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ABSTRACT
The numerical model HydroSphere has been modified to account for variable-density flow and solute transport in porous 
fractured media. A general formulation of the body force vector is derived such that density effects can be simulated in 
fractures of any arbitrary inclination. Irregular fracture networks can also be randomly generated by HydroSphere. Thus,
the new model allows investigating dense plume migration in more disorganized fractured media than done previously. A 
series of scenarios in various, yet statistically equivalent, fracture networks were conducted and solute migration proved 
to be highly sensitive to the network. A sensitivity analysis revealed that low fracture apertures, low matrix permeability,
high matrix porosity and large molecular diffusion tend to stabilize solute migration. 

RÉSUMÉ
Le modèle numérique HydroSphere a été modifié pour simuler l’écoulement et le transport à densité variable dans des 
milieux fracturés. Une formulation générale du vecteur de flottabilité a été dérivée de sorte que des effets de densité 
peuvent être simulés dans des fractures à inclinaison arbitraire. Des réseaux irréguliers de fractures peuvent aussi être 
générés par HydroSphere. Ainsi, le nouveau modèle permet d’étudier la migration de soluté dans un milieu 
irrégulièrement fracturé. Une série de simulations pour différents réseaux de fractures statistiquement équivalents 
indique que le transport de masse avec effet de densité est fortement influencé par le réseau de fractures. Une analyse
de sensibilité a démontré que la diminution de l’ouverture des fractures et de la conductivité du milieu poreux, ainsi que
l’augmentation de la porosité et du coefficient de diffusion moléculaire tendent à stabiliser le système.

1. INTRODUCTION

In subsurface environments, noxious contaminants are 
mainly transported by the groundwater. Spatiotemporal 
variations of the groundwater density greatly affect the 
transport pattern of solutes in various geological media. 
Examples for density-driven flow and transport can be 
found in many areas of subsurface hydrology,
oceanography, meteorology, geophysics and nuclear 
waste management. 
Nuclear waste management underlines the importance of 
studying variable-density flow and transport. The safe
disposal of nuclear waste is commonly regarded as 
feasible in low-permeability geological media at a depth of 
up to 1000 m (AECL, 1994). At such depths, the
groundwater is a dense Ca-Na-Cl brine. Acute safety
questions regarding nuclear waste repository arise due to
the presence of fractures in the rock formations. 
Fractures greatly impact mass transport, because they
represent preferential pathways where accidentally
released radionuclides migrate at velocities that are 
several orders of magnitude larger than within the rock 
matrix. Clearly, it is of paramount importance to 
understand the movement of contaminants in fractured 
media under the influence of variable water density.
Variable-density transport has been intensely studied in 
diverse subsurface environments, predominantly in 
homogeneous and heterogeneous porous media (Figure
1a and 1b).

(a) (b)

(c) (d)

Figure 1. Different styles of geological media: (a) 
homogeneous porous medium, (b) heterogeneous porous 
medium, (c) fractured medium consisting of vertical and 
horizontal fractures and (d) fractured geological medium 
with nonuniform fracture aperture, trace and orientation 
(modified from Simmons et al., 2001).

Shikaze et al. (1998) investigated the migration of dense 
plumes in discretely-fractured media, using an orthogonal 
fracture network embedded in a porous matrix (Figure 1c). 
They found that dense solute plumes may develop in a 
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highly irregular fashion and the uncertainty associated 
with prediction can be very high. 
However, Shikaze et al.'s (1998) research was limited to a 
regular fracture distribution and uniform fracture 
apertures. Therefore, how dense plume instabilities will
develop in fractured networks with an irregular pattern 
(Figure 1d) remains unknown.
To address this question, the HydroSphere model 
(Therrien and Sudicky, 1996), which solves 3D variably-
saturated flow and solute transport in discretely-fractured
porous media, has been modified to account for density
variations in irregular fracture networks.

2. NUMERICAL MODEL

In HydroSphere, the discrete fracture approach is used for 
flow and transport in fractured porous media, and two-
dimensional fracture elements and three-dimensional
matrix elements share common nodes in the 3D grid. 
Governing equations for flow and transport have to be 
formulated such that the common nodes receive
contributions from the porous matrix as well as from the
fractures.

