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ABSTRACT 
A generalized directional shear strength criterion was proposed to predict the variation of peak shear stress under both 
constant normal stress (CNS) and variable or constant normal stiffness (CNK) loading paths for cyclic and monotonous 
shearing. The proposed generalized shear strength criterion was compared to the existing shear strength criteria and 
experimental data. The results showed the model successfully predicts the shear strength behavior of rock joints. 

RÉSUMÉ
Un critère de rupture directionnelle généralisé a été proposé afin de prédire la variation de la résistance au cisaillement 
des joints cisaillés à contrainte normale constante (CNC) ou à rigidité normale constante (KNC) ou variable en fonction 
de la contrainte normale initiale ( ni), que ce soit un cisaillement monotone ou cyclique. Le critère proposé a aussi été 
comparé à des résultats expérimentaux et aux autres critères déjà existants. Les résultats ont montré que le modèle 
prédisait assez bien la résistance au cisaillement des joints rocheux. 

1. INTRODUCTION 

The presence of rock joints has a strong effect on the 
mechanical behavior and the structural stability of 
engineered rock structures. The behavior of rock joints 
under either constant normal stress (CNS) or constant 
normal stiffness (CNK) loading conditions depends mainly 
on the wall surface roughness characteristics, the degree 
of matching and/or interlocking of the rock surfaces, the 
presence of filling debris and the intact rock material 
properties. According to Archambault et al. (1996), the 
dominant factor influencing the mechanical behavior of 
rock joints is their morphology and roughness, and these 
are most difficult to characterize and model. Joint 
roughness will undergo continuous and progressive 
change during loading due to wearing, grinding, and 
breaking or crushing of the asperities. Many experimental 
results show that there is a strong correlation between the 
evolution of joint surface roughness and the friction 
properties of rock joints. Few works have been devoted to 
account for the progressive degradation of joint wall 
surface asperities during the course of monotonous or 
cyclic shear (e.g. Plesha 1987; Hutson and Dowding 
1990; Benjelloun 1990; Jing et al. 1993; Homand et al. 
1999).

The knowledge of the shear strength of rock joints is 
necessary to determine the stability of jointed rock 
masses. The variation of peak shear stress with normal 
stress has been modeled by many authors (Patton 1966; 
Ladanyi and Archambault 1969; Jagger 1971; Barton 
1973; Swan and Jongqi 1985; Saeb 1990), and more 
recently by Kulatilake et al. (1995). Although these models 
have substantially improved our knowledge of the 
behavior of rock joints, their limitations must be 
recognized (Archambault et al. 1996) because they do not 
account for the friction variation of rock joints due to the 

degradation of the surface roughness. Most of the existing 
shear strength criteria have been formulated to predict 
only the peak shear stress of dilatant joints undergoing 
monotonous shear under constant normal stress (CNS) 
loading conditions. However, many authors (e.g. Leichnitz 
1985; Saeb 1989; Archambault et al. 1990; Saeb and 
Amadei 1990) have already proposed some approaches 
to predict rock joint response under constant or variable 
normal stiffness from experimental results obtained from 
direct shear tests under constant normal stress loading. 
Among these approaches, the Saeb and Amadei’s 
graphical method (Saeb and Amadei 1990) gives more or 
less satisfactory results, but the method is difficult to use. 

The purpose of this paper is to predict the peak shear 
stress of artificial or natural rock joints by taking into 
account (i) the loading path (CNS or CNK), (ii) the 
shearing path (monotonous or cyclic), (iii) the shearing 
direction, (iv) the surface morphology shape (anisotropic 
or isotropic) and, (v) the evolution of 2nd-order roughness. 
Roughness is subdivided into two components in the 
concept of primary and secondary asperities: the 
secondary (or 2nd-order) and the primary (or 1rst-order)
roughness (Jing et al. 1993, Kana et al. 1996; Belem et al. 
2000). The secondary roughness corresponds to the 
surface heights distribution (and denotes the sensu stricto
roughness) while the primary roughness corresponds to 
the surface geometry that describes the anisotropy of its 
morphology. To achieve this goal, a generalized shear 
strength criterion is proposed which takes into account the 
1rst-order and 2nd-order roughness through new proposed 
roughness parameters defined with the aid of 3D laser 
profilometry (Belem et al. 2000, Belem et al. 1997, Belem 
1997). The model parameters describe joint initial 
morphology such as the degree of 2nd-order roughness 
(DRr), the joint surface or 3D mean angle ( s), the degree 
of apparent anisotropy of joint surface morphology (ka),
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the surface amplitude or maximum asperity height (a0)
and the maximum or cumulated shear displacement
( ). This approach takes into account the interlocking

