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ABSTRACT 
In most slope stability analyses that use for example limit equilibrium methods or the upper bound approach, an 
important step is to search for the most critical failure mode and corresponding global minima of the factor of safety. 
Optimisation methods are generally used to accomplish this task. Conventional optimisation methods, however, only 
accept downhill steps and sometimes get trapped into a local minimum. The simulated annealing method may accept 
both downhill and uphill steps in searching for the critical failure mode, thus finding the global minima of the factor of 
safety. Although simulated annealing has been widely used to solve multi-extreme problems in other disciplines, the 
application of the method to geotechnical engineering problems is rarely reported. This paper presents procedures and 
applications of the simulated annealing method for slope stability analysis. In particular, the paper discusses how to 
choose a suitable cooling strategy, random steps and stopping criterion. These are the core issues of the simulated 
annealing method. Application of the simulated annealing method to two illustrative examples is presented.  A 
comparison is made between the simulated annealing method and the random-search simplex method. The advantages, 
effectiveness and limitation of the simulated annealing method are presented and discussed. 

RÉSUMÉ
Dans la plupart des méthodes de stabilité de pente, comme celles d'équilibre limite ou l'approche par borne supérieure 
(analyse limite), la recherche de la surface de glissement critique est une étape de grande importance. Car c’est à cette 
surface critique que correspond le minimum global du facteur de sécurité. Les méthodes d'optimisation sont 
généralement employées pour accomplir cette tâche. Cependant, les méthodes conventionnelles d'optimisation sont 
contraintes à chercher seulement suivant des pas descendants. Ainsi, parfois, elles se prennent au piège d’un minimum 
local. La méthode du recuit simulée, sous certaines réserves, accepte des pas ascendants en plus des pas descendants. 
Elle permet ainsi la découverte du minimum global du facteur de sécurité. Bien que le recuit simulé ait été largement 
employé pour résoudre des problèmes à extremums multiples dans d'autres disciplines, l'application de la méthode à des 
problèmes géotechniques est rarement rapportée. Cet article présente une application de la méthode du recuit simulé au 
problème de l'analyse de stabilité des pentes. L'article discute du choix d’une stratégie appropriée pour le 
refroidissement, les pas aléatoires et le critère d'arrêt. Ces questions sont fondamentales à la méthode du recuit simulé. 
L'application de la méthode du recuit simulé à deux exemples explicatifs est présentée. Une comparaison est faite entre 
la méthode du recuit simulé et la méthode du simplex à recherche aléatoire. Les avantages, l'efficacité et les limitations 
de la méthode du recuit simulé sont identifiés et discutés. 

1. INTRODUCTION 

A number of methods exist for slope stability analysis, 
including limit equilibrium methods (Bishop 1955, Janbu 
1957,  Morgenstern and Price 1965, Spencer 1967) and 
the upper bound method (Chen 1975, Michalowski 1995, 
Donald and Chen 1997). Due to assumptions regarding 
distribution and inclination of interslice forces, limit 
equilibrium methods do not yield a unique solution to the 
factor of safety. Recently, application of the upper bound 
theorem of limit analysis to slope stability analysis was 
made extensively (Chen 1975, Michalowski 1995, Donald 
and Chen 1997).  In either method, limit equilibrium or 
upper bound, an important step is to search for the most 
critical failure mode and the global minima of the factor of 
safety. This may be performed by using optimisation 
methods.

In this paper, the upper bound method combined with the 
simulated annealing algorithm is used to search for the 

most critical failure mode. The upper bound analysis for 
slope stability problems generally involves two steps: (1) 
introduce a kinematically admissible failure mode within 
which the work-energy-balance equation is established 
and the factor of safety is the only one unknown in the 
equation which can be solved by iteration; (2) repeat step 
1 to generate a large number of kinematically admissible 
failure modes among which the minimum of the factor of 
safety and the corresponding critical failure mode can be 
obtained. When the work-energy-balance equation is 
established, the main burden to the upper bound analysis 
is to search for the most critical failure mode by using an 
optimisation method. 