2.1 Flow and Transport Variables 

The flow variable used in HydroSphere is the equivalent
freshwater head h0 [L], defined in Frind (1982) as 

z
g

P
h

0
0 [1]

where P [M L-1 T-2] is the dynamic fluid pressure, 0 [M L-3]
is the freshwater density, g [L T-2] is the gravitational 
acceleration and z [L] is the elevation above datum. 
The transport variable used in HydroSphere is the 
dimensionless relative concentration c, which varies 
between 0 and 1. It is linked with density through the 
linear relationship 

cr  [2] 

where r is the dimensionless relative density, defined in 
Frind (1982) as 

1
0

r  [3] 

where  [M L-3] is the fluid density. The dimensionless 
constant  is the maximum relative density given by

1
0

max [4]

where the assumption is made that the solute 
concentration for a fluid of density = max is cmax=1.

2.2 Governing Equations in Porous Media 

With the equivalent freshwater head, the Darcy flux qi [L T-

1] can be completely expressed in terms of freshwater
properties:
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where  [L T0
ijK -1] is the freshwater hydraulic conductivity

tensor and j is a dimensionless indicator for the flow
direction. A value of j=1 indicates the vertical direction 
while j=0 indicates both horizontal directions (Frind,
1982). Note that, compared to the standard Darcy
equation, the additional body force term c j accounts for 
spatial fluid density variations. 
The three-dimensional governing equation for variable-
density flow in porous media under saturated conditions is 
(Frind, 1982): 
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The specific storage SS [L-1] accounts for both matrix and 
fluid compressibility. It is defined as 

flm0S gS [7]

and does not vary with fluid density. Matrix porosity is 
given by  [--] and m [M-1 L T2] and fl [M

-1 L T2] are the 
matrix and fluid compressibility, respectively.
Neglecting adsorption, radioactive decay and solute
sources/sinks, the three-dimensional advective-dispersive 
equation governing solute transport is given by
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which is identical to the transport equation for the usual 
case of constant fluid density. The coefficients of the 
hydrodynamic dispersion tensor Dij [L2 T-1] are given by
Bear (1988) as 

1,2,3ji,Dq
q

qq
D ijdijt

ji
tlij  [9] 

where l [L] and t [L] are the longitudinal and transverse
dispersivity, respectively, ij [--] is the Kronecker delta 
function,  [--] the factor of matrix tortuosity and Dd [L

2 T-1]
the free-solution diffusion coefficient. 

2.3 Governing Equations in Fracture Media 

The Darcy flux in fractures is calculated similarly to the 
flux computation in porous media (Equation 5): 
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where superscript “fr” refers to the fracture media. The

freshwater hydraulic conductivity of the fracture,  [L TfrK0
-

1], can be evaluated as 

µ12

g2b
K 0

2
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where 2b [L] is the fracture aperture and  [M L-1 T-1] is 
the dynamic viscosity of the fluid. However, as opposed to 
the Darcy equation in a porous matrix element (Equation 
5), in a fracture element, the indicator for flow direction j

is a function of the fracture slope , defined in Figure 2. 
According to Bear (1988, p. 169), the body force term in
inclined fracture elements is weighted by the cosine of the 
fracture incline .

Figure 2. Geometry of an inclined fracture element (face)
in three dimensions. 

Thus, the Darcy equation for a fracture element of any
arbitrary slope is given by
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The variable-density flow equation in fractured media is
given by Shikaze et al. (1998) for the case of only vertical 
and horizontal fractures. Using Equation 12, the governing
flow equation can be written in the general form 
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where the final two terms represent normal components of 
fluid flux across the boundary interfaces (I+ and I-) that 

separate the fracture and the porous matrix. The specific 

storage in the fracture,  [Lfr
SS -1], can easily be derived 

from Equation 7 by assuming that the fracture is 
incompressible, such that m=0, and by setting its porosity
to 1: 

fl0
fr
S gS [14]

Shikaze et al. (1998) also provide the governing equation 
for variable-density transport in fractured media, which is 
not different from the case of constant fluid density.
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The final two terms represent advective-dispersive loss or
gain of solute mass across the fracture-matrix interfaces I+

and I-. In Equation 15,  [Lfr
ijD 2 T-1] is the hydrodynamic

dispersion coefficient of the fracture and can be calculated 
according to 
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with  [L] and [L] being the longitudinal and 

transverse fracture dispersivity, respectively.
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2.4 Finite Element Formulation of the Flow Equation 

HydroSphere uses the control volume finite element 
method (CVFE) to spatially discretize the flow equation. 
The basic principle of the finite element (FE) method is to, 

first, assume an approximate solution  for h0ĥ 0 in the form 
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where wj are the elemental approximation functions and 
Nn is the total number of nodes in the finite element grid. 
The next step is to define a differential operator L(h0). The
fractures and porous matrix share common nodes along 
the fracture walls and it is assumed that hydraulic head at 
the fracture/matrix interface, as well as concentration, are 
equal in both media. Therefore, the exchange terms 
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q  in Equation 13 vanish and L(h0) can be written
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In Equation 18, the unknown exact solution h0 is replaced 

by the approximation such that the left hand side of Eq.