and dilatant nature of sheared rock joints and the shearing 
direction ( ). The strength behavior predicted by the 
proposed new generalized shear strength criterion is 
compared to the results of previous laboratory
monotonous and cyclic direct shear tests under CNS and 
CNK loading conditions and to the shear strength criteria 
proposed by Ladanyi and Archambault (1969), Barton
(1973) and Saeb (1990). 

max

sU

2. JOINT MORPHOLOGY PARAMETERS

Numerous new joint roughness parameters have been
proposed by Belem et al. (2000) to supplement and
overcome the inadequacy or the subjectivity of some of 
the existing joint linear profile parameters (e.g. Z2, RL, Ps

and JRC). These new proposed roughness parameters 
are more suitable for joint surface roughness
characterization that includes different characteristics 
such as magnitude, angularity, and anisotropy. In this 
paper, only the parameters used in the generalized 
directional shear strength criterion are presented but more
details are found in Belem et al. (2000).

2.1 Primary roughness parameters 

2.1.1 Roughness profile angularity 
For the entire joint surface involving identical/non-identical 
roughness profile lengths (e.g. circular sections), the one-
directional surface profile mean angle ( p), defined as the 
weighted mean of the parameter *

p, is given as follows:
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where zi is the discrete values of profile heights; k is the 
sampling step along k-axis; Mk is the total number of 

profiles in k-direction (x or y);  the number of discrete 

points corresponding to the j

j
kN

th profile along k-axis;  the 

length of the j

j
kL

th profile along k-axis. When all the surface 
profiles have the same nominal length Eq. [1] is reduced 
to an arithmetic mean. 

2.1.2 Degree of apparent anisotropy 
The degree of apparent anisotropy of surface morphology,
ka, can be defined as follows:

10ith         w
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a

p(y)p(x)

)p(yp(x)

a kk [2]

Subscript x and y in Eq. [2] denote respectively the
direction in which the linear roughness profile weighted
mean angle, p, is calculated. Parameter ka varies from 0 
to 1: when ka = 0, the surface morphology is anisotropic 
and exhibiting saw tooth shapes or undulations; when ka =
1, the surface morphology is perfectly isotropic. 

2.2 Secondary roughness parameters 

2.2.1 Surface angularity
The three-dimensional mean angle of the entire surface is 
calculated by summing all of the inclination angles, i, of 
the normal unit vectors of all the elementary surfaces as
follows:

N

iN 1

is

1
[3]

where N is the total number of elementary flat surfaces. 
Angle s is considered to be the mean angle of surface
asperities or surface angularity parameter. 

2.2.2 Degree of surface roughness 
The degree of joint surface relative roughness, DRr, was
derived from the surface roughness coefficient (Rs)
defined for a single joint wall by El Soudani (1978). DRr

relates the evolution of surface roughness to its initial 
state by the following relationship: 
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Eq. [4] shows that when the fracture surface is perfectly
smooth and flat then DRr = 0 and as the fracture surface 
becomes rougher then DRr  1. 

3. PROPOSED FAILURE CRITERION FOR 
CONSTANT NORMAL LOADING PATH (CNS) 

3.1 Basic assumptions

In the present approach, the authors assume that there 
are two main types of joints: 
    i) non-dilatants joints (isotropic surface morphology),
    ii) dilatant joints (isotropic/anisotropic surface
morphology).
The authors assume that dilatant joint surfaces (regular or 
irregular joints) are often anisotropic and more or less 
isotropic/anisotropic where the 1rst-order roughness 
component plays a preponderant role. We also assume 
that non-dilatant joint surfaces (generally irregular) are
more or less isotropic and only the 2nd-order roughness 
governs the shear strength behavior. In addition, we also 
assume that a dilatant joint will tend to be much less 
degraded than a non-dilatant joint which would be more 
degraded during the course of shearing. Dilatant joints are 
usually mated and/or interlocked while non-dilatant joints 
can be non-mated and non-interlocked (e.g. soil-structure, 
rock-structure, soil-rock, concrete-rock or mine backfill-
rock interfaces). 
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Figure 1. Shear strength model parameters: (a) typical cyclic shear curve showing the four portions; (b) morphological parameters previously
defined.

