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ABSTRACT
Laboratory tests, using the hollow cylindrical apparatus, demonstrated the deviation between the principal stress and
strain increment directions in granular media. This paper presents a state dependent bounding surface plasticity model
which able to simulate sand response under loading in hollow cylindrical apparatus during rotation of principal stress
directions by using a plastic potential to define the plastic strain increment direction. The model uses a non-associated
flow rule and a modified type of plastic modulus, which capable to generate plastic strain in the constant shear stress
paths. Model simulations show reasonable agreement with the laboratory tests in the undrained and p-constant drained
tests.

1-INTRODUCTION

Experimental studies, using hollow cylindrical apparatus
which allows full rotation of principal stress directions,
have been shown the significant deviation (sometimes
more than 30’) between the principal stress and principal
plastic strain increment directions in both loose and dense
sands under monotonic and cyclic drained and undrained
loadings (Ishihara and Towhata, 1983; Symes et al. ,1984
; Mura et al. ,1986) and Wong and Arthur, 1986). 

Many of the constitutive models were formulated based
on the results of the tests, which were conducted by fixed
principal stress directions. As a result, it is clear that using
of such models for loading conditions involving the
rotation of principal stress directions can not be
recommended.

2-DEFINITIONS

Simulation of sand behavior during the rotation of
principal stress directions in the hollow cylindrical
apparatus is the aim of the present study.Due to simplicity
and performance of many existing experimental data for
b=0.5 condition, model was formulated for b=0.5. It must 
be noted that b is the coefficient of intermediate principal

stress and it is defined as: 
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where 1, 2 and 3 are the major, intermediate and minor
principal stresses, respectively.
Value of b generally varies during the shear in hollow
cylindrical apparatus, but as it will be shown later, the 
assumption of b=0.5 does not affect the model
capabilities significantly while this assumption provides
low computational efforts. 

The model is formulated in the X-Y-p stress space, which
is defined as: 
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where X, r, Z, XZ and ZX are the stress components
on specimen in hollow cylindrical apparatus (see Fig.1).

Shear stress in X-Y-p space is simply defined as the
projection of the line connecting the origin to the stress
state on the X-Y plane and can be calculated by the
following equation:
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where,  is the shear stress and q is the principal deviator
stress.

3-GENERAL FORMULATION

According to the elasto-plasticity theory, it is assumed
that the total strain increment is the sum of the elastic and
plastic strain increments, i.e.

pe
 [4] 

Where and are respectively total, elastic and
e, p

plastic strain increments. It must be noted that the dot
sign over a symbol indicates its rate of change with time. 
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Fig. 1. External forces and stress components on hollow

cylindrical  specimen (after Yoshimine et al. , 1998)

It is assumed that the elastic part of sand behavior can be
completely described by the generalized Hook’s law, i.e. 
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Where  is the stress increment tensor, ee and e
vI are

the deviatoric and volumetric parts of the elastic strain
tensor respectively. I is the second order isotropic tensor.

G and K are the elastic shear and bulk moduli, that is
assumed that are function of overall stress level and
some internal material variables like density of the
packing.
The elastic shear modulus, G, is calculated using the
following empirical equation (Richart et al., 1970):
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Where Go is a material constant, pref is a reference
pressure that can be taken as 101 kPa (the atmospheric
pressure) and e is the current void ratio. 

The elastic bulk modulus, K, can be calculated by the
following equation:
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Where v is the poisson’s ratio. In the present study it is
assumed that the value of v remains constant during
loading.

The plastic strain rate tensor can be calculated by

Rp  [8] 

Where R is a tensor defining the direction of plastic strain
and  is the loading index enclosed by the Macauley

brackets ,< >.  can be calculated by the following
equation:
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Where Kp is the plastic modulus and n is the normal to
the yield surface.

4-CONSTITUTIVE SURFACES

According to the concept of Bounding Surface Plasticity
(Dafalias & Popov, 1975; Krieg, 1975) and critical state
framework, formulation of the model developed.

The model consists of three constitutive surfaces.The
first one, called the bounding surface defines all the
possible states of stress in the stress space, while the 
second, called the yield surface, encloses the domain of
elasticity in the stress space and the third one is the
plastic potential which defines the flow direction, R.
Details of each surface is presented in the following.

