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ABSTRACT 
The beam-on-nonlinear-Winkler foundation (BNWF) model is widely used in the analysis of soil-pile-structure interaction due 
to its relative simplicity.  Various BNWF models have been developed for different soils and pile-soil interface conditions. This 
paper highlights some important aspects of a versatile BNWF model recently developed by the authors, which can be used 
for cyclic lateral pile response in nonlinear time-domain soil-structure interaction (SSI) analyses.  The specific features 
discussed include: the backbone curve; different loading, unloading and reloading rules; cyclic hardening/degradation of soil 
stiffness and strength; and gap formation with an option to allow for soil cave-in.  Several example hysteretic loops are 
presented to illustrate the versatility of the model. 

RÉSUMÉ
Le modèle de poutre-sur-la fondation de Winkler non linéaire (PFWN) est largement utilisé dans l'analyse de l’interaction sol-
pieu-structure à cause de sa simplicité relative. Des divers modèles de PFWN ont été développés pour les différents sols et 
conditions d'interface de pieu-sol. Cet article présente quelques aspects importants d'un modèle adaptable de PFWN 
récemment développé par les auteurs, qui peut être utilisé pour le comportement latérale cyclique de pieu dans les domaines 
du temps non linéaire de l’analyse de l’interaction dynamique sol-structure (ISS). Les caractéristiques discutées incluent: 
courbe squelette; chargement différent, règle de déchargeant et rechargeant; le durcissement/adoucissement cyclique de 
rigidité et capacité de sol; et la formation d'écart avec une option pour tenir compte de l’effondrement de sol. Plusieurs 
exemples d’hystérèse sont présentés pour montrer l’adaptabilité du modèle. 

1. INTRODUCTION 

1.1 Soil-pile-structure interaction modeling 

The response of structures supported on piles under 
imposed ground motion is directly linked to the responses of 
both the superstructure and substructure (foundation) 
through the process of soil-pile-structure interaction (SPSI).  
SPSI comprises two main components: kinematic 
interaction and inertial interaction. The substructure is first 
excited, which then transfers forces to the superstructure 
(kinematic interaction). The superstructure then transfers a 
subsequent feedback to the substructure (inertial 
interaction).  In pile foundation systems, the inertial 
interaction component has been identified to significantly 
influence the response of the upper part of the pile 
foundation, while the kinematic interaction component has 
been identified to affect deeper portions of the pile 
foundation (Gazetas & Mylonakis 1999).  Procedures used 
for dynamic pile response analysis range from soil 
discretization methods (i.e., finite difference, finite element 
and boundary element approaches) to soil spring model 
approaches.  Using the former with adequate soil 
constitutive models, it is possible to solve the SSI problem 
as a whole, taking into account different loading and system 
response conditions.  With advancements in computer 
speed, the time required for this type of analysis has 
decreased considerably.  However, for systems involving 
extensive nonlinear behaviour, such analysis still requires a 
considerable amount of time.  In addition to this, the 
approach remains unattractive to many design engineers, 
chiefly among them being structural engineers, because it 
requires considerable expertise and experience in the 

modeling of both structural and geotechnical aspects of the 
SSI problem (Poulos et al. 2002).  It is worthy of note that 
geotechnical engineers prefer the soil discretization 
approach with the structure modeled as a linear stick model, 
while, structural engineers concentrate on the full 3-D 
modeling of the structure, and employ very simplified elastic 
springs to represent the soil.  A gap therefore exists in 
expertise comfort and is partly responsible for the overly 
simplistic view held by a number of design engineers with 
regard to the effects of SSI on structural response.  