The model is formulated in the more general case of cyclic
shearing where the shear displacement–shear stress 
curve (Us, ) is divided into four portions (Fig. 1a). For
each cycle of shearing the model will predict the peak 
shear stress ( p) on the first portion, P0, of the (Us, )
curve as shown in Fig. 1a. Shear displacement (Us) on the 

portion P0 will be  and the shear displacement for one

cycle of shearing will be of 4 . If n is the number of

cycles of shearing, the maximum (or cumulated) shear 

displacement on the portion P0,  = (4n – 3). For

monotonous shearing, n = 1 and  = . The model 

parameters will be the previously defined joint surface 
morphological parameters (k

0

sU
0
sU

max
sU 0

sU

max
sU 0

sU

a, s, DRr), as well as the 

characteristics of shear tests (n, ). Another important 

parameter to take into account in the model formulation is 
the joint surface amplitude (a

0
sU

0), which is the difference 
between the maximum and the minimum asperity heights 
(Fig. 1b). Noticed that the parameter a0 takes into account 
the interlocking nature of the joint samples and will govern 
the magnitude of dilatancy developed during the course of
shearing.

3.2 Formulation of the failure criterion 

It was found from previous investigations (Homand et al. 
1999; Belem 1997; Lefêvre 1999) that for a moderately
dilatant joint, cyclic shearing involved a progressive 
degradation of the joint surface roughness, which in turn 
increases contact areas and therefore the shear strength. 
Consequently, a failure criterion must take into account
the “pure” dilatancy (ipure), which is the combination of the
observed peak dilatancy, ip(exp), and the asperity
degradation component of dilatancy, ideg., as follows:

o
d.degppure (exp) iii [5]

Angle ipure can be predicted directly which and 
corresponds to a dilatancy-degradation angle, d°
(subscript d denotes degradation process) for the case of 
joint exhibiting a moderate degradation potential. In the
present approach, Barton’s failure criterion (Barton 1973)

was considered as the basic model from which the new

model will be proposed. By replacing  in Barton's

failure criterion with Eq. [5], the proposed shear strength 
criterion for CNS loading path is given by the following
relationship:

o
nd

o
dbnCNp tanS [6]

To better predict peak shear stress, the new dilatancy-
degradation angle, d°, must be defined in order to 
explicitly take into account both dilatancy phenomenon 
and degradation of surface asperities during the course of 
monotonous or cyclic shearing. This new dilatancy-
degradation angle must be greater than the observed 
peak dilatancy angle ( d° > ip). Based on our experimental 
observations (Belem 1997), the dilatancy-degradation
angle, d°, can be formulated as follows:

c

n
s

o
d exp2 [7]

where  is a constant depending on the joint surface 
morphology and the number of cycles of shearing; n and 

c are normal stress and uniaxial compressive strength of
the sample material.

Angle d° describes the effect of dilatancy as well as the 
surface change due to asperities degradation which
increases joint wall surface contact area and hence the
shear strength. It was found that the constant  can be 
expressed as follows:
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and in term of number of cycles of shearing, n : 

n

n

a

UU

a

DR

k

)34(
log

1

2

31

0

0
s

10

0
s

0

r

2
a  [8b] 

Session 8F
Page 3



Finally, the dilatancy-degradation angle, d°, is given as 
follows:
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where all the parameters are previously defined. 

Substituting Eq. [9] into Eq. [6], the general expression for 
the prediction of CNS peak shear stress, taking into 
account the influence of dilatancy, asperities degradation 
and the number of cycles of shearing is given as follows:
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Figure 2 shows the predicted theoretical curves of peak 
shear stress obtained with Eq. [10] for a mortar joint with
undulated surfaces. 
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Figure 2. Theoretical cyclic shear strength curves predicted by Eq. [10] 

for an undulated joint ( c = 75 MPa, b = 34°, s = 10 , ka = 0.21, DRr

= 0.023, a0 = 2mm, Us
o = 10mm, n = 10, Us

max = 400mm). 