18 will be a nonzero residual. Hence, the third step is to
weigh the residual by a weighting function 

0ĥ

j and force the 
global integral of the weighted residual to zero: 

ii0 dhL 0)ˆ( [19]

where is the model domain. In the common Galerkin 
method, weighting function j is set equal the
approximation function wi. HydroSphere employs the
CVFE method which ensures fluid mass conservation on 
both the elemental and the grid level. In the CVFE
method, j is chosen as 1, dividing the domain into 
subdomains or nodal control volumes. The finite element 
formulation of the balance equation (Equation 13) finally
leads to a semi-discrete global matrix system in the
compact form (Frind, 1982) 
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where H [L T-1] is the conductance or stiffness matrix, S 
[L] is the fluid mass matrix, G [L2 T-1] is the body force 
vector and F [L2 T-1] is the boundary flux vector. All
matrices and vectors are defined in detail by Frind (1982). 
G represents density effects and is, therefore, of special 
interest in this study. The global body force vector G can
be written as sum of all elemental vectors Ge.

e

eGG  [21] 

It follows from Equations 18 to 20 that the entries  [Le
iG

2

T-1] of the vector Ge can be calculated following
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where c  [--] is the average solute concentration in 
element e. For a vertical fracture element, Frind (1982) 
integrates in Equation 22 and obtains the solution as 
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where the vector entries on the right-hand side refer to the 
four nodes of a two-dimensional vertical element. For an 
inclined element, however, the approximation function wi

will vary in space and, therefore, integrating in Equation 
22 becomes a surface integral calculus problem.

Following Thomas and Finney (1988), the integral of a 
function f(x,y,z) over a surface S in space, described by
the function F(x,y,z) = constant (Figure 3), can be 
calculated by evaluating a double integral over the 
projection or shadow of S on a coordinate plane in the
form
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F
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where R is the shadow region on the ground plane 
beneath the surface S and p is a vector normal to R. The
projection of S in the xz-plane is considered in order to 
obtain the same perspective as in Frind (1982). In this 
case, the inclined element becomes pseudo-vertical. From
Figure 2, equation F(x,y,z) = constant of the surface S, 
defining the plane of the fracture face, can be derived as 
Lz y – Ly z = 0 and we have

zLyLzyxFS yz),,(: [25]

22
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Surface F(x,y,z) = constant 

S
p

z
Vertical projection 
or shadow of S on 
a coordinate plane 

y
R

x

Figure 3. Projection of S on a coordinate plane (Thomas
and Finney, 1988).

Using Equations 25, 26 and 27, Equation 24 becomes 

R z

zy

R

dzdx
L

LL
zyxfdRzyxf

22

),,(),,(  [28] 

where dA = dx·dz. With the function 
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which must be integrated. The entries of the elemental
body force vector are given by
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where  is constant but with an orientation that does not 

coincide with the global z-direction. Therefore, the above 
integral has to be evaluated in the local coordinates 

frK0

zyx ,, . The required transformation is a rotation around

the x-axis by angle  and can be written in matrix form as 
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Thus, we have the relationships 

sincos zyy  [32] 
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which yields the following derivatives 
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that will be used below. The integral of Equation 30 is 
rewritten in terms of local coordinates by first substituting 
the derivative by means of the chain rule
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and, second, by replacing the elementary volume by

zdxdJdzdx det  [38] 

The Jacobian matrix J [--] collapses to the simple 1 x 1
matrix

z

z
J [39]

whose determinant is given by Equation 36. Expressing a 
linear approximation function for node 1 in local 
coordinates gives its spatial derivative as 
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with the hypotenuse 22
zy LLH . Now use can be made 

of Equations 35 to 39 to rewrite Equation 30 as 
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Repeating steps 40 and 41 for nodes 2, 3 and 4 with a 
final integration in Equation 41 yields the elemental body
force vector Ge for arbitrarily inclined fracture faces in the
form
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3. MODEL VERIFICATION

The model has been verified by reproducing known
solutions for variable-density transport in porous media.
Although not shown here, both the Elder (1967) 2D 
experiment as well as the 3D experimental results 
presented by Johannsen et al. (2002), with the 
parameters given in Oswald and Kinzelbach (2004), could
be very well reproduced.                                         c (x,z=10m,t) = 1.0 h0 (x,z=10m,t) = 0.0 

L
z

=
 1

0 
m c (x,z,t=0) = 0.0 h0 (x,z,t=0) = 0.0 

h0 (x,z=0m,t) = 0.0 

Lx = 12 m 

Figure 4. Domain geometry, boundary/initial conditions. 