The use of the BNWF approach to model pile foundations is 
popular among structural engineers.  It has the ability to 
account for nonlinearity; and the load-transfer curves utilized 
to simulate the soil reactions can be evaluated easily from 
readily available empirical formulae.  Some boundary 
element solution procedures are now even coupled with the 
BNWF approach to enable them account for soil nonlinearity 
(Kucukarslan & Banarjee 2003).  Despite its popularity, 
many SSI experts are critical of the method because of its 
inability to model the soil as a continuum and its inherent 
assumption of decoupling the soil reactions at different 
elevations (i.e., ignoring shear deformations between 
different soil layers) and thus do not recommend it for the 
design of important projects.  Notwithstanding, the BNWF 
approach is widely accepted in industry and has been 
shown to give satisfactory results for various laboratory and 
field experiments.  
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1.2 Existing BNWF models and programs

The BNWF approach has undergone considerable
development since McClelland and Focht (1958) initially
developed it for pile foundations.  Figure 1 shows the normal
force-displacement response curve obtained by Matlock in
his laboratory experiment of a pile in Sabine River soft clay
(Matlock 1970).  Based on the experimental results, he
established various curves relating the soil reaction, p, to
the pile movement, y: namely, the static p-y curve, the cyclic
p-y curve (pseudo-static) and the after cycling reload p-y
curve.

Figure 1. a) Normal force-displacement response of pile in
Sabine River soft clay (after Matlock, 1970); b) cyclic P-y
response at three pile diameters for pile in Ottawa sand of 
relative density 75% (after Dou and Byrne, 1996)

Many researchers followed this approach and there now
exists a considerable data base of such curves for different
soils.  These curves can be used only for pseudo-static
analysis and do not account for the cycle-by-cycle response
depicted in Figure 1a.  Commercial programs that are based
on such formulations include COM624P (Wang & Reese
1993), LPILE (Ensoft 1997) and FLPIER (McVay et al.
1996).  To account for nonlinearity in pile dynamics, the 
BNWF approach was extended by Matlock et al. (1978) to 
model the cycle-by-cycle response.  They introduced an
approach that utilizes the static p-y curve as a backbone
curve  and  accounts  approximately  for cyclic  degradation.

Several variations of this approach have been implemented
in available computer programs including: NONSPS 
(Kagawa 1983), PAR (PMB 1988), CYCPILE (Vazinkhoo et
al. 1996b), PLYLAT (El Naggar & Bentley 2000), FLPIER(D)
(Brown et al. 2001) and implementations in PEER’s
OpenSees (PEER 2000) computational platform (Boulanger
et al. 1999). Each of these programs takes into account
certain aspects of pile-soil behaviour evident in Figure 1 
such as slack zone formation, cyclic degradation and side
shear contribution.  However, none of them seems to
account efficiently for all the relevant aspects of the soil-pile
response.  Furthermore, most of these programs were
developed from the geotechnical point of view with an
emphasis on modeling of the soil medium but with poor
modeling of nonlinear structural response features.  On the
other hand, some nonlinear structural analysis programs
with nonlinear springs and gap elements have been used for
SPSI (Wang et al. 1999). However, the ability of these
programs to capture all the relevant soil response effects is
limited. There is thus a need for focused efforts to address
this issue. The work by Boulanger et al. (1999) represents
an advancement in this direction, since their BNWF model
was developed in the framework of the OpenSees platform,
which features various structural and geotechnical modeling
capabilities.

The model presented in this paper is part of an on-going
research program at the University of Western Ontario
aimed at developing SSI BNWF models in an existing
nonlinear structural analysis program that can be used for
the dynamic analysis of different SSI problems including
shallow and deep foundations and retaining walls.  The
main objective of the work presented here is to develop a
generic BNWF normal force-displacement response model
capable of accounting for all the important aspects of the
cyclic normal force-displacement response. The developed
model is incorporated into a nonlinear structural analysis
program (CANNY, Li 2002) that is currently used both in
research and in industry for 3-D nonlinear static and
dynamic analysis of structures.  It has an extensive library of
hysteresis models and allows for adding new ones.

