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ABSTRACT
A numerical model has been developed for the large-scale simulation of solute transport in discretely-fractured porous media. 
A generic finite elements code, MEF++2.0, has been modified to account for simultaneous flow and transport in 2D fracture 
and 3D porous medium elements. Equations for the fractures and the porous medium are solve separately but are coupled 
with a mass transfer term. This mass transfer term is calculated using the concentration gradient and weighted with a 
coefficient that depends on the porous medium properties, allowing for a general representation of diffusive exchange 
between fracture and porous matrix. Verification and illustrative examples are presented to illustrate the modelling 
capabilities, including adaptive meshing for the transport solution.  

RÉSUMÉ
Un modèle numérique a été développé pour la simulation à grande échelle du transport de masse dans un milieu poreux à 
fracturation discrète. Un code d’éléments finis générique, MEF++2.0, a été modifié pour inclure l’écoulement de l’eau et le 
transport de masse dans des éléments de fractures 2D et des éléments 3D pour la matrice poreuse. Le modèle résout 
séparément les équations pour les fractures et pour la matrice poreuse, avec couplage par un terme de transfert de masse. 
Ce terme de transfert est calculé à partir du gradient de concentration entre le milieu poreux et la fracture et il est pondéré
par un coefficient dépendant des propriétés du milieu poreux. Cette approche permet une représentation générale du 
transfert entre fractures et matrice. Des exemples sont présentés pour vérifier le modèle et pour illustrer ses capacités, 
particulièrement l’adaptation de maillage qui permet d’améliorer les résultats des simulations. 

1. INTRODUCTION 

Groundwater availability plays a key role in the development 
of populations, but population growth affects its quality. In 
several countries, environmental laws are getting more strict 
to minimize the impact of human activities on groundwater 
quality. Mathematical models that describe groundwater 
flow and solute transport, based on analytical or numerical 
solutions to the governing equations, are becoming 
increasingly used for groundwater management. Because of 
the method of solution used, analytical models are generally 
restricted to simple homogeneous groundwater systems. 
For complex geological environments, their applicability can 
become limited and numerical models often become the 
best option. Fractured geological materials, where complex 
fractures networks can exist, represent one example of such 
complex environments.  

Several conceptual models exist to represent groundwater 
flow and solute transport in fractured geological systems. 
The most commonly used are the equivalent porous 
medium (EPM) model, the dual-continuum model and the 
discrete fracture model. The differences between each 
model reside in their mathematical complexity, data 
requirement and also on their ability to accurately represent 
observations. The EPM approach treats the porous medium 
and fractures as a single domain, with a single set of 
hydraulic and transport properties. For large-scale domains, 
this approach can be inaccurate because it relies on the 
existence of a representative elementary volume (REV) for 
the equivalent medium. Such generalization of the domain 

may fail in complex fracture networks where discrete flow 
paths, or channels, exist. The second approach is the dual-
continuum model. In this approach, the porous medium and 
fractures form two separate domains that are both 
represented by their own REV. In the mathematical 
formulation, both domains are coupled with a fluid or mass 
exchange term. For large-scale domains, this approach can 
also be inaccurate if discrete fractures present in the rock 
mass control flow and transport. The third conceptual model 
is based on a discrete representation of individual fractures. 
Each fracture is located in the simulation domain and 
assigned hydraulic and transport properties.  

The model FRAC3DVS, presented by Therrien and Sudicky 
(1996), is an example of a 3D discrete fracture numerical 
model for fluid flow and solute transport. The model solves 
the flow and transport equation with the control volume finite 
element method. Fractures are represented by 2D planar 
elements and the rock matrix is represented by 3D 
volumetric elements. Because fractures are discretized in 
two dimensions, it is assumed that solute and head 
distributions across the fracture aperture are uniform. This 
assumption is reasonable for large-scale simulations since 
solute and hydraulic head distributions across a fracture will 
likely be irregular only at very small scales. Another 
assumption is that a fracture is idealized as uniform parallel 
plates. The 2D fracture elements are superposed onto the 
3D matrix elements and continuity of hydraulic head and 
solute concentration is assumed at nodes that are common 
to fracture and matrix. This representation of the system 
helps reduce the numerical and meshing difficulties arising 
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from the large contrast between fracture thickness and total
domain size.