3.3 Directional failure criterion 

Depending on the shape of the joint surfaces, the peak 
shear stress will depend on the shearing direction angle
( ). The directional shear strength criterion is then given 
by the following equation: 

o
dbnCNp tanS [11]

where d°( ) is the directional dilatancy-degradation angle 
obtained for a given shearing direction, (in degree). 

The directional dilatancy-degradation angle, which
depends on the degree of apparent anisotropy, is given by
the following relationship: 

)1(coso
d

o
d ak [12]

where ka is the degree of apparent anisotropy;  is the 
shearing direction. 

Substituting Eq. [12] into Eq. [11] yield the directional peak 
shear stress for dilatant joints underwent monotonous or 
cyclic shearing under constant normal loading path which
is given as follows:

)1(costan o
dbnCNp aS k  [13] 

where d° is given by Eq. [9]. 

Figure 3 shows the predicted directional peak shear stress 
curves for a mortar joint with undulated surfaces after one 
cycle (first cycle) of shearing. Noticed that the zero 
direction ( = 0°) corresponds to the direction 
perpendicular to the joint surface undulations and the 90°
direction (  = 90°) corresponds to the direction parallel to
the joint surface undulations. 
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Figure 3. Theoretical directional shear strength curves predicted by Eq. 

[13] for an undulated joint ( c = 75 MPa, b = 34°, s = 10 , ka = 0.21, 

DRr = 0.023, a0 = 2mm, Us
o = 10mm, n = 1, Us

max = 40mm). 

4. GENERALIZED DIRECTIONAL FAILURE 
CRITERION FOR DILATANT JOINTS

The existing shear strength criteria are formulated to only
predict the shear strength under CNS loading path. During 
shearing the normal stiffness, K = 0 for CNS loading while
K > 0 for CNK loading ( n > 0 and constant for CNS 
loading, while n varies continuously from its initial value 
in the course of shearing for CNK loading). The normal 
stiffness, K, is related to the normal stress, n, and the 
normal displacement (or dilatancy, Un) as follows:
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where ni is the initial normal stress. 

Since we want to predict the peak shear stress, then only
the peak dilatancy (Unp) will be considered ( Un Unp).
The variation of peak dilatancy is related to the peak 
dilatancy rate, tan(ip*), and the incremental shear
displacement, Us, by the following relationship: 

)tan( *psnp iUU [15]

As only the first portion (P0) of the shear curve is 
concerned (see Fig. 1a) for the prediction of peak shear 

stress, Us can reasonably be approximated by , the 

shear displacement on the first portion ( U

0
sU

s ). Hence, 

Eq. [15] becomes: 

0
sU

)tan( *p
0
snp iUU [16]

Substituting Eq. [16] into Eq. [14b] yields:

)tan( *p
0
sninp iUK [17]

where np is the normal stress value when the peak shear
stress is reached during the course of shearing under 
CNK loading path. 

From the proposed shear strength criterion for CNS 
loading path given by Eqs. [6, 10 & 13], a generalized
shear strength criterion can be derived for both CNS and 
CNK loading conditions by substituting Eq. [17] into Eq. [6] 
as follows:
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o
dbnpgenp K [18a]

o
db*p

0
sninip tan)tan(),( iUKK [18b]

loadingCNK

o
db*p

0
s

loadingCNS

o
dbninip )tan()tan()tan(),( iUKK

 [18c] 

The generalized directional shear strength criterion is
obtained by substituting Eq. [17] into Eqs. [11 & 13] as 
follows:
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In Eqs. [18c] & [19c], the first terms of the right member 
correspond to the CNS loading path and the second terms 
correspond to the CNK loading contribution. Preliminary
versions of Eq. [18] were recently introduced by the 
authors (Homand et al. 2001; Belem et al. 2002). When K
= 0, Eq. [19] predicts the directional peak shear stress of
CNS loading path and when K > 0, Eq. [19] predicts the 
peak shear stress of CNK loading path. From Eq. [6], Eq. 
[19] can be rewritten as follows:

)tan(1)(),,( *p

ni

0
s

pnip i
UK

K CNS  [20] 