2. DESCRIPTION OF MODEL 

2.1 Backbone curve

The resistance of each soil layer to pile (or wall) movement
is modeled using two compression-only spring elements on
opposite sides of the pile. The static p-y curve defines the
backbone curve and is based on an Iwan-like formulation
using a multi-linear curve with four different segments.  A 
schematic of the backbone curve is shown in Figure 2
(segments 1, 2, 3 and 4).  The backbone curve can be
either monotonically increasing (represented by solid lines in
Figure 2), or can exhibit a post peak (residual) behaviour
(segments 3 and 4 represented by dotted lines in Figure 2)
to facilitate the modeling of stiff clays and dense sands.  For 
monotonic backbone curves, the peak strength pf = p3, while
for peak-post peak curves, pf = p2. The parameters needed
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to establish the backbone curve (p1-p3, y1-y3, 2, 3) can be
evaluated using graphical methods, or by curve-fitting
algorithms such as that used by Joyner and Chen (1975).
The multi-linear formulation renders the model more general
and useful in capturing the main features of the response of
different foundation systems and retaining walls under
different loading conditions.

Figure 2. Model backbone curves

Figure 2 shows that the backbone curve can be shifted
horizontally to the left allowing for an initial force (pi) at zero
displacement, and thus representing a pre-straining effect
with displacement y0, as would be the case for driven piles.
It can also be shifted vertically (i.e., p > 0), which allows for 
modeling the soil reactions in the case of retaining walls,
where the minimum force level, p0, represents the active
pressure experienced by the wall.  Examples of such p-y
response curves can be found in Briaud and Kim (1998) and
Carubba and Colonna (2000).

2.2 Standard reload curve 

Figure 3 shows an example of the unloading and reloading
response curves. The reloading response which is termed
the standard reload curve (SRC) (segments 7-8-9-10)
follows the shape of the backbone curve (similar to Iwan
formulation) but is scaled using the current force at the
reload beginning point (pr0, yr0) based on Pyke’s approach
(Pyke 1979) with a slight modification (Eq. 1b).  In Pyke’s
original model, strength degradation/hardening under cyclic
loading was not accounted for, and the strength was
assumed to be constant.  In the present approach, since
degradation/hardening is modeled, the scaling factor is
calculated using the current strength, t pf, where t is the 
strength degradation/hardening parameter.  A similar
approach has been used by Lee (1993) for the analysis of
the cyclic axial response of piles.  For peak-post peak
response, the SRC comprises segments 7-8-9, i.e, 
segments 9 and 10 merge together. The stiffness and
strength degradation/hardening parameters, k and t are
calculated based on the number of equivalent cycles (NEC)
and are used to degrade or harden the backbone response
at the beginning point of reloading.  The equations of the 
various turning points of the SRC ((pr1, yr1) – (pr3, yr3)) are
shown in Figure 3.  For the case where the SRC crosses the
initial backbone curve, there are two options: either to follow

the original backbone curve, similar to the extended Masing
rule (Vucetic 1992); or to continue along the SRC.
Unloading from the standard reload curve follows the
general unloading response as discussed below.
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Figure 3. General unload and standard reload curves 

2.3 General unloading curve 

The general unloading curve (GUC) (segments 5-6) also
follows a path similar to the shape of the backbone curve
and is scaled using the modified Pyke approach based on
the force at the beginning point of current unloading (pu0,
yu0).  Degradation/hardening behaviour is accounted for by
modifying the backbone curve using the stiffness
degradation/hardening parameter.  Unloading occurs only in
the first quadrant and the effect of strength
degradation/hardening in this quadrant is not significant.
Therefore, the model accounts for only stiffness
degradation/hardening (i.e., t = 1). The stiffness 
degradation parameter can be calculated based on the
NEC, or can be set to a specific constant value.  The
equation for the turning point of the GUC (pu1, yu1) is also
shown in Figure 3.  The unloading phase entails a decrease
in the soil reaction, p, until it reaches the minimum force
level, p0 (p0 = 0 in Figure 3).  For cases where reloading
occurs before reaching the minimum force level, reload
occurs along the SRC.

