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ABSTRACT
The sensitivity analysis is concerned with the relationship between physical parameters that define the system and the
system performance characterized by a response functional. In the paper the free head long pile is embedded in a soil
located below water table subjected to cyclic horizontal force of variable values. The cyclicity of the loading is considered in
implicit fashion. The stiffness of the pile and the parameters used for the description of p-y relationships of sand below water
table are considered as the design variables of continuous type that are space dependent. The performance functional that
describes the maximum generalized deformations of a pile-soil system is formulated with the aid of a non-linear primary
system. The sensitivity results in the form of sensitivity integrands that affect the changes of the maximum generalized
deformation of the pile-soil system caused by the changes of the variations of continuous design variables are discussed.

RÉSUMÉ
Cette analyse de sensibilité concerne le rapport entre paramètres physiques définissant le système, d’une part, et d’autre
part la performance de système caractérisée par un fonctionnel de réaction. On décrit un pieu long à tête libre, construit
dans un sol situé sous la nappe phréatique et sujet à une force horizontale cyclique ayant des valeurs variables. La cyclicité
de cette charge est considérée de façon implicite. La raideur du pieu, et les paramètres utilisés pour décrire les rapports p-y
du sable sous la nappe phréatique, sont considérés comme des variables continues de conception qui dépendent de
l’espace. Le fonctionnel de performance qui décrit les déformations généralisées maximales d’un système pieu-sol est
formulé à l’aide d’un système primaire non linéaire. On discute les résultats de sensibilité, sous forme d’intégrands de
sensibilité qui affectent les changements de la déformation généralisée maximale du système pieu-sol causés par les
changements des variations des variables continues de conception.

1. INTRODUCTION

The pile foundations are used to resist axial and lateral
loads applied to the pile head. The pile-soil interaction can
be simulated by a number of different approaches. One of
the most popular approaches used in the geotechnical
community is p-y method referred also as local-transfer
method. In p-y method, p stands for soil reaction whereas y
defines lateral displacement. The pile structure in the pile-
soil interaction system is considered as an elastic beam
element. The soil p-y model represents nonlinear springs
distributed along the pile axis that deform locally which
means that the p-y model itself does not transfer the
deflection y to the soil neighborhood. A number of p-y
curves were developed for sand (Murchison and O’Neil
1983, Reese et al. 1974). 

The objective of this paper is focused on the following aims:
1. To develop the theoretical formulation of sensitivity

analysis of distributed parameters of laterally loaded
pile embedded in p-y sand located below water table
subjected to cyclic load.

2. To conduct the numerical sensitivity investigations of 
maximum performance of laterally loaded pile
subjected to horizontal force of discrete variability,
affected by the variations of the design variables of the
system.

2. THEORETICAL FORMULATION

2.1 Brief description of p-y model used in investigations

The pile structure together with the adjacent soil model and
specified physical parameters of the pile-soil system
subjected to investigations is shown in Fig. 1.
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Figure 1. Schematic view of a laterally loaded pile.

The response of the soil is modeled according to p-y notion
whereas the pile structure is simulated as a one
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dimensional beam element. The interactive pile-soil system
satisfies the differential equation denoted as Eq. (1). The
solution of it represents the performance (deflection y, angle
of flexural rotation ) of the system. Thus,

0)y(pEIyIV
[1]

where EI stands for pile’s bending stiffness, p(y) denotes
the soil reaction being the function of lateral deflection y.

The soil p-y model for sand proposed by Reese et al. (1974)
describes the soil behavior when adjacent laterally loaded
pile is embedded in sand below water table subjected to
cyclic loading. It employs the ultimate soil resistance pc

which depends on the depth x and the soil strength
parameters such as an angle of internal friction , a
submerged unit weight of soil , a coefficient of lateral
earth pressure of Rankine type Ka, a modulus of subgrade
reaction k and width b of a pile where the soil reaction can
develop. The pc is expressed by means of two equations
that differentiate themselves by the fact, that one part of pc

denoted as pct can develop close to the soil surface
whereas pcd is generated at the deeper depth. The
transition from pct to pcd occurs at such depth xr that 
provides the continuity of pct and pcd. Thus, for rxx

 pct =
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where  = /2 and  = (450 + /2).

