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ABSTRACT
It is well known that the shear strength and deformability of rock joints are affected by scale, particularly joints with rough
surfaces under low to moderate normal stresses. The estimation of the scale effects on joint behaviour is done with an 
approach based on measurements of the asperity angles of the joint surfaces. The approach also makes use of a 
recently developed constitutive model for rock joints, called CSDS, which models the behaviour of rock joints in the pre-
peak and post-peak strength regions. The approach is validated with results taken from the literature. 

RÉSUMÉ
La résistance au cisaillement et la déformabilité de discontinuités rocheuses présentent des effets d'échelle. Ces effets 
sont surtout marqués pour les surfaces rugueuses sous contraintes normales faibles et modérées. L’estimation des 
effets d’échelle sur le comportement des discontinuités est réalisée par une approche basée sur des mesures de l’angle 
des aspérités de la surface des discontinuités. L’approche utilise un modèle constitutif récemment développé appelé
CSDS qui peut représenter aussi bien le comportement des discontinuités en phase pré-pic que post-pic. L’approche est 
ensuite validée à l’aide de résultats tirés de la littérature. 

1. INTRODUCTION

In many situations, the mechanical behaviour of rock 
masses are much more dependent on the mechanical 
properties of the joints as opposed to those of the intact 
rock. For fractured rock masses, failure mechanisms are 
often governed by translational shear along existing joints. 
The understanding of joint shear mechanisms is thus a 
basic tool for a comprehensive description of the complex
mechanical behaviour of rock masses. Recently, a new
model for rock joints, the CSDS model (Complete Stress-
Displacement Surface), has been developed (Simon 
1999, Simon et al. 1999). This model is very
representative of the behaviour of rock joints in the pre-
peak and the post-peak strength regions.

In current practice, the properties of rock joints on a large 
scale are determined either by in situ testing of large
volumes or estimated from laboratory experiments on 
small samples without consideration of the effects of the 
size of the sample. Several researchers (e.g. Barton and
Choubey 1977, Bandis et al. 1981, Barton et al. 1985, 
Muralha and Pinto da Cunha 1990) have shown that the 
strength and deformability of rock joints depends on the 
size of the tested sample. The variation of properties with
size is known as the scale effect. The joint size may affect 
the shear strength, peak shear displacement, shear 
stiffness, and peak dilation angle of non-planar joints (e.g. 
Indraratna and Haque 2000). The size dependence of 
joint behaviour is governed to a large extent by surface 
characteristics such as roughness and wall strength
(Barton et al. 1985). A key factor is the effective asperity
size (Bandis et al. 1981). Thus, a reliable method is
needed for extrapolating laboratory data to larger scales 
that would be representative of in situ characteristics. 

2. THE CSDS MODEL FOR ROCK JOINTS

2.1 Shear stress - shear displacement relationship 

The CSDS model has been developed to fully describe
the behaviour of rock joints in pre-peak and post-peak
phases (Simon 1999, Simon et al. 1999). It can be written
as follows for the shear stress - shear displacement
relationship:

ueexpducexpba [1]

where  is the shear stress (MPa), u is the shear 
displacement (mm) and a through e are model 
parameters, which must satisfy the conditions c < e and
a, b, c, d, e > 0. These parameters can be determined 
from the following relationships: 

a = r [2]
b = d - a [3]
c = 5 / ur [4]

Parameters d and e can be obtained by solving the 
following equations: 
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In these equations, r is the residual strength, p is the 
peak strength, up is the displacement at peak strength and 
ur is the displacement at the onset of r. Equations 5 and 6 
must be solved simultaneously to evaluate the values of 
parameters d and e from a given  - u curve. These can 
be solved by standard iterative methods. When solving 
Equation 5, which has two roots for e, the larger value is 
used to satisfy the condition c < e. More details on the 
development of these equations can be found in Simon 
(1999) and Simon et al. (1999). 

From the above equations, it can be seen that all 
parameters can be determined from four joint 
characteristics, which are the peak and residual shear
strengths ( p, r) and the corresponding displacements (up,
ur). Here the displacements (up, ur) are considered to be 
independent of normal stress n.

