic sine function. The resulting stress-strain curve
can be described as a non-linear workhardening soil model,
having a finite modulus at the origin.

Because the stress-strain curve was obtained using
Palmer’s approach, it was not necessary to separate the soil
response into elastic and plastic components. Compared to
the stress-strain curve based upon a power law
representation, that obtained in this study was stiffer. 

It was also found that a simple hyperbolic stress-strain curve
resulted in a much stiffer response compared to both the
inverse hyperbolic sine law and the power law
representations. As for the simple linearly elastic perfectly
plastic (Tresca) response, it failed to capture the
pronounced non-linear stress-strain behaviour at small
strains.

6. ACKNOWLEDGMENTS

The authors express their gratitude to the National
Research Council of Canada for the financial support
received in this study.

7. REFERENCES

Bolton, M.D., and Whittle, R.W. 1999. A non-linear
elastic/perfectly plastic analysis for plane strain undrained
expansion tests. Géotechnique 49(1): 133-141.

Gibson, R.E., and Anderson, W.F. 1961. In situ
measurement of soil properties with the pressuremeter. Civil 
Engineering and Public Works Review, 56: 615-618.

Hill, R. 1950. The mathematical theory of plasticity. Oxford
University Press, London.

Ladanyi, B. 1972. In situ determination of undrained stress-
strain behaviour of sensitive clays with the pressuremeter.
Canadian Geotechnical Journal, 9(3): 313-319.

Ladanyi, B. 1975. Bearing capacity of strip footings in frozen
soils. Canadian Geotechnical Journal, 12(3): 393-407.

Ladanyi, B., and Johnson, G.H. 1974. Behaviour of circular
footings and plate anchors embedded in permafrost.
Canadian Geotechnical Journal, 11(3): 531-552.

Mitchell, J.K. 1993. Fundamentals of Soils Behaviour. 2nd

Edition, John Wiley  Sons, Inc., New York.

Palmer, A.C. 1972. Undrained plane-strain expansion of a
cylindrical cavity in clay: a simple interpretation of the
pressuremeter test. Géotechnique 22(3): 451-457.

Silvestri, V., Yong, R.N., Soulié, M., and Gabriel, F. 1986.
Controlled-strain, controlled-gradient, and standard
consolidation testing of sensitive clays. Proceedings,
Symposium on Consolidation of Soils: Testing and
Evaluation; Fort Lauderdale, Fla; ASTM STP 892, R.N. 
Yong and F.C. Townsend, Eds.; American Society for
Testing and Materials, Philadelphia, pp. 433-450.

Session 4E
Page 14



8. APPENDIX A

Table 1: Results of regression analyses on inverse
hyperbolic sine law.

Regression analyses
p0

(kPa) â
uSGb /ˆ

max

Coefficient. of
correlation, r 

plimit

(kPa)

450 0.05825 338.3 0.99908 1610.1

460 0.02958 320.3 0.99916 1610.3

470 0.0170 302.7 0.99908 1610.3

440* 0 360.5 0.99776 1611.4

450* 0 340.8 0.99777 1611.4

460* 0 322.4 0.99772 1611.5

470* 0 304.6 0.99760 1611.4

*Regression line forced to pass through the origin.

Table 2: Results of regression analyses on power law
approximation.

Regression analyses

P0

(kPa) â=ln
(kPa)

b̂

Coefficient
of

correlation,
r

y

Plimit

(kPa

410 8.24274 3800 0.50376 0.99960 0.00896 1602.6

420 8.36831 4308 0.53536 0.99969 0.00836 1604.1

430 8.52085 5018 0.57240 0.99947 0.00776 1605.8

440 8.71371 6086 0.61728 0.99879 0.00714 1608.0

450 8.95206 7724 0.67142 0.99727 0.00659 1609.1

460 9.26656 10578 0.74053 0.99411 0.00603 1610.1

Table 3: Results of regression analyses on simple
hyperbolic law approximation

p0

(kPa)
â

uSGb /ˆ
max

Coefficient. of
correlation, r 

plimit

(kPa)

440 -0.5546 713.3 0.99902 1609.6

450 -0.5782 673.1 0.99905 1609.2

460 -0.6196 637.5 0.99905 1609.3

470 -0.6270 601.6 0.99899 1609.3

440* 0 709.0 0.99775 1608.3

450* 0 669.5 0.99793 1608.4

460* 0 633.2 0.99784 1608.5

*Regression line forced to pass trough the origin

Table 4: Results of linearly elastic perfectly plastic response
approximation

p0

(kPa)
Su

(kPa)
Gmax/Su y

plimit

(kPa)

496 178 34563 194 1611.8

560 178 23893 134 1610.1
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