Eq. [20] clearly shows that the peak shear stress of CNK
loading path can be predicted from the peak shear stress 
obtained under the CNS loading path ( p_CNS) either from 
direct shear tests or from a calculation with Eq. [13] and 
knowing the CNK peak dilatancy angle, ip*. Indeed, in Eq. 
[20] only ip* is difficult to obtain without doing any
experiment. To make this generalized failure criterion
practical, it is necessary to propose a relationship to
predict the CNK peak dilatancy angle, ip*. It was found 
from our experiments (Belem 1997; Lefêvre 1999) that for 
a given ni, the observed peak dilatancy angle for the CNS 
loading (ip) is always greater than the peak dilatancy angle 
for the CNK loading (ip*) due to the effect of the normal 
stiffness K. The CNK peak dilatancy angle, ip*, can be 
predicted by the following exponential model: 

c
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where ' is a constant depending on the joint surface 
morphology and the number of cycles of shearing. The
constant ' is given as follows:
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Substituting Eq. [22] into Eq. [21] yields:
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Figure 4. Theoretical cyclic shear strength curves predicted by Eq. [18] 
for an undulated joint sheared under CNK loading path at three 

different K values ( c = 75 MPa, b = 34°, s = 10 , ka = 0.21, DRr = 

0.023, a0 = 2mm, Us
o = 10mm, n = 10, Us

max = 400mm). 
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Figure 5. Theoretical directional shear strength curves predicted by Eq. 
[19] for an undulated joint sheared under CNK loading path at K value

of 3 MPa/mm ( c = 75 MPa, b = 34°, s = 10 , ka = 0.21, DRr = 0.023, 

a0 = 2mm, Us
o = 10mm, n = 10, Us

max = 400mm). 

Figure 4 shows the predicted peak shear stress curves for 
a mortar joint with undulated surfaces after ten cycles of 
shearing under constant normal stiffness (CNK) loading 
path at a K value of 2 MPa/mm. 

Figure 5 shows the predicted directional peak shear stress 
curves for a mortar joint with undulated surfaces after one 
cycle (first cycle) of shearing under CNK loading path at K
value of 3 MPa/mm. Again, the direction  = 0° is the one 

perpendicular to the joint surface undulations and the 
direction  = 90° is the one parallel to the joint surface 
undulations.

5. APPLICATION OF THE PROPOSED CRITERION
TO EXPERIMENTAL DATA

In order to verify the proposed generalized directional 
shear strength criterion (Eq. [19]), monotonous and cyclic
direct shear tests were performed on two types of dilatant 
joints: a natural rough schist joint mortar replica and a 
man-made undulated mortar joint (Belem et al. 2002). The
man-made undulated joints underwent 10 cycles of 
shearing and the natural schist joint replicas underwent
monotonous shearing. Tests were performed under CNS
loading path with normal stress n ranging from 0.3–6 
MPa and the shearing direction  = 0°, while the CNK 
tests were performed at K values ranging from 0.16–2 
MPa/mm and ni ranging from 0.4–2 MPa.

Figure 6 presents the CNS peak shear stress predicted by
the proposed generalized directional shear strength 
criterion (Eq. [19]) for the undulated mortar joint. From this
figure there is very good agreement between observed 
and predicted data. 
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Figure 6. CNS loading path peak shear stress predicted by Eq. [19] for

the regularly undulated mortar joint ( c = 75 MPa, b = 34°, s = 10 ,

ka = 0.21, DRr = 0.023, a0 = 2mm, Us
o = 10mm, n = 10, Us

max = 
400mm).

Figure 7 presents the observed peak shear stress of the 
natural schist joint mortar replica (Figure 7b) and the 
undulated mortar joint (Figure 7a) compared with the 
generalized directional shear strength criterion (Eq. [19]), 
and Barton (1973), Ladanyi & Archambault (1969) and
Saeb (1990) shear strength criteria. One can observed 
that Eq. [19] is in good agreement with the observed data. 