As opposed to the EPM or dual-continuum approaches, the
discrete fracture approach can be considered as that
requiring the most detailed field knowledge, but it can also
provide the most realistic representation of the fractured
rock mass. However, some difficulties still exist for the
application of discrete fracture model. The first difficulty is to
characterize the rock mass including individual fractures and
to derive hydraulic and transport properties for input into the
model. A second difficulty is related to the discretization and
numerical solution of the flow and transport equations for
large-scale simulations. The is a very strong contrast
between a typical fracture aperture or thickness, which is
often less than 1 mm, and flow and transport distances of
interest for practical applications, which can exceed
hundreds of meters. As a result, for large spatial domains,
discretization problems might arise because of the large
thickness ratio between the fracture and the porous
medium. Furthermore, an accurate description of fluid flow
and transport processes close to the fracture wall, into the
rock matrix, might require very fine grids, making the
numerical solution computationally very expensive.

This paper presents preliminary results concerning the
development of a model for mass transport and saturated
groundwater flow over large distances in discretely-fractured
porous media. The model presented here has been 
developed using a multi-purpose finite element code
(MEF++2.0) that allows adaptive mesh refinement (Fortin,
2004). It is based on the approach used in FRAC3DVS
where fractures are discretized with 2D elements and the
porous rock matrix is discretized with 3D elements.
Equations of groundwater flow (diffusion) and mass
transport (diffusion and advection) for both fractures and
matrix are coupled to produce the numerical model. The
purpose of the work is to improve current model capabilities
for discrete-fracture simulation and address the numerical
difficulties mentioned above.

A major difference between this model and FRAC3DVS is
the computation of mass transfer between the fracture and
the porous medium. A mass transfer coefficient that
depends on the porous medium properties is introduced in
the transport equation for both transport media, rather than
assuming continuity of concentration at the fracture and
matrix interface. The mass transfer coefficient weighs the
existing concentration gradient between the fracture and the
porous medium. The value of this coefficient is found by
comparison/adjustment with experimental data. In addition
to this coefficient, adaptive mesh refinement is used during
the simulation to account for the slow process of mass 
diffusion in the porous medium and also for the high
concentration gradient that can occur in the system. This
last feature of the model, coupled with a more general
representation of mass transfer, allow to model accurately
mass transport over large distance in fractured rock.

In the following sections of this paper, governing equations
used to build the model and their numerical implementations
are presented. The model is compared to an analytical

solution for solute transport in a network of parallel fractures
(Sudicky and Frind, 1982). Illustrative simulations are then
presented for large-scale transport in fractured rock, for a
system that resembles that in Smithville, Ontario, where a
fractured carbonate aquifer has been contaminated by PCB
(Novakowski et al., 1997).

2. GOVERNING EQUATIONS

The fluid flow and mass transport equations used to build
the numerical model for the porous medium and the fracture
are presented in this section. Their numerical
implementation, associated boundary conditions and mass
coupling terms are presented in the next section.

2.1 Porous medium

2.1.1 Fluid flow

The following equation is used to describe three-
dimensional transient groundwater flow in a saturated
porous medium:

r
r hr sr

h
q Q S

t
  [1] 
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r rq K h  is the Darcy velocity [L T

1
],  the 

hydraulic head [L] and  the hydraulic conductivity of the
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hrQ
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1
] represents sources (positive) or sinks (negative)

for fluid flow in the porous medium. The right-hand side of

the equation represents fluid storage, with srS  being the 

specific storage coefficient of the porous medium [L
1

].