2.4 Movement at minimum force level and drag shear 

When the soil resistance during the unloading phase
reaches the minimum force level and the pile movement, y,
continues in the negative direction, the soil resistance 
remains equal to the minimum force level (i.e., with zero
stiffness). Two responses are possible along this segment
of the unloading phase: the p = 0 case; and the p > 0 case.
The p = 0 case models the condition where the pile/wall
separates from the soil; and the p > 0 case models the case
where the wall experiences a constant minimum soil
reaction force (active force) as it moves away from the wall
(as shown in Figure 2).  For the p = 0 case, there exists an
option to account for side shear force that could develop on
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the sides of a pile as it moves through the slack zone
(shown in Figure 1a). 

It should be noted that the soil reactions are modelled using
two compression-only springs, one on each side, as shown
in Figure 4a. During the unloading phase, as the pile moves
rightwards in the slack zone, the right spring accounts for 
the soil resistance, and the left spring provides no
resistance, and vice versa. The left and right springs
therefore contribute collectively to the response of the pile
for movement in either the left or right directions.

Figure 4. a) BNWF pile-soil system, b) typical responses of
right and left springs

2.5 Direct reload curve (DRC) 

The direct reload curve models the resistance of the soil in
the slack zone and comprises two sections: the side shear
component (segment 12) with a limiting force estimated as

smpm; and the normal frontal component with a limiting
force of fmpm (Figure 4b). sm and fm are the side shear
force and normal frontal force factors, and pm is the past 
maximum force experienced by the soil. The side shear
component exists only for the case of p = 0.

When the pile separates from the soil over a sufficient
depth, a portion of the unsupported soil caves-in and fills the
gap.  The soil that fills the gap exists in a loose state.  As
the pile moves back towards the soil that filled the gap, the
soil gets re-compressed resulting in a strain-hardening type
of response. This behaviour is observed in the form of S-
shaped curves that characterize many experimental cyclic

p-y loops (Figure 1b).  S-shaped loops have been observed
in pile tests in wet drained sand, liquefied sand and soft
clays by many researchers.  For soils such as over-
consolidated clays that can stand unsupported, pure gaps
form and the pile traverses the full gap distance before
bearing on the soil again.

Figure 5 shows that the direct reload curve starts at the 
beginning of segment 12 and ends at the point Q that
represents the intersection of the current SRC with its origin
at point (0, yrl), and segment 13 of the DRC.  Subsequent
loading past this point leads to movement along the SRC.
Such an observation can be made from experimental results
of cyclic p-y loops for pile tests in sands and clays (e.g.;
Meymand 1998; Dou and Byrne 1992), and is linked to soil
memory behaviour.  Two standard reload curves are shown
in Figure 5.  Curve A represents the SRC corresponding to 
the case where a stable gap is formed.  For this case, the 
pile travels all the way back to meet the soil where it
separated, and reload occurs along this curve; the direct
reload curve is thus a horizontal line on the zero force axis.
This is the approach used in many BNWF programs to 
account for gap formation (e.g., FLPIER (D) and PYLAT).
Curve B shows the same curve shifted to the left by an
amount ys.  This distance is linked to the amount of soil
cave-in and can be explained as follows.  The strain-
hardening behaviour is associated with a decrease in the
voids ratio and an increase in the mean effective confining
pressure, which can be modeled by two springs in series: an
inner spring representing the loose soil and an outer one
representing the original soil (Insert X in Figure 5).  As the 
soil compresses, the combined stiffness of the two springs
is controlled by the loose soil, which experiences most of 
the deformation and densifies.
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Figure 5. Direct reload curve with insert (X) showing
schematic of spring representation of loose and original soil