Session 8F
Page 6



(a)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7
Initial normal stress ni (MPa)

P
ea

k
 s

h
ea

r
st

re
ss

p
(M

P
a)

Saeb 1990 (i0 = s)Ladanyi &

Archambault 1969

(i0 = s)

Generalized directional shear strength

criterion (Eq. [19]): K = 0, = 0°

Barton 1973

(calculated JRC = 10)

Experiment (1srt cycle) (a)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7
Initial normal stress ni (MPa)

P
ea

k
 s

h
ea

r
st

re
ss

p
(M

P
a)

Saeb 1990 (i0 = s)Ladanyi &

Archambault 1969

(i0 = s)

Generalized directional shear strength

criterion (Eq. [19]): K = 0, = 0°

Barton 1973

(calculated JRC = 10)

Experiment (1srt cycle) (b)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3
Initial normal stress ni (MPa)

P
ea

k
 s

h
ea

r
st

re
ss

p
(M

P
a)

Saeb 1990 (i0 = s)

Ladanyi & Archambault

1969 (i0 = s)

Barton 1973

(calculated JRC = 14)

Generalized directional shear strength

criterion (Eq. [19]): K = 0, = 0°

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3
Initial normal stress ni (MPa)

P
ea

k
 s

h
ea

r
st

re
ss

p
(M

P
a)

Saeb 1990 (i0 = s)

Ladanyi & Archambault

1969 (i0 = s)

Barton 1973

(calculated JRC = 14)

Generalized directional shear strength

criterion (Eq. [19]): K = 0, = 0°

Figure 7. Comparison of the CNS loading path shear test results and the peak shear stress predicted by three shear strength criteria and compared

to the generalized directional shear strength criterion (Eq. [19]: (a) for the undulated mortar joint; (b) for the natural schist joint mortar replica ( c = 

75 MPa, b = 34°, s = 12 , ka = 0.43, DRr = 0.045, a0 = 8.7mm, Us
o = 20mm, n = 1/4, Us

max = 20mm). 

Figure 7 also shows that the three other failure criteria 
overestimate the peak shear stress of the undulated joint 
(Figure 7a), while for the schist joint replica the Barton’s
criterion overestimates peak shear stress contrary to 
Ladanyi & Archambault’s and Saeb’s criteria which slightly
underestimate the joint shear strength (Figure 7b).

Figure 8 compares the CNK test results obtained on the 
undulated schist joint mortar replicas at two initial normal 
stress ( ni = 2 and 3 MPa) and normal stiffness (K = 1 and 
2 MPa/mm). A good agreement between Eq. [19] 
prediction and experimental data is observed. 
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Figure 8. Comparison of the CNK loading path test results and the 
predicted curves by Eq. [19] for the undulated mortar joint.

6. DISCUSSION 

The Barton’s criterion is not in good agreement with the 
observed data even if the JRC values are obtained from 
the joint roughness profiles Z2 values. Good agreement 
between the Barton’s criterion and the experimental data 
is observed by using either back-calculated JRC value 
from the low normal stress ( n = 0.4 – 0.5 MPa) peak 
dilatancy angle or fictitious JRC values. This is a limitation
of the Barton’s criterion compared to the proposed 
generalized directional shear strength criterion which uses 
initial fixed values corresponding to the test sample 
properties and shear test characteristics. The efficiency of 
Barton’s criterion depends mainly on the single JRC 
value, which is very difficult to accurately determine due to
the subjectivity in its definition. Even if the Barton’s 
criterion is widely used worldwide because of its simplicity
and ease of use, the model’s prediction capacity is 
diminished due to the empirical nature of JRC. The
usefulness of this generalized directional shear strength 
criterion (Eq. [19]) is its ability to account for the cyclic
shear behavior of the rock joint. Currently, the authors 
know of only one shear strength model which is able to 
quantify the effects of cyclic shearing and the shearing 
direction.

7. CONCLUSION 

Based on surface roughness parameters previously
defined by the authors (see Belem et al. 2000), a 
generalized directional shear strength criterion was
proposed to predict moderate to marked dilatant shear 
strength behavior ( p( ni, K, )) of rock joints under both 
constant normal stress (CNS) and variable or constant
normal stiffness (CNK) loading paths for monotonous and 
cyclic shearing. This model successfully predicted the 
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CNS and CNK shear strength of tested samples. The 
efficiency of the proposed shear strength criterion is due 
to the fact that the model takes into account (i) joint initial 
morphological parameters (ka, s, DRr, a0), (ii) shearing 
characteristics (Us

o, n cycles, ) and, (iii) joint material 
properties ( b, c).
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