2.1.2 Mass transport 

The following equation describes three-dimensional mass
transport in a saturated porous medium:

( )
( ) r r

r r Cr
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D C Q
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where  is the solute concentration in the porous medium

[M L
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3

],  is the porous medium porosity [dimensionless],

 represents a sink (negative) or a source (positive) that 

allows solute exchange with the outside of the porous

medium [M L
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] and  is a dimensionless retardation

factor given by (Freeze and Cherry, 1979):
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where b  is the bulk density of the porous medium [M L
3

]

and  is the water-solid distribution coefficient for the

porous medium [L
3

 M ]. The retardation factor accounts
for the slower migration of a solute, compared to water,
because of adsorption onto the porous medium
(Charbeneau, 2000).

drK
1

The diffusion coefficient rD  of the porous medium is

defined by [L  T ] (Bear, 1972):
2 1

rD D     [4]

where  is the free-solution diffusion coefficient [L
2

 TD 1
]

and  is the porous medium tortuosity [dimensionless].

In equation 2, the advection term is omitted since the matrix
is assumed to have a very low-permeability. As a result, the
effect of advection is negligible relative to the diffusion term
for the porous medium. Omitting advection is done to
simplify the model description but, since the numerical
model (MEF++2.0) is designed to solve several types of
partial differential equations, advection can be included in
equation 2 with very few modifications.

2.2 Fracture

2.2.1 Fluid flow

The following equation describes three-dimensional
transient groundwater flow in a saturated fracture:

f

f hf sf

h
q Q S

t
[5]

where  is the Darcy velocity [L Tf fq K fh
1

],

is the hydraulic head [L] and  correspond to a

volumetric fluid flux corresponding to a source (positive) or

sink (negative) for the fracture [L
3

 L  T ]. The right-hand
side of the equation represents fluid storage in the fracture,

with

fh

hfQ

3 1

sfS  being the specific storage coefficient [L
1

] that is 

directly related to the water compressibility, w  [L T
2

 M
1

]

(Therrien and Sudicky, 1996). The saturated hydraulic

conductivity of a fracture  having a uniform aperture

 [L] is given by (Bear, 1972):

fK
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where w  is the density of water [M L
3

],  is 

gravitational acceleration [L T ] and 

g

2
 is the viscosity of

water [M L
1

 T
1

].

2.2.2 Mass transport 

Three-dimensional mass transport in a saturated fracture is
described by:

( )
( )

f f

f f f f Cf

R C
q C D C Q

t
  [7] 

where  is the solute concentration in the fracture [M 

L

fC

3
],  is a solute source or sink in the fracture [M LCfQ

3

1T ] and  is the fracture diffusion coefficient defined by

[L  T

fD

2 1
]:

f f LD q D    [8] 

where D  is the free solution dispersion coefficient.

The dimensionless retardation factor, fR , is defined as

(Freeze and Cherry, 1979):

1
df

f

K
R

b
[9]

where  is the water-solid distribution coefficient of the

fracture [L].
dfK

3. NUMERICAL IMPLEMENTATION 

3.1. Discretized equations

Saturated fluid flow is described by linear diffusion-type
equations, such 1 and 5, that are similar to the governing
equation 2 for diffusive transport. Discretized fluid flow
equations are therefore not presented, for the sake of
brevity, and only discretized mass transport equations are
presented in this section.

