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ABSTRACT The density of fracturing (i.e. fracture spacings) and the distribution of flow among a set of fractures (i.e. 
fracture apertures) both play a crucial role in governing groundwater flow in bedrock. One way to determine these 
parameters is through hydraulic testing of discrete intervals along boreholes. When the density of fracturing is high 
compared to the density of test intervals, however, the statistical properties of the fractures are masked by the averaging 
effect of the testing method. Fracture data collected from the core log can alleviate this problem, but caution must be 
used in its interpretation. In this study, regression analysis is carried out to distinguish among classes of core-log-noted 
features and to determine the mean of the logarithms of their individual transmissivities. By treating the location of the 
logged features as Laplace-distributed random variables, estimates of the mean error in their location, relative to the 
location of hydraulic tests, are determined. The relative  efficacy of a descriptive logging technique vs. a numerical 
logging technique based on a feature's Aprobability of being permeable@ is also assessed. It is found that so long as only 
strictly permeable features are included as independent variables, a non-linear regression model based on the theory of 
effective permeability in a layered horizontal system is most appropriate for determination of fracture apertures. When 
indicators of reduced permeability are included as independent variables, a linear regression model is most appropriate. 
The parameters from the non-linear model are shown to be of physical significance, while those of the latter are not. 

RÉSUMÉ La densité des fracturer (le i.e. l’espacement des fracture) et la distribution de flux parmi une série de fractures 
(le i.e. les ouvertures de fracture) jouent un rôle crucial dans le gouvernement du flux d'eau souterraine. Une méthode 
pour déterminer ces paramètres sont par l'essai hydraulique d'intervalles discrets le long de boreholes. Quand la densité 
des fractures est haute en comparaison de la densité d'intervalles de test, cependant, les propriétés statistiques des 
fractures sont masquées par le fait l'effet moyenne de la méthode d'essai. Des données des fractures recueillies par la 
diagraphie des carottes peuvent alléger ce problème, mais la prudence doit être utilisée dans son interprétation. Dans 
cette étude, une analyse de régression est exécuté pour distinguer parmi les classes de caractéristiques notées dans la 
diagraphie des carottes et déterminer les moyens des logarithmes de leur transmissivities individuel. En traitant 
l'emplacement des caractéristiques notées comme des variables aléatoire laplace_distribué, les estimations de l'erreur 
moyenne dans leur emplacement, relatif à l'emplacement de tests hydrauliques, sont déterminées. L'efficacité relative 
d'une technique notant descriptive contre une technique notant numérique basée sur un “probabilité d’etre perméable” 
d’une overture est aussi évalué. Il est trouvé que pourvu que seulement les caractéristiques strictement perméables sont 
inclu comme les variables indépendantes, un modèle de régression non linéaire basé sur la théorie de perméabilité 
effective dans un système horizontal est plus approprié pour la détermination d'ouvertures de fracture. Quand les 
indicateurs de perméabilité réduite sont inclu comme les variables indépendantes, un modèle de régression linéaire est 
plus approprié. Les paramètres du modèle non linéaire sont montrés d’avoir de signification physique, pendant que ceux 
du modèle linéaire ne sont pas. 

1. INTRODUCTION 

If a fractured bedrock aquifer is regarded as a large water 
filter, purifying contaminated ground water on its journey 
from recharge to discharge at, for example, a well, it is 
easy to see why hydrologists are eager to understand how 
this process occurs and how to predict its effectiveness at 
specific locations. Intuition tells us, along with our 
experience with so many better-characterized filtering 
processes, that it is a maximization of the surface area of 
the rock to which the flowing water is exposed that results 
in maximum “purification” capacity. Research has further 
shown that it is diffusion of solute from the small volume of 
“flowing” water in the cracks and fissures of the aquifer 
into the vast reserves of “stationary” water trapped in the 
less permeable matrix that provides the most powerful 
purification mechanism. With this in mind, it is natural that 

we should be interested in characterizing the networks of 
fissures and cracks which make up the flowing portion of 
the aquifer, and furthermore in understanding how the 
total flow through the aquifer is distributed among these 
features. However, this viewpoint guides us away from a 
determination to characterize every one of the features - 
we only need to determine their statistics. 