The stiffness of the loose soil increases as its density
increases, and thus contributes more to the overall stiffness
of the two-spring system. This process continues until the
stiffness of the loose soil reaches the value of the stiffness
of the original soil.  The strain-hardening curve should thus
intersect with curve A; however, this is not the case and it
rather intersects with curve B. This is due to the
compressed loose soil under a mean effective pressure
similar to that existing in the original soil occupying a finite
volume of the gap formed.  This infers that more soil cave-in
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results in larger shifts of the curve B as Gohl (1992) and
Barton (1982) have shown for pile tests in sand.  Both
researchers observed that under two-way cycling action the
pile always experiences a residual displacement in the
direction of the initial motion as a result of a larger amount
of soil fall-in at the beginning of the cycling action, due the
surrounding soil being less dense at the beginning of 
shaking.

Typical values of the parameters that define the DRC can
be estimated from experimental results of cyclic p-y curves.
For a pure gap condition sm = 0 and fm = 0.  For confined
p-y responses (e.g. at the lower portion of piles in dry loose
sand) significant cave-in occurs and fm = 1.  The values of 

sm and fm evaluated from Figure 1b are 0 and 0.5,
respectively, for piles in drained sand of relative density
75% (Dou & Byrne 1996).

The origin of curve B at the minimum force level (0, yrl) has
been estimated empirically by the authors using results from
a large number of one-way, two-way and intermediate
constant cyclic field load tests of piles in sand compiled by
Long and Vanneste (1994). The resulting curve from these
tests is shown in Figure 6 and indicates the effect of type of 
loading, which is directly linked to the effect of soil cave-in
on the cyclic response.  In Figure 6, h is the ratio of the
maximum distance moved at the minimum force level, to
that for the case of a constant force two-way cyclic loading
and varies from -1 to 0. The case h = -1 represents two-
way cyclic loading, and h = 0 represents one-way cyclic
loading where no soil cave-in is possible and h = 1.  For
two-way cyclic loading, the maximum amount of soil cave-in
is possible, and h corresponds to the value of h at h = -1.
In between these extremes, the hyperbolic curve shown in
the figure models the expected effect of soil cave-in.  A
value of  = 5 fit the proposed values given by Long and
Vanneste (1994); however, these were mean value
estimates, and the value of h at h = -1 ranges
approximately between 0.1 – 0.3.

Figure 6.  Empirical curve for estimating the point of origin of 
the current SRC

Based on this formulation, the expressions for the various
parameters are shown in Eq. 2.
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In these equations, ymx is the maximum displacement at the 
minimum force level, ym is the displacement corresponding
to a two-way cyclic action and yun is the displacement at the
start of movement at the minimum force level.  For the case
of no soil cave-in h = 0.

2.6 Estimation of degradation/hardening parameters

Degradation/hardening of the backbone curve is estimated
using an equivalent number of cycles approach using the S-
N response curve as known in fatigue studies, or the soil
cyclic strength curve as known in soil dynamics, as a
weighting function. This curve defines the number of 
loading cycles necessary to initiate or attain a specified soil
response condition.  This could be the attainment of a unit
pore pressure ratio as used in liquefaction initiation
prediction, the development of a specified amount of cyclic
or residual strain (e.g., 5% double-amplitude cyclic strain,
10% residual strain), or the development of a specified
amount of volumetric soil strain resulting from cyclic soil
compression of cohesionless soils.  The S-N response
curve, shown in Figure 7, can be developed from cyclic
triaxial or simple shear testing and is readily available in the
literature for different types of soil.  Most BNWF models
account for cyclic degradation/hardening using soil specific
empirical formulations derived either for only uniform one or
two-way cyclic loading.  Using the S-N curve makes it 
possible to model non-uniform irregular loading conditions.
The S-N curve is characterized by the N=1 intercept, SN1,