4-1-BOUNDING (FAILURE) AND YIELD   SURFACES 

Results of a series of p-constant monotonic drained tests 
in hollow cylindrical apparatus under the constant b value
of 0.5 by Gutierrez et al. (1991) on Toyoura sand,
indicated that the failure points defines a circular shape in
the X-Y plane (see Fig.2).

As can be seen in Fig.2, due to the inherently anisotropic
behavior of sand, the bounding (failure) surface is shifted
along the X-direction. Based on experimental observation
on Toyoura sand behavior, it is assumed that the Toyoura
sand behavior is orthotropic and as a result the bounding
surface was not shifted along the Y-direction.

In the present study based on the similar proposition by
Gutierrez et al. (1991 and 1993) the following equation is
used for the bounding surface.
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The term of 
2

p  in the above equation, defines the

location of the bounding surface center in the X-Y plane.

It is interesting that the same equation as  eq.[10] can be
obtained by applying the b=0.5 condition to the
anisotropic type of a Drucker - Prager bounding surface.

Due to the simplicity, a small circular surface is used as
the yield surface in the present model. the following
equation is proposed for the yield surface in the X-Y
plane.
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Fig.2 . Failure points from the monotonic p-constant

drained tests on Toyoura sand along different fixed

principal stress directions (after Gutierrez et al. 1991)
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where p X and p Y define the location of center of the
yield surface in the X-Y plane which can be shifted by
anisotropic consolidation or kinematic hardening or both.

4-2-PLASTIC POTENTIAL

Gutierrez et al. (1991) based on experimental results of
monotonic and cyclic drained tests by hollow cylindrical
apparatus reported that the direction of plastic strain
increment is determined as the normal to the failure
surface at the point where the extension of the stress
increment from the current stress point intersects the
failure surface. Some investigators like Gutierez et
al.(1993) and Cubrinovski and Ishihara (1998) formulated
their constitutive models using above observation.

In the present study due to the experimental observation
suggesting reduction of non-coaxiality of stress and
plastic strain increments in drained p-constant tests
(Gutierrez et al. ,1990), the plastic potential is permitted to
move along the X-axis toward the origin of X-Y plane due
to accumulation of plastic shear strain. Besids, in the
present study the plastic potential size can be given any
other values than the size of the bounding (failure)
surface. However, in the simulation of Toyoura sand 
behavior in the present study, it is assumed that the size
of plastic potential is the same as the size of bounding
surface.
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Fig.3 . Yield, bounding and plastic potential surfaces in the

X-Y plane with the schematic view of flow rule used in the

present study.

In the above equation is the accumulated plastic

shear strain and f is a scalar positive model parameter,
which defines the rate of evolution of location of plastic
potential center in the X-Y plane. Fig.3 shows the
constitutive surfaces in the X-Y plane.

p

5-YIELD AND FLOW DIRECTIONS 

Components of normals to the yield surface and the
plastic potential, n and R, respectively define the loading
and flow directions. They are given by the following
equations in the X-Y-p space :
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Above equations imply that a non-associated flow rule
exists in the X-Y-p stress space.

Rp , which was called dilatancy coefficient, plays an
important role in model simulation. It is observed that the
sand behavior, either dilative or contractive, is highly
depended on dilatancy coefficient. Considering the stress-
dilatancy relationship proposed by Gutierrez et al. (1993)
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and Gutierrez and Ishihara (2000) the equation [15-b] was
used for the dilatancy coefficient in the present model.

In eq. [15-b], A is a model parameter. is the stress ratio,
p is the phase transformation stress ratio that varies as a

function of state parameter, , and direction of principal
stress direction. In this work, p can be calculated by the
following equation:

dp kM exp [16]

Where M is a parameter defines the size of the

bounding surface in each direction. M can be defined
as the distance of the image of the stress state on the 
bounding surface from the origin of the X-Y plane.

As it was said before, is state parameter which was
defined as = e-ec by Been and Jefferies (1985). ec is 
the value of void ratio on the critical state line,
corresponding to the present value of the mean principal
effective stress. 

Referring to equation [15-b] , nc is the non-coaxiality
coefficient that defined as below:

)22cos(nc [17]

Where is the angle of principal plastic strain increment
direction and it can be calculated by:
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6-HARDENING RULE 

Experimental investigations suggest that the size of
elastic zone in normaly consolidated sands is very small.
Therefore, in the present study the isotropic hardening of
the yield surface or the expansion of the yield surface in
the stress space is omitted and it is assumed that the
yield surface undergoes only the kinematic hardening.