The equity of Eq. (2) and (3) allows for determination of xr

which is given as: 
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At arbitrary depth x the soil lateral displacement is marked
by three characteristic values. They are denoted as yk, ym

and yu. The yk defines this interval (0-y) of lateral deflection
y at an arbitrary point x where the soil reaction p
demonstrates a linear behaviour. When the lateral
displacement y is located in the interval contained between
yk and ym=b/60 the soil reaction p is a parabolic function of
y. The yu=3b/80 marks the value of lateral displacement y

where the soil reaction p passes from the bilinear state to
the plastic flow. The corresponding values of soil reaction p
associated with characteristic points y are denoted as pk, pm

and pu, respectively and are shown in Fig. 2.

The set of suitable physical relationships for p-y soil
discussed is given as: 

for ,  p = kxy  [5] kyy

for ,  p =mk yyy
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where Ac and Bc are experimentally determined functions of
dimensionless variable (x/b) that take into account the effect
of cyclic loading on development of soil reaction p, and

for , p = pum yyy c ccc BA
60

b
y

b

48
B  [7]

It is worth noting that the ultimate soil reaction pc that
appears in Eqs. (6) and (7) is defined by Eq. (2) for

and by Eq. (3) for .
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p
x=x3
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Figure 2. Graphical representation of p-y curves for sand
below water table subjected to cyclic loading, the variability
of yk along the depth x is also indicated on the p-y curves.

Figure 2 shows that the lateral displacements ym and yu do
not change with depth x. The same conclusion cannot be
extended to yk whose value changes with depth x. The
locations of intersection points of Eq. (5) with parabolic
portions of p-y curves given by Eq. (6) are shown in Fig. 2
for variable values of depth x. It is apparent that interval (0-
yk) within which the soil behaviour is of linear type changes
with depth. The type of variability of (0-yk) as a function of x
is important in explanation of distributions of sensitivity
integrands affecting the performance of maximum value of
generalized deflection. Therefore the physical variability of
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yk, ym and yu in the vicinity of the laterally loaded pile
subjected to variable in discrete fashion forces F1, F2, F3 are
shown in Fig. 3, which contains also the possible deflection
lines y1, y2, y3 generated by the applied forces F1, F2, F3.

Figure 3. Typical distributions of yk, ym and yu values
together with deflection curves y1, y2, y3 of a laterally loaded
pile embedded in p-y sand located below water table
subjected to variable forces F1, F2, F3 of cyclic type.

The distributions of functions Ac and Bc of Eq. (6) and (7)
that represent the cyclicity effect on the behaviour of
laterally loaded pile-soil system embedded in sand below
water table are shown in Fig. 4. 
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Figure 4. Distributions of non-dimensional functions Ac, Bc

contributing to the effects of cyclic loading affecting the
performance of laterally loaded pile embedded in sand.

2.2 Formulation of sensitivity performance of laterally
loaded pile-soil system with distributed parameter

The performance of the pile in this analysis is defined by
maximum lateral deflection and maximum angle of flexural
rotation. In the investigated case both these components of
maximum generalized deflection u are located at the pile
head and are denoted as yt and t. The p-y pile-soil system
explored in the framework of sensitivity theory by means of
the adjoint structure method is shown in Fig. 5.

1

Figure 5. The pile-soil structure subjected to sensitivity
analysis with distributed design variables. 

The indicated physical and geometrical parameters
affecting the performance of the pile-soil system are taken
as the design variables of distributed type. They are
considered as being functions of spatial variable x and are
arranged in vector z defined as:

z = [EI, k, /, , b, Ka]
T [8]

The generalized maximum deflection can be determined
based on virtual work principle (Washizu 1976). The original
structure is further called as a primary structure. It requires
introduction of a temporary system called the adjoint
structure (Fig. 5) that is subjected to suitable generalized
unit load (Haug et al. 1986). It satisfies the same differential
equation of the system as well as the physical equations as
the primary structure does.