Generally, optimisation methods for locating the critical 
slip surface in literature are locally convergent. The 
random search technique is incorporated into 
conventional optimisation methods to improve global 
convergence. However, when an optimisation problem 
involves many degrees of freedom and the slope profile 
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contains many different soil layers, conventional 
algorithms may suffer from a premature termination at 
which the solution is not actually the global minimum. A 
technique called “simulated annealing method” has 
attracted significant attention (Kirkpatrick et al. 1983, 
Bohachevsky et al. 1986). The simulated annealing
method may step out of a local minimum with a technique
that allows deteriorating (or uphill) steps through an 
accepting criterion. Thus, the simulated annealing method 
is likelier to approach the global solution in comparison to
conventional methods. 

The objectives of this paper are: (a) incorporating the
globally convergent simulated annealing method into the 
upper bound analysis to find the most critical failure mode 
and the associated global minimum factor of safety, and 
(b) comparing the simulated annealing method with the 
random-search simplex method (Chen 1992). 

2. DEFINITION OF THE OPTIMISATION PROBLEM 
IN THE UPPER BOUND APPROACH 

The upper bound theorem of limit analysis is a useful tool
to solve geotechnical problems. For slope stability
analysis, the potential sliding mass is generally induced to 
the plastic limit state by mobilizing the strength 
parameters reduced by factor of safety F. Thus, the factor 
of safety, rather than surface loads, is the upper bound to
the true value of solution.

An example of a schematic failure mode is shown in Fig.1.
The slip surface is divided by a number of nodal points, 
which are connected by straight lines or smooth curves.

Coordinates of i-th nodal point are denoted by .
The inclination of wedge side associated to the i-th nodal 
point is designated as 

)y,x( ii

i, which is positive clockwise from 
positive y axis. According to different movement
characteristics of nodal points on a slip surface (such as
A-B-C-D-E-F in Fig.1), the nodal points are classified into 
two categories: 

(a) Unconstrained nodal points. This type of nodal point 
can move in any direction, the abscissa xi and 
ordinate yi are indeterminate. Points B and E as 
shown in Fig. 1 are examples of unconstrained nodal 
points.

(b) Constrained nodal points. Very often, development 
of a failure mechanism is controlled by the presence 
of a weak seam or structural joint. In this case, such
as the points C and D in Fig. 1, nodal points are 
constrained to move along a specified direction (i.e. 
the weak seam). Coordinates of these nodal points 
are dependent. In addition, the head and end nodal 
points of a slip surface, such as Points A and F in
Fig.1, are constrained to move along the slope 
surface. In both cases above, if the abscissa xi is 
given, the ordinate yi is constrained to follow the
prescribed direction and can be expressed as 
function of xi and the unit vector. Therefore,
constrained nodal points involve only one degree of
freedom, which is chosen for simplicity as the
abscissa xi.
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Figure 1. A kinematically admissible failure mode 

In addition, the inclinations  of interslice sides are varied
during optimisation. This adds a degree of freedom per 
interslice side. Suppose that there are k number of 
unconstrained nodal points and l number of constrained
nodal points for a slip surface (such as A-B-C-D-E-F in 
Fig.1). The k unconstrained nodal points are represented 
with the coordinates xi and yi (i=1, 2, …, k). The l
constrained nodal points are denoted by abscissas Xi, i=1,
2, …, l. The inclinations associating with the nodal points 
except for the head and end nodal points for the k+l nodal 
points are denoted by i, i=1, 3, …, k+l-2. The factor of 
safety F for slope stability analysis or the loading factor
for bearing capacity analysis can then be expressed as a 
function with respect to x1, y1, x2, y2, …, xk, yk for k
unconstrained nodal points, X1, X2, …, Xl for l constrained 
nodal points and 1, 2, …, k+l-1 for k+l-2 nodal points. In 
this case, therefore, the number of degree of freedom for 
this failure mechanism totals to 3k+2l-2. Generally,
variables x1, y1, x2, y2, …, xk, yk; X1, X2, …, Xl; 1, 3, …, 

k+l-2 define a space of n=(3k+2l-2) dimensional variables.
For convenience, a vector Z is introduced, whose
components are given by

T
lklkk

T
lk ),,,;X,,X,X;y,x,y,x,y,x()z,,z,z( 22121221122321Z [1]

Thus, the factor of safety F  is a function

),,,;X,,X,X;y,x,y,x,y,x(F

)(FF

lklkk 221212211

Z [2]

To guarantee generation of a kinematically admissible 
failure mode, some constraint conditions must be 
introduced explicitly and implicitly. Referring to Fig. 1, the 
five nodal points connecting the slip surface are arranged
in the sequence of A-B-C-D-E-F.  Therefore, the following
inequality should be satisfied.