The use of down-hole hydraulic tests is an effective 
method for characterizing variability of hydraulic properties 
within an aquifer. Typically, isolated sections of the 
borehole are systematically tested to ascertain their 
hydraulic conductivity. Naturally, the fewer the number of 
permeable “discrete” features there are within these test 
intervals, the more the statistics of the test results tell us 
about the statistics of the features themselves. As an 
example, see Snow (1970) in which the frequency of tight 
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intervals was used to determine the average fracture 
frequency, and this frequency was used to infer the mean 
and variance of fracture transmissivities from those same 
statistics of the hydraulic test results. Thus, the size of the 
test intervals should be customized to match the typical
spacing of the features within the aquifer under 
consideration. Unfortunately, these hydraulic tests are 
cumbersome and expensive to carry out, and a test
interval length of 2 m is often cited as the lower end of 
what can be reasonably expected. 

In the many cases in which the frequency of fractures is 
much greater than the frequency of test intervals, we are 
left to wonder about the distribution of permeability among 
the many features contained within each test interval. A
natural source of information that can be brought to bear 
on this problem is the data collected during the drilling of 
the borehole - the core log. A variety of techniques have 
been devised to relate core-log information to fracture
statistics and/or permeability (Fransson, 2002 Priest, 
1970). Recently, techniques to distinguish among logged 
features based on their individual characteristics have 
been more commonly seen. Typically, the features might 
be ranked, based on their appearance, on their “likelihood
of being permeable” (Nativ, 2003). 

2. CONSTANT HEAD INJECTION TESTS

In this analysis we conceptualize an aquifer as a collection 
of quasi two-dimensional horizontal openings separated
by a perfectly impermeable matrix. We assume that 
permeability within the plane of the openings is isotropic.
In this context flow within the aquifer is obviously
contained within the horizontal openings. Furthermore, the 
aquifer can be conceptualized as being made up of
arbitrarily chosen layers whose horizontal transmissivities 
are related to the transmissivities of the openings 
contained within them. The transmissivity of a layer
between elevations 1 and 2 (see Figure 1) is 

i

iTdzzKT
2

1

)(, 21                            (1) 

The values T( 1, 2) are commonly measured using a 
technique known as a constant head injection test (CHIT).
In this test, a pair of inflatable packers is lowered into the 
borehole which, when inflated, isolate the portion of the 
borehole which lies between them from the remainder 
(see Figure 1). The upper packer is run through by a steel 
tube which allows access to the isolated interval for 
injection of water and measurement of pressure within it.
Once the packers are inflated, water is injected into the 
interval in such a way as to maintain a constant pressure
within it. The injection rate typically decreases 
monotonically towards a steady rate, Q. Once this steady
(or quasi-steady) rate is achieved, it is noted along with
the hydraulic head increase above ambient conditions, 

H, caused by the injection. The determination of T( 1, 2)
is then determined using the well known Theim equation 

2

)/ln(
, 21

we rr

H

Q
T                             (2) 

where re is the radius of influence of the hydraulic test and 
rw is the radius of the well.

Figure 1 Downhole apparatus for a constant head 
injection test 

3. REGRESSION ANALYSIS

In this study regression analysis is used to find
relationships between the numbers of certain types of 
features as noted in core logs which lie within hydraulic
test intervals and the logarithms of transmissivities as 
determined in these tests. In order to determine 
meaningful counts of features within a hydraulic test
interval it is necessary to account or error in the relative 
locations of the openings noted in the core and the 
bounds of the hydraulic test intervals, the former usually
being referenced to ground surface during drilling, and the
latter being reference to borehole casing elevation at the 
time of hydraulic testing. 

Error in the precise location of individual features (relative 
to ground surface) during core logging comes about
mainly due to movement of core within the core-barrel 
during recovery, especially in sections of the borehole 
where the size of the openings or the weakness of the
rock structure leads to less than 100% recovery. Error in 
the location of CHIT intervals (relative to the casing top) 
come about mainly due to cable stretch. Lastly, error in 
the measurement of the casing top elevation relative to 
ground surface comes about mainly due to fluctuation in 
ground surface elevation during, and as a result of,
drilling. To account for these errors it seems reasonable to 
assume the location of the CHIT intervals to be correct
relative to ground surface and the location of each feature
noted in the core log to be a random variable with an 
assumed (in this case the Laplace) density function.