The changes of the design variables by z in the presence
of the unchanged load F enables one to write the virtual
work principle in variational form (Kleiber et al. 1997) as: 

L

0

L

0
ydxpdxyM1 u  [9] 

where p,M  are internal forces of the adjoint structures,

y and y are the first variations or increments of suitable
generalized deflections such as increment of second
derivative of deflection and increment of deflection itself, u

stands for the first variation of maximum generalized
deflection caused by the change of the design variables z.

The unknown variations of and resulting from 
changes of the design variables can be determined
considering the relationship between increment of internal
forces and increments of state variables as well as changes
in the design variables. Formally, the pile structure and the
adjacent soil satisfy the following equations:
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yEIM  [10]

p=y(z) [11]

where y(z) represents the lateral deformation of the soil
being the function of the design variable vector z that does 
not contain bending stiffness EI of the pile, which is
associated with pile structure of Eq. (10).

The increments of internal forces described by Eqs. (10)
and (11) are due to the changes of state variables y,y  as
well as changes of the design variables vector z. Thus,

y
y

M
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EI

M
M  [12]

z
z

p
y

y

p
p  [13]

Since the investigated system is subjected to the constant
load therefore the increments of internal forces are equal to
zero. This means that the following conditions are satisfied:

0M  [14]

0p  [15]

Consequently, Eq. (14) when combined with Eq. (12) allows
determining the sought .  Similarly, implementation of

Eq. (15) into Eq. (13) leads to determination of .

y

y Thus,

z
z M

yM
y  [16]

z
z p

yp
y  [17]

In Eq. (16), contains the change of pile material stiffness,
i.e. EI, whereas z of Eq. (17) contains the changes of the
physical parameters that affect the behavior of the soil.
Thus, performing the required operations of differentiation
demanded by Eq. (16) with aid of Eq. (10), it is arrived at:

z

EI
EI

1
yy  [18]

Based on the definition of the adjoint structure the behavior
of the adjoint system is governed by the following equation;

yEIM  [19]

Thus, combining Eq. (18) and (19) with the function under
first integral of Eq. (9), the following relationship emerges:

EIyyyM  [20]

The full form of Eq. (17) that takes explicitly into account all
design variables associated with soil model is the following:
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The determination of partial derivative is based on
Eq. (11). It is apparent that the soil adjacent to the adjoint
structure is characterized by the equation similar to Eq.
(11), which is now given as:

p/y

zyp  [22]

Thus, combining Eq. (21) with Eq. (22) the product of
functions under second integral of Eq. (9) is given as:
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Introducing relationships (20) and (23) into Eq. (9), the
following relationship is attained:
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The brief look at Eq. (24) enables one to notice that LHS
contains changes (first variation of ) of generalized
maximum deflection whereas integrals of RHS contain
changes (first variations) of the design variables of the pile-
soil system. Therefore, Eq. (24) represents the sensitivity of

u
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u due to the changes of the design variable vector z . It is 
worth noting that each of the design variables bears a
different unit. Moreover, the results of integration of all
integrals of RHS are of the same units as LHS of Eq. (24).
These facts drive towards conclusion that normalization of
the variations of the design variables with respect to their
initial values z leaves the integrands having the same units.
The described process of normalization of the design
variables means that the remaining integrands bear units of
a force, which after integration with respect to x gives units
of work or energy.

z

Thus, Eq. (24) can be now written in more concise form as:
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The mathematical form of sensitivity integrands  can 

be obtained by comparison with suitable integrals of Eq.
(24). It is worth noting that sensitivity analysis is conducted
in the vicinity of the applied loads. For the linear systems,

the sensitivity integrands  can be normalized with

respect to the applied load F. This means that for linear
elastic system the numerical results of Eq. (25) for one
single load F can be suitably employed for entire spectrum
of load values applied to the system investigated
(Budkowska 1997a, 1997b). However, for non-linear system
the proportionality law does not apply. In the discussed
case, the source of non-linearity, which is attributed to the
p-y relationship, is then extended to the relationship
between force and generalized displacement. Therefore,
the sensitivity investigations of non-linear systems are
conducted in a discrete fashion for identified values of
external loads.

uF
)***(

P

uF
)***(

P

The sensitivity integrands are the functions of spatial
variable x, which are subjected to integration with respect to
x. They represent the effect of spatial nature of the design
variables

***
 on the changes of the generalized

deflections. In case when the pile-soil system is subjected
to bending moment M, then the superscript F of sensitivity
integrands will be changed to M. The Eq. (25) can be used
for sensitivity investigations of maximum lateral deflection yt

as well as maximum angle of flexural rotation t.