FEDCBA XxXXxX [3]

The intersection point of inclined interslice sides should 
locate outside the sliding mass or at least at the slope
surface rather than inside it. For example, point G, at the 
intersection of lines DD  and EE , is outside the sliding 
mass and is thus validated and accepted. However, point 
H, at the intersection of interfaces BB  (dash line in Fig. 1) 
and CC , is inside the sliding mass, and is thus non valid
and rejected. For such a case, the generated failure mode 
is not kinematically admissible and is thus discarded from 
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the analysis.

The slip surface, which is generated by connecting nodal 
points with straight lines or splines, is required to be non-
concave. Thus, a point over the interval bounded by any
two nodal points along the slip surface must fall below the
straight line passing through the two nodal points. The
inclination of the base of the i-th wedge is defined as i

and is positive anti-clockwise from the positive x axis (as 
shown in Fig. 1). Subscript i in i is increased from 1 to 
k+l-2.

Thus, when the coordinates of nodal points and their 
associated interslice side inclinations are varied while
satisfying constraints implicitly or explicitly, a large number 
of kinematically admissible failure modes may be 
generated. For each kinematically admissible failure 
mode, the factor of safety F can iteratively be determined 
by Eq.2. There are a large number of different 
kinematically admissible failure modes and thus a large
number of corresponding factor of safety values. An 
optimisation algorithm must therefore be incorporated into 
the upper bound computer code to search the critical 
failure mode and its associated factor of safety F.

3. SIMULATED ANNEALING METHOD

The simulated annealing method is a technique for 
combinatorial optimisation problems with multiple 
extremes, such as the well-known N-city traveling 
salesman and computer circuit design problems
(Kirkpatrick et al. 1983, Bohachevsky et al. 1986). This
method can step out local extremes with a specified
accepting probability allowing the uphill steps in the 
optimisation process compared to those optimisation 
algorithms accepting downhill steps only.

Traditional optimisation methods are similar to the quickly
cooled process for a liquid metal, greedily searching for
the minima in the downhill direction from the initial starting 
points. The searching scheme, sometimes, leads to a 
local rather than the global minimum (Press et al. 1986).
The simulated annealing algorithm, however, adopts a
technique that allows uphill steps to be accepted by a
specified accepting probability to avoid the occurrence of 
local traps. 

The simulated-annealing method for optimisation 
problems begins with selecting a starting point, Z0, and 
making a random step Z, which is generated by a 
particular technique that will be discussed later. At each 
step, change F in objective function F is evaluated.

)(F)(FF
00
ZZZ                                             [4]

If the value of the objective function F is reduced, that is, 
F <0, the random step is accepted and Z0+ Z is taken

as a new starting point for the next random step. 
However, if the value of the objective function is 
increased, F >0, the random step may still be accepted 
based on an auxiliary judgment. A random number  is 
generated from the uniform distribution over (0,1) and 

compared to the value of ]T/Fexp[ . The random 

step in the case of F >0 is accepted if 
< ]T/Fexp[ , otherwise the random step is rejected

and a new random step is attempted. The parameter T
plays the role of temperature similar to that in physical
annealing. At a given value of temperature T, a number of 
accepted random steps are required. The number of steps 
required depends on the magnitude of temperature T. For 
the optimisation problems with multi-minimums, as T is 
decreased slowly enough rather than quickly, the objective 
function can avoid to be trapped into local minima and
finally reach the global minimum. The reason is that the 
condition  < ]T/Fexp[ allows detrimental steps that 

lead to increase in the value of objective function. 

Thus, procedures of a simulated annealing algorithm for 
an optimisation problem are (a) defining the objective 
function; (b) constructing a practical random-step scheme; 
(c) choosing a cooling strategy (especially, selecting a 
starting temperature and rules to determine when the
current temperature should be lowered and how much);
(d) determining a stopping criterion under what conditions 
the optimisation process is terminated. 