and the slope of the line, SN.  Either a log-log model or
semi-log model can be chosen to represent the S-N curve. 
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A modified NEC (Seed et al. 1985) approach is used to
evaluate the NEC. The NEC is calculated based on Eq. 3 at 
each unload or reload (quarter of a cycle – represented by
0.25 in Eq. 3).  In this approach, the stress ratio at which the
NEC is calculated is not fixed at 0.65Smf, but at a user-
specified input (SNq).  Smf is the maximum force/stress ratio 
experienced by the system over the entire loading history.
The maximum force/stress ratio is not known prior to
performing the analysis, however, theoretically, it does not
affect the computed NEC (Annaki and Lee, 1977). This was
confirmed through a parametric study conducted by the
authors for the range of SNq between 0.3 – 0.85Smf.  Other 
researchers (e.g. Lee and Chan 1972) have used values
between 0.65 - 0.85Smf.

After calculating the NEC, the stiffness and strength
degradation/hardening factors k and t are estimated using
the elliptical equations given in Eq. 4, where the subscript k
refers to stiffness and t to strength.
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These elliptical equations can model various forms of
degradation/hardening events. If km, tm is less than one, the
equation models a degradation event; if it is greater than
one, it models a hardening event.  For both cases, the value
of the parameter k, t determines whether the curve is
concave or convex (i.e., whether it bulges away from or
towards the horizontal axis). It should be noted that in the
literature, degradation is modeled only with convex curves
while hardening is modeled with concave curves.

2.7 Modeling of radiation damping

Radiation damping is modeled using a damper placed in
parallel with each spring element.  Recent work by Wang et
al. (1999) has shown that placing a linear damper in parallel
with a nonlinear soil spring as implemented in SPASM8, 
PAR, etc., can result in unrealistically large damping forces.
This is due to forces bypassing the hysteretic system by
way of the parallel linear dashpot.  This is the case
especially for soft soils under strong shaking conditions
where considerable soil nonlinear behaviour occurs.
Nonetheless, for cases where soil-pile relative
displacements only slightly exceed the elastic range, parallel
linear dashpot radiation damping gives reliable results.  In
general, Wang et al. (1999) found that series-radiation
damping is more realistic than parallel-radiation damping,
and agreed well with the damping of the inner and outer
fields of the dynamic BNWF implementation by Nogami et
al. (1992).  This approach models the physical behaviour of
scattered waves, since they originate from the inner field
and are dispersed/dissipated in the outer field.  Badoni and
Makris (1996) limited the value of the damping force that 
could be developed in their  parallel  damper implementation

of a BNWF model, by relating the limiting damping force to
the yield displacement.  This approach is in line with work by
El Naggar and Bentley (2000) who implemented a nonlinear
spring to represent the near field in series with a linear
damper and a linear spring to represent the far field, and
showed that this combination could be simplified into a
nonlinear spring in parallel with a nonlinear damper.  This
approach is implemented in the current model.

Eq. 5 gives the equations governing the model, which
represents a stiffness proportional damping model.  This
means the damping factor is directly related to the current
soil stiffness. The initial value of the damping constant is
evaluated from the elastic impedance functions proposed by
Novak et al (1978) and given in Eq. 5b.  In Eq. 5, ao is the 
dimensionless frequency; Gmax and  are the small-strain
shear modulus and Poisson ratio, respectively; c is the
damping constant; K is the current soil stiffness and Pd and

 are the damping force and relative velocity, respectively.u

( )
d o

P c a K u
max

( ) ( , )
o u o

c a G S a [5a,b]

Based on this model, as the stiffness changes the damping
force also changes, which is in accordance with the
approach by Badoni and Makris (1996).  An interesting
aspect of the model is that when movement occurs in the
slack zone, the computed radiation damping is small, and as
would be expected, becomes entirely zero for the case of a
pure gap.  Also, degrading system responses result in a
reduction in radiation damping, while, hardening system
responses result in an increase in radiation damping, which
is also to be expected.