3.1.1 Porous Medium

Governing equation 2 describing mass transport equation in
the porous medium can be rewritten as:

r r
r

r

C D
C

t R
fr   [10] 

where fr  is an exchange term at the fracture/porous

medium interface. The variational form of equation 10 is 
obtained by integration by part of its left-hand side and has
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the following form:

r r
r r r

V
r

C D
v C v

t R
dV

0r
r r

B
r

D
C n v dB

R
 [11] 

where  are the test functions used in the Galerkin

variational method and  is normal to the boundary.
rv

n

In equation 11, the first term in the first integral represents
mass accumulation while the second represents mass
diffusion. Both terms are integrated over the volume of the 
porous medium. The third term, also a diffusion term, is
integrated over the boundaries (surfaces) of the porous
medium domain and represents mass transfer between the
fracture and the porous matrix. Other models (for example,
Therrien and Sudicky (1996)) that assume continuity of
concentration at the fracture and matrix interface omit this
boundary diffusion. As results, these models assume
instantaneous exchange between the porous medium and
the fracture. If we assume that the boundary integral
represents mass transfer between the fracture and the
porous medium, we can write:

( )r
r r f r r

B B
r

D
C n v dB H C C v dB

R

      [12]

where H  is a mass transfer coefficient [T ]. The right-
hand side term of this equation corresponds to the

exchange term

1

fr  in equation 10.

Replacing equation 12 in equation 11, the following
variational form of the mass transport equation in the porous
medium is obtained:

r r
r r r

V
r

C D
v C v

t R
dV

[13]( )f r r
B
H C C v dB

Inspection of equation 13 indicates that, if the concentration
in the matrix is equal to that in the fracture, there is no mass

transfer between both systems. However, if fC  is greater

than , the right-hand side is positive and there is transfer

of mass from the fracture towards the matrix.
rC

3.1.2 Fracture

The equation for mass transport in a fracture (equation 7)

can be rewritten as:

(
f f f

)f f r

f f

C q D
C C

t R R
f

[14]

where rf  is a mass exchange term at the fracture/porous

medium interface. Using integration by part, the variational
form of equation 14 can be written as:

f fr
f f f f f
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where  are the test functions used in the variational

method of Galerkin and  is normal to the boundary.
fv

n

We make the assumption that solute concentration is
uniform across the fracture aperture to reduce the
dimensionality of the equation. We further assume that a
fracture can be represented as parallel plates. From these 
assumptions, the volume integral in equation 15 is reduced
to a surface integral by integrating over the fracture aperture

, such that:2b

2
f fr

f f f f f
S

f f

C Dq
b v C v C v
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f f
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 [16] 

In equation 16, the boundary diffusion term represents mass
transfer between the fracture and matrix and is written as:

( )
f

f f f r f
B B

f

D
C n v dB H C C v dB

R

      [17]

where the right-hand side is equivalent to  in equation

10. Replacing equation 17 in equation 16, the following
variational form of the mass transport equation in the
fracture is obtained:

rf

2
f fr

f f f f f
S

f f

C Dq
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 [18] ( )f r f
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This final equation shows that the fracture is reduced to a
two-dimensional surface that can be coupled with the three-
dimensional porous medium equation 13 using the
oundary exchange term that appears in both equations.

.2 Numerical techniques

en simulating mass

n . This schem

b

3

To discretize the governing equations, a standard Galerkin
formulation is used with piecewise linear approximation of
the primary variables. Special care must be taken regarding
numerical problems that occur wh
transport in discretely-fractured rock.
First, the advection term in equation 7 is usually much larger
than the diffusion term. It produces advection-dominated
transport in the fracture, for which the standard Galerkin
method can produce numerical oscillation. Therefore, a
Streamline Upwind Petrov Galerkin (SUPG) scheme
(Bourisli, 2002) is used in the fractures to eliminate
oscillations introduced by the convectio term e

consists in replacing the test function fv  by f r fv cq v ,

where c  is a coefficient depending on the element size.
This is the finite element equivalent of the backward finite

fferences used in highly convective cases. 

elhamadia et al. (2004a,b) for
hase change problems.)

. VERIFICATION

a set of parallel
actures embedded into a porous matrix.