The residual shear strength is usually given by a Coulomb 
criterion without cohesion: 

r = n tan r [7] 

where r is the residual friction angle on the joint surface. 
The peak shear strength p can be obtained using any
existing peak strength criterion. Simon (1999) and Simon
et al.(1999) have used the well-known LADAR (Ladanyi
and Archambault 1970) criterion as modified by Saeb 
(1990). The peak shear strength is then given by:

rsrsnp Saitana1  [8] 

where (Ladanyi and Archambault 1970): 
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In the above equations i0 is a parameter that represents 
the initial angle of asperities. T is a transitional stress 
(often taken as the uniaxial compressive strength C0, as 
suggested by Goodman 1976). k1 and k2 are material 
constants for the LADAR model. Ladanyi and 
Archambault (1970) determined experimentally that k1 =
1.5 and k2 = 4.0. as is the ratio of the projected sheared 
asperity surface area to the joint surface area at peak 
strength. Sr is the shear strength of the rock asperities 
with S0 the corresponding cohesion and 0 the friction
angle.

2.2 Normal displacement - shear displacement 
relationship

To describe the normal displacement (v) to shear 
displacement (u) relation, an exponential formulation has 

also been used. This relation can be expressed as (Simon 
1999, Simon et al. 1999): 

uexpv 321
[12]

where 1, 2 and 3 are model parameters. The values of 
these parameters are given by:
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where Vm is the maximum closure of the joint and kni is the
initial normal stiffness of the joint.
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Figure 1. Typical curves obtained with the CSDS model. 

Figure 1 shows curves obtained with the CSDS model. 
The CSDS model can very accurately predict the pre-peak
behaviour and the stress reduction associated with the 
softening behaviour of joints under constant normal 
stress. This model has been applied to several sets of test
data obtained from the literature and the results indicate 
that it is representative of the behaviour of rock joints 
(Simon 1999, Simon et al. 1999). The model can also 
predict rock joint behaviour under constant normal 
stiffness conditions. Simon et al. (2000) showed that the 
constitutive relations used to model discontinuities can 
have a significant influence on mining-induced stresses
around an underground stope, especially when segments
of the discontinuity are loaded beyond their peak
strengths. The need for adequate constitutive relations to 
describe the stress reduction in the post-peak region 
becomes more relevant in the light of these results. The
CSDS model can also be used to estimate the post-peak 
behaviour of intact rock (Simon et al. 2003). 
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3. SIMULATION OF SCALE EFFECTS WITH THE 
CSDS MODEL 

3.1 Observation of scale effects in rock joint 
mechanical behaviour 

The problem of scale effects in rock joint behaviour has 
been studied by several authors (e.g. Bandis et al. 1981, 
Barton and Bandis 1982, Pinto da Cunha 1991; Muralha 
and Pinto da Cunha 1992, Ohnishi et al. 1993), mainly by 
performing direct shear tests on different sized replica 
casts from various natural joint surfaces. The results 
indicate significant scale effects on both the shear 
strength and deformation characteristics. Increasing block 
size or length of joint leads to a gradual increase in the 
shear displacement at peak strength, an apparent 
transition from a brittle to plastic mode of shear failure, 
and a decrease in the peak dilation angle. The joint 
surface somehow appears smoother at larger scales 
(Rasouli and Harrison 2001). Scale effects are more 
pronounced in the case of rough, undulating joint types; 
whereas they are virtually absent for planar joints. 

The peak shear strength of rock joints is a strongly scale-
dependent property. The shear strength decreases non-
linearly with joint length and tends to become asymptotic. 
Roughness is a dominating aspect at lower stress levels, 
while r is of great importance at higher stress levels. 
Normal stiffness is not expected to be strongly scale-
dependent along the discontinuity, but shear stiffness is 
evidently scale dependent. In shear tests at different 
scales conducted with normal stiffness control, the 
increase in the normal stress was less pronounced at 
larger scales due to reduced dilation. Scale effects should 
therefore be even more pronounced in stiffness controlled 
tests than in constant normal stress tests (Barton 1990). 