3.1 Cooling Strategy

The cooling strategy, which is designed to control the 
optimisation process (annealing process), consists of: (a)
the initial starting temperature, T0, (b) how to reduce the 
temperature to satisfy the slow annealing characteristics 
of optimisation, (c) how many random steps are taken at 
each given value of temperature. In addition, the cooling 
strategy is dependent upon optimisation problems and
must be determined by a certain number of tests for a
particular type of problems.

The starting temperature, T0, should be sufficiently high to 
allow uphill moves away from local minima (Kirkpatrick et
al., 1983). But too high temperature will accept more
deteriorating random steps that will decrease efficiency
and waste computing time. A recipe for determining a 
reasonable starting temperature, therefore, is needed.
Before starting simulated annealing, a number of random 
walks in accepted variable space (generally 100 or higher) 
are generated to determine the maximum Fmax and the
minimum Fmin of the objective function. Thus, the starting
temperature T0 is defined as 

minmax FFT0 [5]

The temperature during optimisation is reduced by a
damping function, that is, 

k
Tk )(TT 0                                                                     [6]

where Tk is temperature T decreased k times from the 
starting temperature, T0. At each temperature Tk, m

random steps are simply carried out. Constant T is 
referred to as a temperature damping factor. It is in the
range of 10 T  and should be chosen by trial and 
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error (Vanderbilt and Louie 1984). Thus, the cooling 
strategy presented here is: (a) begin with a starting 
temperature, T0, determined by Eq.5, (b) decrease the
temperature by Eq.6, and (c) carry out a fixed number of
m random steps at each temperature. 

3.2 Random Step Z

Since simulated annealing is a powerful stochastic 
technique for optimisation problems, the optimal
magnitude and direction of random steps are not known in 
advance during optimisation. The steps, which are too 
small, will most likely be accepted and be inefficient in 
exploring the variable space. The steps, which are too 
large, will most likely be rejected and time consuming. In 
either step, there is little information available for 
determining a reasonable random step for the simulated 
annealing algorithm. Hence, to find a better minimum
value of the objective function and save computing time, it
is crucial to determine appropriate random steps for
continuous optimisation. Generally, determination of 
random step Z involves choosing a randomly generated
direction and a reasonable magnitude for the step. 

As proposed by Bohachevsky et al. (1986), the procedure 
for choosing the direction of a random step is to generate 
n random numbers (corresponding to the n dimensional 
variables of Eq. 2), v =(v1, v2, …, vn), from the uniform 
distribution on [ 1,1]  and to convert them into direction 
cosines u =(u1, u2, …, un), where

                                                            [7]21

1

2 /
n

i

iii )v(vu

Assume that the area of interest, , of the optimisation 
problem, can be represented by a finite set, which is taken
to be a hypercube defined by upper and lower bounds on
each variable 

}n...,,i,zzz{ u
ii

l
i 1Z                                       [8]

To take into account unevenness in size of the domain of 
each optimisation variable, positive constants, i (i=1, …, 
n), are proposed 
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The magnitude of random step, r, is decreased with
temperature by a damping function, but fixed at 
temperature Tk. The magnitude of random step, rk, at 
temperature Tk, is defined as 

1
0

k
rk )(rr                                                            [10]

where r is the random damping factor, 0< T < r <1.

0r is the initial value of a random step, which is

dependent on the properties of the objective function, the 

desired accuracy and resolution. Accordingly, the 
component of a random step, rk, in the direction of
variable zi is defined as 

n...,,,iurz ikii 21                                  [11]

3.3 Stopping Criterion

Specification of a satisfactory termination criterion is the 
difficult part of the simulated annealing method. When the 
optimal value of an objective function is known in
advance, the stopping criterion is defined in terms of the
relative deviation in values of the objective function 

f
min

min

F

FF
                                                            [12]

where <F> is the average of values of the objective 
function evaluated by the successful random steps 
satisfying F <0 or  < ]T/Fexp[ in the case of F

>0 at temperature Tk, Fmin is the minimum of the objective
function before temperature Tk+1, and f is the allowable
error for the objective function (generally, f =1.0 10-5).