.1 Numerical testing

 also indicated excellent mass
onservation for the model.

on is omitted when advective flux
the fracture is large.

seco pro e mass exchange terms 

di

The second numerical difficulty is related to discretization of
the fracture, namely the strong contrast between the
fracture aperture and transport distances for practical
applications, as well as potentially strong concentration
gradients between the fracture and surrounding matrix. As 
shown in section 3.1.2, the flow and transport equations are
averaged over the fracture thickness and both processes
are therefore represented in two dimensions, which does
not require discretization across the fracture thickness.
Strong concentrations gradients occur when a moving
solute front in the fracture is in contact with an
uncontaminated portion of the porous medium. In that case,
there is an abrupt change of concentration over a very short
distance, across the fracture/matrix interface. There is also
an abrupt change in the solute transport velocity, since there
is fast advective transport in the fracture and slow diffusive
transport in the porous matrix. To capture these strong
concentration gradients without having to use an extremely
fine mesh over the whole domain, thus improving the
accuracy of the simulations, an adaptive remeshing strategy
is also introduced based on an error estimator. It allows to 
refine the mesh where needed while coarsening the mesh in
other regions. This strategy will not be described here but
the reader is referred to the following references for a 
complete discussion (see B
p

4

The model has been verified by first performing some
numerical tests to ensure that the governing equation is 
correctly solved, and then by comparing to a published
analytical solution for solute transport in
fr

4

Numerical testing can be conducted within MEF++2.0 to
ensure that the discretized equation is correctly solved. The
procedure does not require that an analytical solution be
available for the equation. Instead, the procedure consists in
assuming an arbitrary solution to the discretized equations,
for example the concentration at all nodes for equation 16,
and then solve analytically outside of MEF++2.0 to
determine the boundary conditions necessary to produce
the arbitrary solution. Verification of the model is then
conducted by specifying these boundary conditions within
MEF++2.0 and then computing the unknown solution at the
nodes. The model should reproduce the same solution as
used to determine the boundary conditions. Using this
method, extensive testing of the numerical model has been
done and showed that the governing equations are indeed
correctly solved. Using several different analytical
expressions, simulations have
c

4.2 Analytical solution

Sudicky and Frind (1982) have developed an exact
analytical solution for transient solute transport in discrete
parallel fractures situated in a porous rock matrix. The
solution takes into account advective transport in the
fracture, molecular diffusion and mechanical dispersion
along the fracture axes, molecular diffusion from the fracture
to the porous medium, adsorption and radioactive decay. A
transient solution has also been developed for the case
where longitudinal dispersi
in

The governing equations used by Sudicky and Frind (1982)
are slightly different with the equations used here with
respect to mass exchange between the fracture and matrix.
Therefore, two different representations of mass exchange
have been tested here to reproduce results presented by
Sudicky and Frind (1982). The first representation attempts
to use the same mass exchange expression as the
analytical solution, which is a mass flux term in the fracture
equation and a prescribed concentration in the matrix. The

nd ap ach makes use of th

rf fr and  defined previously.

a
The simulations presented here reproduce case 1 of
[Sudicky and Frind (1982), where set of parallel fractures
of uniform aperture equal to 100 m, with uniform fracture 

spacing equal to 0.5 m, is located in a matrix with a porosity
equal to 0.01. The initial solute concentration is equal to
zero everywhere and a prescribed concentration equal to
1.0 is imposed at the fracture inlet for the duration of the
simulation. Steady-state flow is assumed, with water velocity
equal to 0.1 m/day along the axis of the fracture and equal
to zero in the matrix. The solute is assumed conservative,
without retardation or degradation, and its effective diffusion

coefficient in the matrix is equal to 1.38x10
4

 m
2

/day. The
ngitudinal dispersivity in the fracture is equal to 0.1 m.lo
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A domain having dimensions equal to 80m in the x-direction
and 1m in the z-direction is used to discretize the two-
dimensional system. The total number of triangular
elements that discretize the porous matrix is equal to 2394,
and  the total number  of  1D  line  elements  that discretize
the fracture is equal to 599. The total mesh contains 1260
nodes. The simulation is conducted for a total time equal to
10000 days, with the time step size equal to 10 days. There
is no significant difference on the results for a one day
mestep.