Variable-density transport in vertical fractures was verified
by reproducing results presented by Shikaze et al. (1998). 
For the case of an inclined fracture ( =45°), the code was
verified by comparing the results from two different
scenarios run with HydroSphere, for the domain shown in
Figure 4. A 3D mesh is used to discretize the domain of 
unit thickness, x= z=0.1 m and y=1.0 m. The mesh 
contains 12,221 nodes and 12,000 3D block elements. 
The left and right boundaries are impermeable whereas
the top and bottom are first-type boundaries where the 
equivalent freshwater head is equal to zero. Similar to 
Shikaze et. al (1998), the top of the domain is assumed to
be a salt lake with a constant concentration equal to 1.0. 
All other boundaries are assigned zero dispersive flux for 
transport. In scenario 1, an inclined fracture was
discretized only with 2D inclined faces running across the
3D block elements forming the mesh. In a second 
scenario, the inclined fracture consisted of only vertical 
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and horizontal faces (Figure 5) corresponding to faces of
the 3D block elements. 

Figure 5. Different discretizations of an inclined fracture. 

To account for the longer path along the fracture of 
scenario 2, the fracture velocities in this scenario were
multiplied at each time step by a correction factor. The
breakthrough curve was simulated at the observation 
point as shown in Figure 5 using the model parameters 
from Table 1. Figure 6 reveals that the two results match. 
In addition, mass fluxes, mass balance as well as
maximum fracture and matrix velocities of the two
scenarios were successfully compared (results not 
shown). Therefore, the code was found to be adequately
verified with respect to density effects in inclined fractures.

Table 1. Model parameters used 
Parameter Value
Freshwater density ( 0) 1000 kg m-3

Maximum water density ( max) 1200 kg m-3

Fluid dynamic viscosity ( ) 3.545·104 kg m-1 a-1

Fluid compressibility ( fl) 4.42·10-25 kg-1 m a2

Acceleration due to gravity (g) 9.75·1015 m a-2

Factor of tortuosity ( ) 0.1
Matrix compressibility ( m) 2.51·10-24 kg-1 m a2

Matrix permeability ( ij) 10-15 m2

Matrix porosity ( ) 0.35
Matrix longitudinal dispersivity ( l) 0.1 m 
Matrix transverse dispersivity ( t) 0.005 m 
Fracture long. dispersivity ( )fr

l
0.1 m

Fracture transv. dispersivity ( )fr
t

0.1 m

Fracture aperture (2b) 150…250 m
Free-solution diffusion coeff. (Dd) 0.15768 m2 a-1

4. ILLUSTRATIVE EXAMPLE

With HydroSphere’s 2D random fracture generator, 
irregular fracture networks have been produced to 
investigate the development of a dense plume for the 
system shown in Figure 4. The model accounts for 
spatiotemporal density variations, advection, dispersion 
and diffusion in both the porous matrix as well as in the 
fractures.
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Figure 6. Breakthrough curve at an observation point.

4.1 Generating the Fracture Network

To generate the fracture network, it is assumed that 
fracture traces are distributed lognormally (Mathab et al., 
1995) and that fracture apertures obey an exponential 
distribution. The aperture is assumed to be constant for a 
single fracture. Furthermore, the fractures are assumed to
of tectonic origin, leading to a conjugated system of two
fracture families (Figure 7). Therefore, fracture
orientations ( ) follow a two-peak Gaussian distribution 
with the peaks at -30° and +30°.

Figure 7. Conjugated system of two fracture families. 

4.2 Variable-Density Transport in a Complex Fracture
Network

A set of 25 random fracture networks has been generated. 
In each of these networks, the apertures are distributed 
exponentially between 150 and 250 m. For the system
shown in Figure 4, with parameters from Table 1, several
transient simulations with constant time step size of 1 
month were run. The output was observed at 2 years
simulation time. For statistically equivalent systems,
completely different behavior is observed depending on
the spatial location of fractures representing high-
permeability zones. Results range from virtually stable in
Figure 8a to entirely erratic and unstable in Figure 8c. The
formation of instabilities is restricted to the highly
permeable fracture zones. Thus, the fracture network

contaminant source 

45°

observation
    point 

scenario 1 

scenario 2 

3

1

2
1 < 2 < 3
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Figure 8. Simulated concentration at 2 years for 3 different 
fracture networks. Darker colors correspond to high
concentration and lighter colors to low concentration. 