Accordingly, the superscript u in Eq. (25) will be replaced by

y or  and consequently, the unit horizontal load 1 of Eq.
(24) in latter case stands for unit bending moment applied to
the adjoint pile-soil system.

The distribution of sensitivity integrands  given by Eq.

(25) provide an important information on the spatial ability of
changes of the parameters of the system, which are of
crucial importance to the performance of the system. They

also play significant role in clear indication of critical
locations of the parameters of the system, which are
important for the behavior of deep foundations as well as
superstructure. This aspect of sensitivity investigations is of
special interest to users of the system as well as at the

design stage of the system. The  sensitivity integrands

allow to predict the inevitable changes of the performance
of the system subjected to constant load when soil profile is
subjected to changes of properties of the soil model used.

The knowledge resulting from sensitivity integrands

provides the basis to develop suitable preventive measures
to extend the life-service of the system. The sensitivity
integrands formulated in the scope of the sensitivity theory
of distributed parameters constitute the key notion that
sustainable development philosophy is looking for.
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uF
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P
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3. NUMERICAL INVESTIGATIONS

The objective of this section is to implement the presented
theoretical formulation to the numerical investigations of
laterally loaded long piles. The initial input data for the pile-
soil system that is based on the recommendations of
COM624P (1993) and CISC (2001) are shown in Fig. 1. The
geometry of the free head pile-soil structure of length
L=8T(14.9m) subjected to force F of discrete variability is
shown in Fig. 5. The relative stiffness factor T that is used in 
assessment of length of non-linear p-y pile-soil system is
defined (Evans and Duncan 1982) as equal to (yt EI/Ay F)1/3

with Ay being the pile head restraint constant and yt is the 
pile head lateral deflection.

The generated top lateral deflections yt with corresponding
values of F are transformed to the p-y curve constructed for

0x , that is as close as possible to the soil surface. The
results of this transformation are shown in Fig. 6. The points
yt and F when placed on p-y curve of 0x provide the
information on the possible soil (p-y) physical phases that
will develop within the soil adjacent to the pile.

Figure 6. The p-y curve for x=0.01m with marked values of
force F used in investigations.
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The usefulness of the display of the results (yt, F) on p-y 
curve of Fig. 6 becomes apparent in further discussion on

sensitivity results in terms of  and  and their

utilization for engineering applications. The non-linearity of
the system besides results presented in Fig. 6 can also be
assessed by means of the outcomes of the adjoint system
when loaded by suitable unit load. For linear systems, all

internal forces

yF
)***(

P F
)***(

P

V,M  as well as deflection lines y  are the
same, independently of the magnitude of the applied load
(Budkowska and Szymczak 1992). However, for non-linear
system, this rule does not apply. The numerical
investigations of sensitivity of laterally loaded p-y pile-soil
system are conducted by means of the program COM624P

(1993). The sensitivity integrands  of Eq. (25) for

forces F shown in Fig. 6 are presented in Figs. 7-11.

yF
)***(

P

As discussed previously, the sensitivity integrands of
maximum angle of flexural rotation t require application of

unit bending moment 1 to the adjoint structure (see Fig. 5 ).

The deliberated sensitivity integrands defined as

have  mathematical  structure   analogous  to . The

F
)***(

P

yF
)***(

P

Figure 7. Distributions of sensitivity integrands, .yF
EIP

Figure 8. Distributions of sensitivity integrands, .yF
bP

Figure 9. Distributions of sensitivity integrands, .yF
P

Figure 10. Distributions of sensitivity integrands, .yF
P

Figure 11. Distributions of sensitivity integrands, .yF
kP

differences between  and  are the consequence

of the fact that the former requires application of the unit

horizontal force

yF
)***(

P F
)***(

P

1 to the adjoint structure, whereas latter

implies application of unit bending moment 1.   Accordingly,

the  virtual load 1M  generates in the adjoint structure  the

generalized  lateral  deflections MMM y,y,y . Consequently,
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Figure 12. Distributions of sensitivity integrands, y

a

F
KP .