mod lts t

Sudicky and Frind
982) is used in the fracture equation:

ti

The first approach relies on Fick’s first law to adjust the
el resu o the analytical solution. The exchange terms

rf  and fr  are omitted from the equations described in

the numerical formulation section. Instead, the following
mass exchange term presented by
(1

r r

z b

D C
q

b z
 [19] 

he matrix is expressed
t the fracture and matrix interface.

the matrix, the following boundary conditions is used

)b t C x t [20]

 concentration at the fracture and matrix
terface.

where the concentration gradient in t
a

In

( ) (r fC x

to impose the
in

Figure 1. Concentration profile in the fracture for t = 100
days (thin line) and t = 1000 days (think line). The solid lines
are the analytical solution results and th

Figure 1 shows the results obtain from the numerical
simulation using the Fick’s first law model at 100 and 1000
days only. For t = 100 days, small differences exist between
the analytical and numerical solutions. At t = 1000 days, the
differences are more significant. The differences in results
are directly related to the evaluation of the spatial derivative
in equation 10. In the analytical solution, this derivative is
calculated from an exact expression of the concentration in
the matrix. In the numerical model, it is estimated using the
concentration at the matrix node closest to the fracture
interface.

e dashed lines
correspond to the numerical model results. 

e

The gradient estimate is thus sensitive to the grid size,
which in turn makes the exchange term  in equation 10

also sensitive to the grid size using this approach. Because
of the approximation required for the concentration gradient,
we found this first approach not satisfactory.The second

approach uses th rf

q

d fr  exchange terms

described previously. In that case, the mass tra fer

coefficient

an

ns

H  is unknown and needs to be estimated. 

rfSince the  and fr  represent diffusive exchange, it can

be showed that the mass transfer coefficient will be a
function of the diffusion coefficient and the geometry of the
fracture/matrix interface and it does not constitute a purely
fitted parameter.

Figure 2 shows the simulation of Case 1 of Sudicky and
Frind (1982) using this second approach. It can be seen that
the numerical model reproduces almost perfectly the
analytical solution. The concentration profiles are obtained

Figure 2. Concentration profiles a t=100, 1000 and 10000
days. The solid lines are the analytical solution results and
the dashed lines are the numerical model results.
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using a unique value of H  and a coarse finite element
mesh. The small differences are assumed to be related to
the different representations of mass transfer in the
analytical and numerical models.

5. ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is presented where an
initial mass of contaminant is released in a fracture network
located in a porous matrix. The hydraulic parameters for the
porous medium and the fracture are based on those
measured at the Smithville site (Ontario), where a dolostone
has been contaminated by PCB (Novakowski et al., 1997).

The domain considered has a unit thickness and
dimensions equal to 10m and 1m in the x- and z-directions,
respectively. Steady-state fluid flow is assumed for the
domain, with prescribed hydraulic heads equal to 1m and
0m at the left and right boundaries, respectively, and
impermeable top and bottom boundaries. For transport, the 
initial concentration is assumed equal to zero everywhere in
the matrix. It is also zero everywhere in the fracture, except
at the source located at 2.5m in the x- and 0.66m in z-
direction, where an initial concentration equal to 1 is used to
represent a release of contaminant. Boundary conditions for
transport are a prescribed concentration equal to zero at the
left inflow boundary and zero-dispersive fluxes elsewhere.
The solute is assumed conservative, without retardation or
degradation.