3.2 Influence of scale on key model parameters 

Among the four parameters used for the shear stress - 
shear displacement relationship in the CSDS model, the 
peak shear strength p and the corresponding shear 
displacement up are much affected by scale effects. The 
residual strength r on the other hand is more or less 
insensitive to scale effect, so r can be considered as 
independent of scale according to Bandis (1990). As for 
the shear displacement at residual shear strength ur, it is 
relatively insensitive in the CSDS model and is considered 
here to be independent of scale. 

In the CSDS model, the LADAR (Ladanyi and 
Archambault 1970) criterion is used for the prediction of 
the peak shear strength p (Eq. 8), which takes into 
account the basic friction of joint surface, dilatancy, and 
the shearing of asperities. In this criterion, the most scale-
dependent parameters are i0 and S0. Parameter as, the 
ratio of the projected sheared asperity surface area to the 
joint surface area at the peak strength, may also vary as a 
function of joint size (Pratt et al. 1974; Yoshinaka and 
Yoshida 1993). However, experimental investigations 
performed by Re et al. (1997) have shown that the contact 
area to total area ratio only decreases very slightly with 

increasing joint surface size. Thus, in this study, 
parameter as is considered independent of scale. For the 
normal displacement - shear displacement relationship in 
the CSDS model, the parameters mostly influenced by 
scale effect are the initial asperity angle i0 and the 
transitional stress T (taken equal to the uniaxial 
compressive strength C0). The rock joint characteristics 
which are used in the CSDS model are listed in Table 1. 
Scale relationships need to be established for the scale 
dependent parameters. 

Table 1. Joint characteristics used in the CSDS model. 
scale dependent scale independent 

i0 r

up ur

S0 as

C0

3.3 Evaluation of scale effects using joint roughness 
geometry 

Rengers (1970) measured asperity angles of natural joint 
surfaces over a range of sizes from 0.01 to 1000 cm using 
a variable focus microscope, a profilometer, and terrestrial 
photogrammetry. Corresponding to each selected step 
size, there was a distribution of roughness angles. For 
example, corresponding to step size L = 1L0, the surface 
contained angles 1,A through 1,F (see Figure 2). 
Similarly, step L = 2L0 contained angles 2,A through 2,E

varying over a smaller range and so on for L = 3L0, 4L0

etc. Rengers plotted those angles which corresponded to 
given values of L and constructed envelope curves, 
assuming that the steepest surface angle of contacting 
mating blocks regulates dilatancy during shear with over-
riding asperities. The envelope of positive angles governs 
forward shearing while the envelope of negative angles 
governs backward shearing. Rengers (1970) found that 
the asperity angle varies inversely with the step size L.

The effective roughness mobilised upon shearing of joints 
of different lengths appears to be responsible for scale 
effects in rock joints (Bandis 1990). Scale effects on the 
shear strength may be caused by the influence of 
intermediate scale roughness of a wavelength not usually 
encountered in laboratory testing. Roughness of smaller 
scale acts only as interference and is sheared-off even at 
moderate stress levels. On the other hand, the 
intermediate scale roughness controls the dilation 
potential of a joint, as shearing through can only occur at 
much higher stress levels. The intermediate scale 
roughness largely determines the displacement needed to 
mobilise peak shear strength, which apparently increases 
with increasing joint length (Bandis 1993). It is postulated 
that the dimension of effective roughness, or the 
reasonable step size L for asperity angle measurement is 
proportional to the joint length l.
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Figure 2. Example of roughness angle measurement 
(adapted from Goodman 1976). 

3.4 A geometrical approach for scale effect on the 
initial asperity angle

- Measurement of initial asperity angle 

Figure 3 is a joint profile taken from Bandis (1980). It was
digitized so the geometrical asperity angles i0 can be
measured as

L
htanai 0  [16] 

where L is the selected measuring step size, and h is the 
relative height between two measurement points on the
joint surface of a width L.

l   = 36cm

Figure 3. Profile of a rock joint (taken from Bandis 1980). 

Using the same procedure as Rengers (1970), several
asperity angles have been obtained along the joint 
surface. Envelopes were obtained as L changes from 
0.7mm to 20mm. The mean envelope (for mean absolute 
value of the positive and negative geometric asperity
angles, i0-max) is plotted in Figure 4. 

0

10

20

30

0 5 10 15 20

L  (mm)

i 0
-m

a
x
 (

 °
 )

Figure 4. Envelope of geometric asperity angle. 