The probability of the k'th feature lying between two points 

1 and 2 is the integral between these bounds of the 
assumed density function, f(z) 
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which is easily calculable and depends only on the relative 
locations of the bounds of the CHIT and the feature 
located at zk. Using the probabilities as defined in (3), we
can introduce the term “probable number of features of 
type j located in interval ( 1, 2)”. This is the sum of the 
probabilities that each of the n(j) feature of type j noted in 
a borehole lies within the interval ( 1, 2)
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In this study multiple linear and non-linear regression is
used to determine relationships between the probable
numbers of various sets of features falling within a 
hydraulic test interval, and the log of the transmissivity
measured within that interval. The linear regression model 
hypothesized in this study is 
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where n and k are the number of CHITs and the number
of types of feature under consideration, respectively,
yi log(Ti) is the logarithm of the transmissivity measured in 
the i’th test, xij = PN(j| i1 z i2) are probable numbers of 
features of type j located in the i’th test interval, j are
unknown constants (parameters) to be estimated and i is 
error. The advantage of this model is its simplicity and the 
uniqueness of its solution. We use ordinary least squares 
regression to find the estimates bj of the parameters j.

The non-linear regression model hypothesized is 
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where all the terms are defined as for (5). In this model, 
due to the congruency of (6) with (1), we can further 
define j as the expectation of the logarithm of the 
transmissivity of the j’th type of feature
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Thus, the parameter estimates bj determined from the 
non-linear model have the advantage of having physical
significance. The disadvantage is that iterative techniques 
must be used to determine estimates bj. We use the 
Levenberg-Marquart procedure as implemented in PEST
(Watermark Computing, 1994). 

As a measure of fit between the observed values of log(T)
and the predicted values determined from either (5) or (6) 
we use R2 which is defined as the square of the sample 

correlation coefficient between the observed and 
predicted values of log(T).

4. DATA COLLECTION AND ORGANIZATION

The data used for this study were collected on a property
where efforts are ongoing to mitigate the effects of spills
from a former chemical waste management facility on a
shallow bedrock aquifer. The site is located on the 
Niagara Peninsula in Smithville, Ontario, Canada. The
shallow bedrock beneath the site is the Silurian aged
Lockport Formation, an approximately 40 m thick, flat 
lying, succession of dolomites underlying less than 10 m 
of clayey overburden and overlying the Decew dolomite 
and Rochester shale. The Lockport Formation, which dips
gently towards the southwest, is made up, from bottom to 
top, of the Gasport, Goat Island, Vinemount and Eramosa 
members, distinguishable through differences in colour,
mineralization, and bedding thickness. The flow of
groundwater in the Lockport Formation is primarily through 
large-aperature horizontal fractures of significant lateral 
extent (Zanini et al., 2000), though the  abundance of 
fractures detected in recovered core and the lack of 
specific “signatures” of permeability makes quantification 
of flows within individual fractures difficult.

The data is derived from two separate loggings of core 
from five boreholes drilled at the Smithville site as well as
two sets of hydraulic tests conducted in each of the same 
boreholes. The boreholes were drilled in the fall of 1995 
and spring of 1996. The 76 mm diameter boreholes were
drilled using diamond drilling techniques, and were
inclined with approximately 56 degree dip. Core recovery,
using triple tube techniques was greater than 95% in all 
boreholes. Immediately following removal of the core
barrel, each core run was photographed, along with a tape 
showing distance from the top of the borehole, and 
logged.

4.1 Descriptive Core Logging and Hydraulic Testing

In this logging of the core, described henceforth as the
“descriptive logging”, the length along the borehole of all 
relevant features was noted, along with a classification 
and a brief description. Breaks in the core were identified
as either mechanical or open fractures. Open fractures
were identified by the presence of infillling (generally
calcite or gypsum), rough surfaces, or evidence of 
weathering. Based on the classification and on the 
description, the feature was later classified into on of
approximately 120 distinct types, examples of which
include “bedding plane fracture”, “vug”, “vuggy zone”, 
“stylolite”, etc. 

Following drilling, a steel casing was installed in each 
borehole through the overburden and into the upper
portion of the dolomite. The length of the stick-up of the 
casing top above ground surface was measured. A series 
of CHITS were performed in the boreholes with the upper 
and lower depths of the intervals being measured below
casing top (bct). 
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CHITs were performed with a separation distance ( 2- 1)

of 2 m every 2 m, with no overlap, over the entire 
thickness of the Lockport Formation in each borehole. The
total number of these 2 m tests was 116 . A set of 469 
CHITs was performed with a 0.5 m interval, again across
the entire Lockport Formation with no overlap between
tests. The magnitude of log(T) in each of the 2 m and 0.5 
m test intervals in a typical borehole are shown in Figure
2. Also shown in the figure are locations of certain types of 
features from both the descriptive and the numerical 
logging.

