Canadian Geotechnical Society

Southern Ontario Section

Graduate Student Competition

Given on January 21st 2004

Mining Induced Seismicity – Friend or Foe! Damage Limits for Risk Analysis

Adam Coulson, P.Eng., Ph.D. Candidate,
Lassonde Mineral Engineering Program,
Department of Civil Engineering,
University of Toronto

Supervisors:

Prof. W.F. Bawden
Pierre Lassonde Chair in Mineral
Engineering

Prof. J. H. Curran
Robert M. Smith Chair in Geotechnical
Analysis and Mine Design in Civil Engineering

What happens at the Laboratory Scale? Acoustic Emissions (AE)

AE Monitoring (Scholz, 1968; Lockner, 1993; Young, 2002)

Laboratory (after Martin, 1997)

PFC Modelling (Deiderichs, 1999)

Axial strain (%)

What happens at the Rock Mass Scale?

What happens at the Rock Mass Scale? Microseismicity (MS)

Unravelling 2000

The Field Scale Laboratory!

Brunswick #12 Mine (BMS) - Strong Brittle Rock Mass

- BMS Mature Mine MajorSeismicity/ Rock bursts
- Required a calibrated tool aid Future Production decisions
- Linear Elastic StressModelling (Map3D BEM)

The Field Scale Laboratory!

Brunswick #12 Mine (BMS) - Strong Brittle Rock Mass

- Back Analysis of 57 Secondary Stope Pillars Tracked:
 - Stress Path (avg. core stress)
 - Overbreak
 - Seismicity
 - FOG's and Operation issues
- Damage Criteria :
 - 4 level Scale (Stable Failed)

The Field Scale Laboratory!

Pillar Overbreak

Pillar Seismicity

Pillar Stability (e.g. Seismicity 71-7& 73-7 Pillars)

Local Falls of Ground

Factors:

- Opening Size
- Opening Age
- Support quality
- Support quantity
- Support Age
- Installed FOS

Overall Pillar Stability

Pillar Damage/Failure - Class 1-4

COMBINE OBSERVATIONS INTO A SINGLE PERFORMANCE CLASSIFICATION

- 1) STABLE Nothing happening
- 2) UNSTABLE Onset of events
- 3) UNSTABLE 2 Deterioration increase in seismicity, overbreak etc.
- 4) FAILED Post peak region
 (i.e major operational problems)
 A real Mullahva Headache

Hazard Assessment

Concluding Remarks

- Benefits of Combining Theoretical Damage Mechanics with the Case Histories Calibration:
 - Valuable tool for interpreting elastic stress modeling in complex multi-component rock systems.
 - Produces a practical stress index facilitating hazard prediction and risk analysis
 - Improves contingency planning for design in seismically active high stress mines
- Monitoring and analysis of mine induced seismicity is essential for locating yielding in the rock mass – safety of personnel

Questions!

Acknowledgements:

NSERC, Keck Foundation Noranda Inc., Dr. M. Deiderichs, Dr. V. Falmagne

Maged Rizkalla, Terry MacDonald, Brad Simser Williams Operating Corporation, David Bell Mine Newmont Canada Ltd.