C
- Determination of measuring step size 

In the following, the step size L is considered to be
proportional to the joint length l. Then, once the ratio L/l is 
fixed, there exists a corresponding L for each joint length l.
To illustrate the approach, results of peak shear strength 
(under a normal stress n of 24.5kPa) obtained by Bandis 
(1980) with different joint lengths are used. These results 
of peak strength p(l) can be converted to a p - L
relationship and plotted on a graph of the envelope of 
asperity angle (i0-max vs L), as in Figure 5. Since the peak
shear strength is directly related to the value of the 
asperity angle, by comparing the two curves, a ratio of L/l
(corresponding to the mobilised effective roughness) can 
be determined. Figure 5 illustrates the values of p and i0-

max for L/l = 5.55%, which result in a correlation coefficient 
R

2 of 0.954 between p and i0-max. Varying the value of L/l,
a graph of the correlation coefficient R

2 can be plotted as 
in Figure 6. For this example, the best correlation is 
obtained for L/l = 1.85%, with R

2 = 0.999. Thus, it has 
been determined that a step size of 1.85% of l for asperity
angle measurement can be used for this case. 

- Scale effect model for initial asperity angle 

Using a value of L = 1.85% of l, the curve i0-max - L is then 
converted to an i0-max - l relationship as shown in Figure 7.
It reflects the scale effect on i0-max. A mathematical 
relationship can be set up to simulate this scale effect. 
According to laboratory test results, when the joint is
rougher, the scale effect is more important (Bandis et al. 
1981, Omnishi et al. 1993, Yang and Chen 1999). Inspired 
by Barton and Bandis (1982), a scale effect model for a 
joint roughness coefficient (see Eq. 21), the following
equation is proposed to model the scale effect of i0-max:

)l(i

n
maxnmax
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l

l
)l(i)l(i
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where l0 is the basic joint length (from laboratory
measurement), ln is the length involved, i0-max(l0) is the 
value of i0-max for l = l0, and so as i0-max(ln) for l = ln.  is a 
parameter to be determined. In this equation, the 
exponent is function of roughness. Parameter  is 
obtained by fitting the converted curve i0-max - l
(measurement) with Equation 17. Taking l0 as 6 cm and 
its corresponding measured value of i0-max, the values of i0-

max for ln = 12, 18, 24, 30, 36 cm for a given value of  can 
be estimated with Equation 17. As shown in Figure 7, for 
different values of , a correlation coefficient is obtained 
for the measured and modelled values of i0-max. The best 
correlated value is obtained for = 0.017 (with a 
correlation coefficient of 0.995). 
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For the initial asperity angle i0 used in the CSDS model, it 
is postulated that there is a linear relation between i0-max

and i0:

00 ii max [18]

where is a material parameter independent of scale (as 
verified in the next section). Introducing Equation 18 in
Equation 17, the scale effect model for the initial asperity
angle i0 is obtained as follows:
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where i0(ln) is the value of i0 for l = ln, and i0(l0) is the value 
of i0 for l = l0.

3.5 Scale effects on the other CSDS model 
parameters

Table 1 lists the four scale dependent parameters in the 
CSDS model. Equation 19 presents the effect of scale on 
the initial asperity angle i0 used in the CSDS model. For
the scale effect on shear displacement up, the relationship 
used is the one proposed by Barton and Bandis (1982): 
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where JRC0 and JRCn are the laboratory and field joint 
roughness coefficients, respectively.

For an unweathered rock joint, the joint compression
strength JCS equals the uniaxial compressive strength C0

of the rock (Barton and Choubey 1977). Therefore, the 
scale effect on C0 can be presented by the scale effect 
model of the joint compression strength JCS in Barton and 
Bandis (1982) as: 
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where JCS(ln) is the value of JCS for l = ln, and C0(ln) = 
JCS(ln); JCS(l0) is the value of JCS for l = l0, and C0(l0) = 
JCS(l0).