To define the hardenig rule, it is necessary to define the
mapping rule or the image of the stress state on the
bounding surface.The image of any stress state is defined
as where the extension of the stress increment in X-Y
plane, crosses the bounding surface.In accordance with
the Mroz’s hardening rule (Mroz, 1967) the instantaneous
translation of the yield surface is related to the distance
between the stress point and its image on the bounding
surface by using a scalar function, .

XXp ; [19]
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where
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in the above equations, plays the role of a scaling factor
which helps to determine the yield surface translation in
the X-Y plane. By imposing the consistency condition to
the yield surface:
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And considering equations [14],[19] and [21], the rate of
change can be determined as below:
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7-PLASTIC MODULUS

According to equation [9] , it is necessary to define the
plastic modulus. Based on Li and Dafalias (2000), the
following equation was proposed for the present model:
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Where H0 , H1 ,kb and n are the model constants. In 
above equation H0 is an initial scalar value modified by
the (1-H1e) factor to impose the effect of void ratio on Kp

(Li & Dafalias, 2000). Effect of principal stress direction is
captured by the last factor to provide the softer response
for larger values of .

8-EXPLICIT FORM OF THE CONSTITUTIVE
EQUATIONS

By considering equations [4],[5],[14] and [15] one can 
has:
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knowing from equation [9] that 
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the loading index is simply calculated as:
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9-MODEL PERFORMANCE

The model has been tested for two sets of tests on
Toyoura sand. The first set of simulations is conducted for

-constant undrained tests in hollow cylindrical apparatus
reported by Yoshimine et al. (1998). The model
parameters in the first part of simulations are given in
Table.1. As it can be seen in Fig.4, the model is able to
predict the response of 5 samples of Toyoura sand with
the same densities during the variation of principal stress
directions from =15’ to 75’. 

To show that the assumption of b=0.5 does not affect the
model capabilities significantly, behavior of 6 samples of
Toyoura sand in simple shear mode has been simulated
(see Fig.5). The model performance is acceptable while
the value of b generally varied from 0.5 to 0.25 in failure,
as it was reported by Yoshimine et al. (1998).

In the second stage of model evaluation, The model
simulations have been compared with the experimental
results of p-constant drained, pure rotational stress path
tests, conducted by Gutierrez et al.(1991) on dense
samples of Toyoura sand with the initial void ratio of
0.711 . 

For the tests with =25’ and =30’

, the direction of

theprincipal stresses rotated from 0 to 90 degree while for
the test with =35’ the principal stress direction were
rotated from 15 to 75 degree to prevent the large
difference in inner and outer cell pressures. It must be 
noted that for simulation of behavior in pure rotational
stress path tests, the model parameters are the same as
those presented in Table.1 except that M=1.095,  = 
0.095, H

)/sin( 3131

1where

0 = 10 and n = 3 . 

Fig.6 shows the comparisons between the experimental
in-plain strain components with the model simulations
during the rotation of the principal stress direction for the
samples with =25,30 and 35’.
For the same tests, comparisons of measured and
predicted values of non-coaxiality during the rotation of
principal stress directions are given in Fig.7.

10-CONCLUSION

A relatively simple state dependent bounding surface
plasticity model was proposed for modeling the non-

Table 1. Model parameters for Toyoura sand used to

simulate the -constant tests reported by Yoshimine et al. 

(1998).

Elastic parameters G0 = 125 

= 0.15

m = 0.05 M

Bounding Surface M = 1.225 

= 0.175

Plastic Potential M  =1.225 ˆ

=0.175 (initial value)ˆ

f  = 10 

Kinematic Hardening H0 = 2.5

  H1= 1 

 n  = 4.0 

State Parameter kd = 3.5

kb = 1.1

Dilatancy A = 0.7 

Critical State Line

70.0

019.0067.0934.0
ref

c
p

p
e

coaxiality of the principal stress and strain increment
directions.

Simulation of sands responses in the hollow cylindrical
apparatus under undrained and p-constant drained tests
has shown that the model is satisfactory capable to take
into account the effects of deviation between the principal
stress and strain increment directions.
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Fig. 4. Comparison of model simulations(Right) with experiments (Left) for influence of principal stress 
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Fig. 7. Comparisons of predicted and measured of non-coaxiality angle, during the rotation of principal stress directions at

different constant mobilized friction angles. (Data by Gutierrez et al. (1993)) 
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