Figure 13. Distributions of sensitivity integrands, F
EIP .

Figure 14. Distributions of sensitivity integrands, F
bP .

the formulae for sensitivity integrands, , affecting the

maximum angle of flexural rotation,

F
)***(

P

t, due to the changes
of the design variables, , are obtained by substitution to

Eqs. (19) and (20) as well as Eqs. (22), (23) and (24),
***

My and My  instead of y  and y . In this way determined

sensitivity integrands,  are presented in Figs. 13-18.F
)***(

P

Figure 15. Distributions of sensitivity integrands, .FP

Figure 16. Distributions of sensitivity integrands, .FP

Figure 17. Distributions of sensitivity integrands, F
kP .

4. CONCLUDING NOTES

The presented results of sensitivity integrands lead to the
following conclusions:

1. the distributions of associated with bending

stiffness    of   the    pile    material       (shown in Fig. 7)

yF
EIP

demonstrated the high degree of regularity for each
value of load F,
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Figure 18. Distributions of sensitivity integrands, .F
Ka

P

2. the , and (shown in Figs. 9,10 and 12)

exhibit high degree of similarity regarding shape of their
graphical representations for each value of F,

yF
P yF

P y

a

F
KP

3. the discontinuity in diagrams of sensitivity integrands

, and observed are associated with

entrances of their deflection lines y into y

yF
P yF

P y

a

F
KP

k zone that is
shown in Fig. 3 (for small F) or with development of
plastic soil flow close to the soil surface for large F
(85kN, 97kN, and 109kN),

4. a sort of irregularities observed at x 0.5T in sensitivity

diagrams , and are associated with cyclic

effects that are taken into account by the correction
functions A

yF
P yF

P y

a

F
KP

c and Bc. They allow to consider a cyclic
loading in quasi-static fashion,

5. the distributions of sensitivity integrands (shown in 

Fig. 8) differentiate themselves from sensitivity

integrands , and . In contrast to

, , and , the change sign. This fact

is associated with the change of sense of the soil
reaction p that is develop along the pile axis. This

means, that is negative when the soil reaction p

acts against force F, whereas is positive when

sense of soil reaction p is in accord with force F,

yF
bP

yF
P yF

P y

a

F
KP

yF
EIP yF

P yF
P y

a

F
KP yF

bP

yF
bP

yF
bP

6. the distributions of sensitivity integrands (shown in 

Fig. 11) connected with linear elastic soil phase are
developed from the soil surface to the depth x 4T only
for small values of load F applied. As the external load
F increases, the deflection line y intersects the y

yF
kP

k

envelope of Fig. 3 at progressively larger depth x that is

demonstrated by rapid increase in values of ,yF
kP

7. the scope of numerical variability of  that affect

the changes y

yF
)***(

P

t due to the changes of the design
variables can be classified in ascending order with
respect to the importance of the design variables as: k,
b, EI, Ka,

/ and .

The review of sensitivity integrands  affecting the

maximum angle of flexural rotation of the pile head due to
the changes of the design variables when subjected to force
F of cyclic type and discrete variability presented in Figs.
13-18 leads to the similar observations that have been

noticed for . Regarding the numerical values of

and  for the same values of the forces F applied,

the values of are substantially larger than

corresponding values of . More specifically, it is 

regarded that numerical values of the discussed sensitivity
operators can be assessed as:

F
)***(

P

yF
)***(

P

yF
)***(

P F
)***(

P

yF
)***(

P

F
)***(

P

yF
EIP  2  4.3  4 ;  4.6 ;F

EIP ; yF
bP F

bP ; yF
P FP yF

P FP

yF
kP  7.5  4 .F

kP ; y

a

F
KP F

Ka
P
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