For the cohesion S0, using the value of C0(ln) in the Mohr-
Coulomb criterion, we get: 
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The scale effects on rock joint behaviour are represented
with the CSDS constitutive model using values obtained
with Equations 19, 20, 22 and 23. In practice, once the 
laboratory test sample (l = l0) is prepared, the parameter 
i0-max of the sample joint can be measured geometrically
with the measuring step L = 1.85% of l. The other 
parameters are obtained from laboratory testing. The
scale dependent parameters (see Table 1) of the joint at
different lengths (l = ln) can be estimated with the scale 
effect relationships and its behaviour can be predicted 
with the CSDS constitutive model, as will be shown in the
following section. 

4. VALIDATION AND APPLICATION

4.1 Validation for asperity angle relationship 

Figure 8 presents results of laboratory tests performed by
Bandis (1980) on rock joints of different lengths under a 
constant normal stress ( n = 24.5kPa). This figure shows
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the measured normal displacement - shear displacement 
(v - u) for the joint surface profile of Figure 3. The material 
was a mixture of silver sand, calcined alumina, barytes
and Paris plaster with water. The sample joint lengths
were 6 cm, 12 cm, 18 cm and 36 cm, respectively. The
joint length of 6 cm is taken as the basic measurement (l0
= 6cm).
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Figure 8. Measured dilation curves (from Bandis 1980). 

Parameters for the basic joint length take the following
values: uniaxial compressive strength C0 = 2.0 MPa, 
basic friction angle b = 32° r b), peak shear strength 

p = 50.4 kPa and the corresponding shear displacement 
up = 0.9 mm (Bandis 1980). The residual shear strength is 
calculated to be r = n tan r = 15.31 kPa. The residual 
displacement ur was not obtained in the test so the value 
of ur can not be determined from the test results. 
However, it can be back calculated with the CSDS model 
by curve fitting. To do so, an iterative approach is taken 
where the value of ur is modified so the point m shown in 
Figure 9a (which was the maximum value obtained in the 
test) would fit the value predicted with the CSDS model
(Eq. 1). This led to a value of ur = 31.7 mm. The asperity
angle i0 for the basic joint length l0 is determined by fitting 
the dilation results with the CSDS model for the normal 
displacement - shear displacement relation. The value
calculated was i0(l0) = 11° (Fig. 9b). The profile of the joint
was analysed and the value of i0-max(l0) measured with L = 
1.85% of l0 was 24°. 

The scale effect relation for i0 (Eq. 19) is used for the 
other joint lengths, which gives i0(l=12 cm) = 8.3°, i0(l=18
cm) = 7.0° and i0(l=36 cm) = 5.3°. Eq. 22 leads to values 
of C0(l=12 cm) = 1.41 MPa, C0(l=18 cm) = 1.15 MPa and 
C0(l=36 cm) = 0.81 MPa. The normal displacement - 
shear displacement relations for the other three joint
lengths with the same normal stress can then be predicted 
with the CSDS model. As shown in Figure 10, they are in
good agreement with the laboratory measurements. This
indicates that the assumption that the parameter (used
in Eq. 18) is independent of scale is acceptable. 
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Figure 9. Simulation of the basic measurements (l0 = 6cm) 
(from Bandis 1980) with the CSDS model. 
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Figure 10. Measured (from Bandis 1980) and predicted 
dilation curves for different joint lengths. 

4.2 Shear stress - shear displacement prediction for 
the results of Bandis (1980) 

To predict the complete shear stress - shear displacement 
curves for different joint lengths with the CSDS model,
other parameters must also be determined. The joint 
roughness coefficient for the basic joint was JRC0 = 16.8 
(Bandis 1980). The values of parameter up are calculated
with Equation 20, and up = 1.14 mm, 1.42 mm and 2.27 
mm for l = 12 cm, 18 cm and 36 cm, respectively. For the
estimation of the peak shear strength, the LADAR criterion 
is used. According to the measured value of p for basic 
joint length l0, the value of as is equal to 0.05 for this joint.

The CSDS model can reproduce the shear stress - shear 
displacement relation for the basic test (l = l0) as shown in 
Figure 9 fairly well. Using the proposed approach, the 
CSDS model can predict the shear stress - shear 
displacement relationship for the other joint lengths of l = 
12, 18 and 36 cm, as illustrated in Figure 11. As can be 
seen, the CSDS model provides good correlation with the 
measured u curves.
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Figure 11. Measured and predicted shear strength - shear 
displacement curves for different joint lengths (data from 
Bandis 1980). 