Figure 9. Result of the simulation for the network shown in 
Figure 8c at 0.5 years, with two convection cells
highlighted.

dictates the value of the perturbation wavelength , which
is the ratio between the domain length (here 12 m) and
the number of fingers. The number of fingers in the three 
cases is 4, 2 and 1, respectively, leading to wavelengths
of 3 m, 6 m, and 12 m, respectively. Clearly, shorter 
wavelengths are more stable, whereas systems with long
wavelengths are unstable. This observation corresponds 
to the findings of Simmons et al. (2001) who examined 
variable-density transport in statistically equivalent 
heterogeneous porous media. 
However, as opposed to density-driven transport in porous 
media, the number of instabilities in fractured media does
not change with time. Simmons et al. (1999) 
demonstrated that in a sandy aquifer, the number of 
fingers decreases with time because large fingers 
increase, which, in turn, decreases the number of small 
fingers. In fractured media, however, this is not the case
because the location of the fingers is strongly controlled 
by the geometry of the fracture network.
Furthermore, plume development in fractured media is
influenced by the formation of convection cells. Figure 9 
shows two selected streamlines of the velocity field. The
flow direction in the dominant fracture at the top right 
corner is downward and upward in other fractures. Figure
9 also shows that only one instability develops, with a 
corresponding perturbation wavelength of 12 m, because 
the two fractures close to the surface that seem to be 
contaminated by the source, located on top of the system,
are actually contaminated from below.

4.3 Sensitivity Analysis for the Complex Fracture 
Network Problem 

The model is applied to assess the impact of parameter 
uncertainties on the plume transport. Eight sets of 
simulation trials were carried out where single
physicochemical properties were modified as shown in 
Table 2. The fracture network chosen is similar to the one 
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depicted in Figure 8a. This allows the behavior of the 
network as a whole to be examined, not only the behavior 
of the few fractures that dominate the system as shown in 
Figure 8c. 

Table 2. Parameters used for the sensitivity analysis
Parameter Low value High value 

Matrix permeability ( ij) 5·10-16 m2 2·10-15 m2

Matrix porosity ( ) 0.25 0.45
Fracture aperture (2b) 50…150 m 250…350 m
Free-solution diffusion 
coefficient (Dd)

0.015768 m2 a-1 1.5768 m2 a-1

The simulations indicate that increased matrix 
permeability destabilized the system because of higher 
computed Darcy fluxes in the matrix (Equation 5) where

1,2,3ji,
µ

g
K

0ij0
ij [43]

Interestingly, modifying the matrix porosity did not have a 
significant impact on tracer diffusion from the fractures 
into the matrix. This is in disagreement with simulation 
results where the fluid density does not vary. In this case, 
higher matrix porosity would lead to more matrix diffusion. 
However, it was observed here that the matrix porosity
does have an impact on the velocity field according to 

1,2,3ji,c
x

hK
v j

j

0
0
ij

i [44]

Thus, a low matrix porosity  leads to larger matrix
velocities vi that destabilize the system.
According to the Cubic Law

3
2~ bQfr [45]

the discharge Qfr in fractures changes with the cube of the 
fracture aperture 2b. Therefore, uncertainties in aperture 
size have a major impact on the result, with large
apertures promoting instability.
Finally, a high diffusion coefficient leads to a high matrix 
diffusion and, therefore, to a drop of concentration within
the fractures. Hence, due to the loss of tracer into the 
matrix, the fractures are depleted in solutes resulting in 
less efficient buoyancy within the fractures. Conversely,
low diffusion leads to less matrix diffusion and, thus, the 
concentration gradients as well as the concentrations in 
the fractures remain large, resulting in high diffusive as
well as buoyancy-driven transport within the fractures. 

5. CONCLUSION 

The migration of a dense plume in a fracture network
lacking a regular pattern is highly sensitive to the network
used. The formation of instable fingers is limited to
fracture locations. For large perturbation wavelengths,

efficient convection cells form in the fracture network,
transporting the solutes downward into the aquifer. A
sensitivity analysis revealed that the system tends to be
unstable for large matrix permeability, low matrix porosity,
large fracture apertures and low molecular diffusion. 
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