We consider 3 fractures of uniform aperture equal to 500
m with an exception of the right part of the upper

horizontal fracture that has an aperture of 50 m. Two

fractures are horizontal and extend over the domain in the x-
direction and are located at 1/3 and 2/3 in the z-direction.
The vertical fracture is located at 5m in the x-direction and
extends on all z-direction and connects the 2 horizontal
fractures. The longitudinal dispersivity in the fractures is
equal to 0.1. The matrix has negligible permeability. Its 
porosity is equal to 0.01 and the effective solute diffusion
coefficient is equal to 1.38x10-4 m2/day. The simulation is 

run for a total time of 1000 days after the release of
contamination, and the time stepping used is 10 days.
Figure 3 presents solute breakthrough curves for different

values of the mass transfer coefficient H . As the transfer
coefficient increases, diffusion from the fracture into the 
matrix becomes larger. As a result, the concentration peak
becomes lower and the time for peak arrival becomes
larger. Also, the breakthrough curves show more tailing after
the peak arrival when diffusion into the matrix increases. As 
a result, it takes more time for the system to naturally flush
the contaminant out.

Figure 3. Breakthrough curves as function of the mass 
transfer coefficient H for a point located at 8m 
in x- and 0.33 in z-direction. Units of H are 1/T.

Figure 4. Illustrative example of mesh refinement for solute transport in a fractured network. The upper and lower meshes
contain 2067 and 4487 triangular elements, respectively. The concentration scale varies from 0 (grey) to 3x10-4 (black)
Kg/m3.
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Two other simulation results are shown in Figure 4 to 
highlight the mesh refinement capabilities of the model. The 
top panel shows a fixed mesh with uniform element size 
along with the computed concentration at time equal to 100 
days. The lower panel shows the resulting mesh using the 
adaptive meshing algorithm along with computed 
concentrations at the same time. This lower panel shows 
that the mesh is refined in area where concentration 
gradients exist and that a very coarse mesh  
is used where gradients are very low. The density of the 
resulting mesh is therefore is very good indicator of the 
computed concentration. This result suggests that adaptive 
meshing can be efficient in optimizing the grid for 
simulations where a few discrete fractures are located in a 
porous rock formation, by generating very fine meshes 
where concentration gradients are the highest and allowing 
very coarse meshes elsewhere. 

6. CONCLUSION 

A numerical model has been developed to simulate mass 
transport in discretely-fractured porous medium. The main 
difference compared to earlier models such as that 
presented by Therrien and Sudicky (1996) is a more general 
formulation of mass transfer between the fracture and the 
matrix, which does not require continuity of concentration at 
the fracture and matrix interface. Mass transfer is governed 
by the concentration gradient between the fracture and 
matrix and allows for potentially more realistic simulations, 
such as the incorporation of fracture skins for example. An 
illustrative example of the effect of the mass transfer 
coefficient is presented and reveals that the peak 
concentration peak and arrival time for a solute originating 
from an initial release are controlled by this transfer 
coefficient.

A feature of the model is that it has been developed using a 
general purpose finite element simulator, MEF++2.0, which 
easily allows incorporation of additional physical processes, 
since the model already solves for a variety of partial 
differential operators. The adaptive meshing algorithm of 
MEF++2.0 also provides a very attractive tool for efficient 
simulations of solute transport in discretely-fractured media.  

The results presented here are preliminary, since the main 
objective of the project is to design an efficient, accurate 
and fast numerical model for the simulation of large-scale 
solute transport in discretely-fractured porous media. At 
present, accuracy can be achieved but the computational 
time required for large-scale simulations is still long. The 
numerical model developed here should be viewed as a 
flexible tool where the adaptive mesh refinement feature 
provides the desired accuracy by limiting the number of 
elements needed to discretize the entire domain.  

Further improvement of the model is planned. Since the 
model is designed to be flexible, modifying it to add new 
features is straightforward. A first modification will be the 
incorporation of mass transfer for fluid flow simulation, in a 
similar fashion as currently used for transport. Optimization 

of the main program is also needed because the mass 
transfer calculation is non-linear, and a simple Picard 
iteration is currently used. Improvement is needed in the 
iterative process for cases where mass exchange is rapid.  
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