4.3 Application to the laboratory tests of Ohnishi et al. 
(1993)

Ohnishi et al. (1993) have performed a series of 
experiments to investigate the peak shear strength scale 
effects of natural and artificial joints. Several specimens 
were cast using the same joint surface with cement 
mortar. Direct shear tests were performed on the 
specimens cast with irregular surfaces. The sample joint 
lengths were 8 cm and 12 cm, and the normal stress
applied was 2.0 MPa. The joint length of 8 cm was taken
as the basic laboratory test size (l0 = 8 cm).

First, the CSDS model parameters for the basic test are 
determined. Shear stress experiments were carried out for 
specimens with a diamond saw cut smooth surface. The
mean basic friction angle for this cast cement mortar 
material is b = 33° (Ohnishi et al. 1993). Results gave a 
peak shear strength p = 2.80 MPa, and a peak shear 
displacement up = 0.91mm. From Eq. 20, the joint 
roughness coefficient obtained is JRC0 = 15.4. The joint 
compression strength is determined as JCS0 = 50 MPa 
(equal to C0). The value of parameter as was estimated to 
be 0.071 for this specimen. Here again, the residual 
strength was not attained during the test and the same 
procedure was used to estimate the value of ur (Fig. 12a), 
which gave a value of 39.7 mm. The residual shear 
strength was calculated as r = n tan r = 1.56 MPa (with

r = b). With the dilation measurement of the basic test, 
the initial asperity angle i0(l0) in the CSDS model was
estimated at 12° (Fig. 12b). It can be seen from Figure 12
that the CSDS model simulation correlates well with the 
laboratory measurement for the basic test.

Next, the scale dependent parameters for the length of 12
cm were obtained using the scale effect model. With a
measuring step L = 1.85% of l0 = 1.5 mm, the joint profile 
was measured as described in Section 3 and the
maximum geometrical asperity angle i0-max obtained was
26.7°. The scale dependent parameters for the length l =
12cm were calculated as follows: i0 = 10°, C0 = 41.5 MPa, 
and up = 1.14 mm. 

The joint shear strength - shear displacement and the 
dilation - shear displacement relations for joint size l = 12 
cm were then predicted with the CSDS model as shown in
Figure 13. By comparison with the measurements, it can 
be seen that the CSDS model can predict the behaviour of 
the joint fairly well.
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Figure 12. Simulation of the basic measurements (l0 = 
8cm) of Ohnishi et al. (1993) with the CSDS model. 
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Figure 13. Measured (Ohnishi et al. 1993) and predicted 
results for joint length l = 12cm. 

5. CONCLUSION 

Several shearing characteristics of rock joints, such as the 
shear strength, shear stiffness, and joint wall compression 
strength are strongly scale-dependent. Thus, any
constitutive model for the shear behaviour of rock joints 
should take into account scale effects. Based on the fact
that the effective roughness mobilised upon shearing of 
joints of different lengths is responsible for the scale 
effects of rock joint behaviour, a geometrical approach
was proposed to simulate the scale effect of the asperity
angle of the joint surface. With a suitable measuring step 
L, which was determined to be approximately 1.85% of the 
joint length l, the geometrical asperity angle of rock joint
surface is measured. It is verified that the effective 
geomechanical asperity angle is proportional to the 
geometrical asperity angle. Using existing laboratory
measurements of shear strength for different joint lengths,
a scale effect model is established for the effective
geomechanical asperity angle. This model uses the 
physically measured geometrical asperity angle to
represent proportionality between roughness and scale 
effect.
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With the physical approach presented herein, the scale 
effect for the asperity angle and the Barton and Bandis 
scale effect model for parameters up and JCS (or C0),
scale effects can be taken into account in the CSDS rock 
joint constitutive model. Applications of the CSDS model 
with scale effects on laboratory shear test results for 
different joint lengths showed that the CSDS model can 
adequately represent the mechanical behaviour of rock 
joints. It was shown that the proposed scale effect model 
with physical approach is satisfactory for the estimation of 
scale effects on the behaviour of rock joints and fractured 
rock masses.
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