To prevent that Eq.12 is not satisfied during the 
optimisation and an infinite loop occurs for a given 
problem, further stepping search is chosen to stop when
temperature Tf is less than an allowable error T

(generally, T =1.0 10-6). Thus, the auxiliary stopping
criterion is

TfT                                                                                [13]

4. SIMULATED ANNEALING ALGORITHM

After setting the strategy for random walks and cooling for 
a specific optimisation problem, steps of the simulated
annealing algorithm used for optimisation problems may
be described as follows:

(a) Choose a starting point Z0 randomly or judiciously
on the basis of some knowledge of the problem and 
determine the corresponding value of objective 
function F(Z0) and initial temperature T0 according to 
Eq. 5, set Fmin= F(Z0);

(b) Generate a small random walk Z based on Eq.11;

(c) Calculate the change in values of the objective 
function at any position in space of continuous 
variables )(F)(FF

1-kk
ZZ , and if F(Zk) <

Fmin, then Fmin = F(Zk);

(d) Check the number of random walks mk at 
temperature Tk, if mk m continue, otherwise, check
the stopping criteria in Eqs.12 and 13;
If satisfied, stop the search;

 Otherwise, k=k+1 and calculate temperature and 
step damping factor T, r, next value of temperature 
Tk+1, the magnitude of random step, rk ; 
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(e) For F 0 set Zk+1=Zk+ Z, increment k by 1 and go
to step (2); 

(f) For F>0 calculate the value of ]T/Fexp[ k .

Generate a random number  in the range of 0< <1,
form specified distribution on [0,1] (uniform
distribution in most cases), and compare:
If ]T/Fexp[ k < , the random step is rejected 

and go to (b);
If ]T/Fexp[ k , the random step is accepted, 

set Zk+1=Zk+ Z, increment k by 1 and go to (b). 

5. CALCULATION OF THE FACTOR OF SAFETY

As mentioned before, the factor of safety for slope stability
problems is defined as a function of coordinates of nodal 
points on a slip surface and associated inclinations of 
interfaces between wedges. Although a set of variables, 
which must satisfy the kinematically admissible condition, 
corresponds to one value of the factor of safety, there is 
still no analytical relationship between the minimum factor 
of safety and the variables. Based on the upper bound 
theorem, the work-energy-balance established on the 
kinematically admissible failure mode serves as the bridge 
between the factor of safety (an objective function) and
those variables. Fig. 2 shows an n-wedge failure mode for 
the slope stability analysis using the upper bound theorem 
of plasticity. The work-energy-balance equation in this
general failure mode is written as (Donald and Chen 1997,
Wang 2001) 
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where ce and e are the mobilized cohesion and friction 
angle respectively. The subscript “e” denotes the strength 
parameters, which have been mobilized using the factor of

safety F, that is, 
F

c
ce  and 

F

tan
tan e . In Eq.14, Wi,

 and are weight of i-th slice, the component of the i-

th surface load acting on the slope surface in x and y
directions, respectively. It is noted that in Eq.14 “i” stands 
for the physical quantities associated with i-th wedge block 
and  “j” stands for parameters and forces at the j-th
interface and others without “j” means the parameters and
forces at the base of the slice (i.e. on the slip surface).

i
xT

i
yT

It should be noted that all geometrical parameters in 
Eq.14 are related to the vector Z defined in Eq.1.  Thus for 
a kinematically admissible failure mode, the factor of

safety, is the only unknown in Eq.14 and can be obtained 
iteratively.

Figure 2. An illustration of n-slice failure mode 

6. APPLICATION AND COMPARISON 

Example1 A two-layer soil slope with a two-wedge failure
mode

Figure 3 shows a horizontal 1 to vertical 1 slope with two
soil layers. The horizontal interface between the two soil 
layers is 5 m deep from the slope top. The strength 
parameters and unit weights for the two types of soils and
other geometric properties are presented in Fig. 3. The
failure mode for the two-layer soil slope consists of two
wedges, that is, triangles ABE and BEF. In the process of
generation of kinematically admissible failure modes for 
this example, Point A is fixed at (0,0), Point E, which is 
denoted by coordinates (xE, yE) can move freely, Point F
denoted by (xF, 10) is only allowed to move along the top 
surface. The failure mode, therefore, includes 3 degree of 
freedom, that is, xE, yE, xF. To guarantee the generated 
failure mode is geometrically admissible and the slip 
surface is non-concave, the following relationship must be 
satisfied