3. TYPICAL MODEL RESPONSES

The developed model can be used to model different soil-
pile systems under various loading conditions.  This
includes uniform load or displacement controlled loading
regimes commonly used in field and laboratory tests.
Typical example hysteretic loops for load-controlled tests
are presented in this section to highlight the different
capabilities of the model. These loops are obtained for a
soil with S-N curve parameters SN1 = 0.8, SN = -0.1 with SNq

taken as 0.5, under an initial confining pressure of 100 kPa.
The various backbone curves are obtained from typical p-y
curves for different soils. 

3.1 One-way loading examples

Figures 8a and b represent the response of the spring in the
direction of the load under a one-way cyclic loading action.
Figure 8a shows a degrading response, while Figure 8b
shows a hardening response.  In Figure 8a only stiffness
degradation has been accounted for.  This represents the
response of undrained soft clays, which generally undergo
stiffness degradation under cyclic action, but not much
strength degradation.  In Figure 8b, both stiffness and
strength hardening are accounted for representing the
response for dry sandy soils. The response of the system
for different  values  of  the  elliptical  degradation/hardening
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parameter ( k, t) is shown in both figures. In Figure 8a, it
takes 7, 8 and 9 cycles to achieve a maximum displacement
ratio of about 16 for k = 0.5, 1.0 and 2.0, respectively.  The
minimum degradation amount ( km) is achieved at these
points and further increase in the number of cycles, results
in similar increases in the displacement ratio for the different
cases.  This is evident from the last two loops.  In Figure 8b,
a maximum displacement ratio of 15, 12 and 9 can be
observed under 8 cycles of loading for k,t = 0.5, 1.0 and
2.0, respectively.  These figures show that for the case of 
hardening, the response for higher initial hardening rates
results in smaller permanent displacements, while for
degradation, higher initial degradation rates result in larger
permanent displacements.

Figure 8:  Typical response of single spring under one-way
loading undergoing a) degradation; b) hardening; and c)
response of combined spring under one-way loading

In Figures 8a and 8b, only the response of the spring in the
direction of the load is shown, since this mainly controls the
response under one-way loading.  Figure 8c shows the
combined response for both springs.  For the case when an
initial confining pressure exists as is shown in the figure,
both left and right springs contribute to the initial stiffness,
and the stiffness of the combined response is twice that of
each.  Also, for the case of soil cave-in, or when a side
shear contribution exists, unload passes the zero force axis
and enters the negative region.  Examples of similar one-
way p-y loops for pile tests in sand that exhibit this feature
can be found in Vazinkhoo et al (1996a).

3.2 Two-way loading examples

Figures 9a and b show typical two-way cyclic p-y loops for
both a degrading unconfined response and a hardening
confined response.  The degradation/hardening parameters
are the same as those used in Figure 8, with  = 5, sm = 
0.02, and fm = 0.5 and fm = 1.0 in Figures 9a and 9b,
respectively. From the figures, the S-shape and elliptical
shape typical of unconfined and confined responses  can be

observed.  In the case of Figure 9a, the degrading response
results in an increase in displacement, while in Figure 9b the
hardening response results in a slight reduction in
displacement.  Both types of responses are commonly
observed from field and laboratory experiments.

Figure 9c also shows a typical varying-load two-way cyclic
loading response with peak-post peak behaviour.  The
peak-post peak behaviour is typical of mainly
overconsolidated stiff clays.  In this case a pure gapping
mechanism is modeled.  Reload of a given side therefore
only occurs after the pile traverses the full gap distance.
= 0, sm = 0 and fm = 0.
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Figure 9:  Typical two-way a) unconfined response with
degradation; b) confined response with hardening; and c)
peak–post peak response with pure gap formation

4. CONCLUSIONS

A BNWF normal force-displacement model has been
developed for SPSI that accounts for various aspects of the 
SPSI response.  The different aspects of the model 
discussed include the type of the backbone curves, the
unloading and reloading response curves, the modeling of
soil cave-in, and the modeling of degradation/hardening.
Various example p-y loops under one-way and two-way
loading were then presented.
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