EF

E

E

E

xx

y

x

y 10
                                                                 [15]
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Figure 3. Two-wedge failure mode for two-layer soil profile 

In addition, point F should not overlap points B and E.
Application of the simulated annealing method involves 
the following steps: 

(a) Select a searching area that approximately covers the 
critical failure mode by experience and determine the 
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lower and upper bounds on each degree of freedom.
The searching area for Example 1 is the area 
surrounded by straight lines AB, BC, CD and AD.
According to the searching area, the lower and upper 
bound of the variables can be determined and
presented in columns 1 and 2 in Table 1. The failure
mode generated should be located between the two
bounds and satisfy the kinematically admissible
conditions of the geometry (such as Eq.3 and so on). 

(b) Choose suitable values for temperature damping 
factor, T, number of random steps, m, at each 
temperature Tk, and random damping factor r. The
principal criterion for the selection of these 
parameters is to guarantee the global extreme to be 
approached in much less time and be achieved
generally by trial and error for a specific example.
For simplicity, in Example 1, T=0.9, r=0.98,
m=150.

(c) Determine the initial magnitude of a random step.
If is designated to denote the maximum 
difference between the upper and lower bounds on 
the variables. 0r  is generally taken as 

5020
0r (Wang 2001). Figure 4 shows

variations of the factor of safety with the optimisation 
process for different value of 0r = 0.1, 0.2, 0.3 and 

0.4. Fig. 4(a) shows that the simulated annealing 
method is likely to give a local minimum when 0r  is 

taken as a small value. Figs. (b), (c) and (d) show
that it is likely for simulated annealing to locate the 
global minimum when using a relatively large value 
of the initial random step as recommended
previously. In Example 1, 0r  is taken as 0.3 in the 

following analysis. It can be also seen from Fig.4 that 
the simulated annealing method accepts not only the
downhill random steps (decreasing F) but also the 
uphill random steps (increasing F).  However, the 
disadvantage is that approaching the global 
minimum takes much more time than for other 
conventionally used optimisation methods. 

(d) Choose an initial or seed failure mode.
Since simulated annealing is designed for multi-
extreme problems, choice of the initial or seed failure
mode should not affect the final solution. Starting
from the seed failure mode (Case 1 in Table 1 and
Fig.4c), 100 successfully generated random steps 
give 0.60 for initial temperature T0. Then using the 
simulated annealing algorithm proposed in the 
preceding section, the final global solution to the 
factor of safety is obtained as 1.616. 

Figure 5 presents changes in the factor of safety during 
the optimisation process (successful iteration number). It 
shows that the factor of safety decreased steadily during 
optimisation to finally reach 1.616, which is considered to 
be the global minimum of Example 1. 

Table 1. A summary of initial estimates on failure 
mechanisms
- + Case

1
Case

2
Case

3
Case

4
Local Global

xE 0 20 5.0 10.0 15.0 17.0 11.40 11.99
YE 0 10 1.0 1.0 2.0 4.0 4.68 5.48
xF 10 20 12.0 13.0 17.0 19.0 16.55 16.08
F - - 3.190 2.493 2.142 2.060 1.620 1.616

Figure 4. Changes in the factor of safety during 
optimisation
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Figure 5. Changes in the factor of safety during 
optimisation with random-search simplex method 
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One of the important characteristics for so-called globally
convergent optimisation methods is that the final solution
to the global minimum is independent of the starting point 
in the variable space. To compare convergence to the 
global minimum for Example 1 between simulated
annealing (globally convergent method) and the simplex
method (locally convergent method), four different starting 
points (Cases 1 to 4) in the variable space (as shown in
Fig. 6 and listed in Table 1) are considered. Simulated 
annealing gives Ffinal=1.616 whatever the four studied 
seed failure modes. Simplex method gives Flocal=1.620 for 
Cases 1 and 2, and Ffinal=1.616 for Cases 3 and 4. The
two failure modes for Flocal=1.620 and Ffinal=1.616 are 
shown in Fig. 6 and summarized in Table 1. 
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-3 2 7 12 17 22x (m)

y (m)

A (0,0)

B (10,10)

(5,5)

Case 1

Case 2
Case 3

Case

Filaure mode

for F=1.616

Failure mode

for F=1.620

Figure 6. Different initial or seed failure modes (Cases 1, 
2, 3, 4), local critical failure mode (F=1.620), and global
critical failure mode (F=1.616).

Example 2:  A slope with three soil layers

To further illustrate the feasibility of the simulated 
annealing method in searching for the most critical failure
mode for a slope with a complicated soil profile and to 
compare with the random-search simplex method, a
three-layered soil slope with a phreatic line is presented in
Figure 7. The effective soil strength parameters for 
different soil layers are listed in Table 2. The potential slip 
surface in this example is approximated by four nodal 
points A, B, C and D connected by smooth curves. Point A 
is only allowed to move along the slope surface; Points B
and C move independently; Point D is also specified to 
move along the top horizontal slope surface. In order to 
increase calculation accuracy, the slip surface is further 
divided into 16 points by interpolation. Since the newly
added nodal points by interpolation do not provide
additional degrees of freedom, the failure mode for 
Example 2 has 8 degrees of freedom, that is, XA, xB, yB,

B, xC, yC, C, XD. The initial failure mode represented by
the 8 variables is presented in Fig. 7 and the values and 
associated factor of safety are listed in Table 3. 

Table 2 The soil strength parameters for Example 2
c (kN/m2)  ( )  (kN/m3)

Soil layer 1 0.0 32.0 19.5
Soil layer 2 5.3 23.0 19.5
Soil layer 3 7.2 20.0 19.5

When T=0.9, r=0.98, mk=300, 0r =0.23 and the initial 

failure mode in Table 3 are adopted, the simulated
annealing method yields that F=1.154, the random-search 
simplex method gives F=1.170. The critical failure modes
obtained using these two methods are presented in Fig. 8. 

The corresponding critical failure modes are listed in
Table 3.
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Figure 7. Initial or seed failure mode for three-layered soil
slope (example 2).
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Figure 8. Failure modes associated with simulated 
annealing and random-search search methods for 
Example 2.

Table 3. Comparison of the simulated annealing method
with the random-search simplex method.

Initial

failure

mode

Final failure mode

for the simulated

annealing method

Final failure mode for 

the random-search

simplex method

XA (m) 29.50 28.55 28.59

xB (m) 37.94 38.62 37.72

yB (m) 28.97 24.13 24.00

B ( ) 38.00 4.50 6.68

xC (m) 45.76 48.27 48.15

yC (m) 32.88 30.85 29.68

C ( ) 47.90 -33.59 -36.16

XD (m) 51.50 51.19 51.68

F 1.246 1.154 1.170

7. CONCLUSIONS 

The upper bound method as a simple and practical tool is
more and more commonly appreciated and widely used in
geotechnical engineering. Since the upper bound theorem 
only guarantees the solution is an upper bound to the 
“true solution”, powerful optimisation techniques must be
integrated to search for the minimum value of the “upper
bound” solutions. This is especially true when problems
concerned involve complicated geometries and different 
soil strength parameters. Simulated annealing is 
considered to be a so-called globally convergent 
optimisation procedure (Kirkpatrick et al. 1983, 
Bohachevsky et al. 1986). In this paper, simulated 
annealing is applied to solve the optimisation problem 
involved in upper bound analysis. Two applications of
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simulated annealing applied to upper bound analysis are 
presented and compared to the random-search simplex 
method proposed by Chen (1992). 

Based on this study, analysis and comparison, the 
following conclusions may be drawn: 

(a) The simulated annealing method allows deteriorating 
or uphill steps to be accepted with a special 
accepting criterion.  This is different from the 
conventional optimisation methods, which allow only 
downhill steps. Thus, the simulated annealing 
method may step out local minima traps and is able 
to approach the global minimum value of an 
objective function and locate the corresponding 
critical failure mode. 

(b) Compared with the random-search simplex method, 
simulated annealing is more likely to obtain a 
solution closer to the true global minimum. 

(c) Since simulated annealing is an analogy to metal 
annealing in nature, the method would take much 
more time to approach the global minimum than if 
using conventional methods, although these may 
give a local minimum. 
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