Figure 2 Typical Core Log and Hydraulic Testing Data 

4.2 Classification of Core Log Entries into Groups

In order to further organize the descriptive corelog data 
into a form suitable for regression analysis it was
necessary to determine which of the 120 types of features 
were relevant to the analysis. To carry out this task the
entries in the corelog were tallied up by type and only
features that were observed on average once or more per 

borehole were included in the analysis. This reduced the
number of types of features to 30. These 30 features were
than classified into one of eight thematic groups, as 
shown in Table 1. 

Table 1 Make up and number of occurrences of each
thematic group, sample correlation coefficient between the 
number of occurrences per 2 m CHIT and log(T)
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GROUP MEMBERS 

Brc 99 0.25
“broken core - possibly open” 
“broken core – mechanically broken” 
“lost core” 

Bpf 438 0.11

“bedding plane fracture (open/closed)”
“bedding plane fracture possibly
associated with drilling” 
“bedding plane fracture – uncertain” 

Min 731 0.05

“machine break” 
“machine break possible bedding 
plane fracture” 
“machine break possible vertical 
fracture”
“machine break uncertain” 

Vfr 107 0.32

“vertical fracture” 
“vertical fracture possibly associated 
with drilling” 
“vertical machine break” 

Vug 50 0.33

“vug(s)”
“vuggy zone” 
“porous zone” 
“fossil/corral zone” 
“crinoid(s)”
“fossil related feature” 

Sty 239 0.17
“stylolite”
“zone of more than one stylolite”

Fil 253 -0.4

“gypsum feature” 
“gypsum zone” 
“chert feature” 
“chert zone” 
“argillaceous”
“clay”

Min 13 0.24
“calcereous band, bed, or infill” 
“galena”
“mineralization”

The members of these groups were selected based on
obvious similarity between members (“stylolite” and “zone
of more than one stylolite”) and on their correlations with
log(T). For instance, “vugs” and “fossil/coral zone” were
grouped together because they were both few in number 
and both positively correlated with log(T). Similarly chert
and gypsum were grouped together because of their 
negative correlation with log(T). The sample correlation
coefficients between the number of occurrences of 
members of each group within a given 2 m test interval
and the log(T) measured in that test are shown in Table 1 
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along with the total number of observations of each group. 
The fact that the largest magnitude of sample correlation 
shown in Table 1 is 0.4 indicates that none of the groups 
individually are strongly correlated with log(T). 

4.3 Numerical Logging 

From the time of the original (descriptive) logging until the 
summer 2003, the core lay undisturbed in a warehouse at 
the Smithville site. In the summer 2003, in response to the 
lack of correlation between the original core log and 
log(T), the core was logged a second time. In this logging, 
described henceforth as the “numerical logging”, the 
coordinates of all breaks in the core were determined from 
the original corelog. Rather than providing a description of 
each feature, each break was ranked according to its 
likelihood of being permeable prior to its disturbance by 
the drill rig. Table 2 shows the characteristics of the 
breaks which were evaluated in order to determine this 
likelihood. They are listed in approximate order of 
importance. Based on these criteria a number between 0 
and 10 was assigned to each break in the core, with the 
geologist attempting to mentally balance the various 
characteristics and their order of importance. During this 
logging of the core the hydraulic test results were not 
available to the geologist (who in fact had relatively little 
prior exposure to the data).

For the purposes of regression, each break in the core 
was further classified into one of three groups depending 
on its ranking. The groups, decided upon through trial and 
error, judgement and on numbers of occurrences, were 
“fractures with rankings between 1 and 3”, “between 4 and 
7”, and “between 8 and 10”. The choice of only three 
groups reflects the subjectivity of the method used to 
determine the rankings, and the principle of parsimony 
which is an important guiding principle in regression 
analysis. 

5. RESULTS 

An analysis of location error was carried out by 
determining the parameter of the laplace distribution that 
maximized correlation between observed and predicted 
log(T) using the 0.5 m test intervals and linear regression. 
This analysis suggested that 63% of the time the actual 
location of fractures were within 0.33m of the noted 
location in the core log. The regression analysis described 
in this section was carried out using the correlation-
maximizing laplace parameter. The majority of these 
analyses were carried out using linear regression (5) 
principally because of its ease of use, and because it was 
found to be an accurate indicator of the presence of a 
relationship between the dependent and independent 
variables. Where relationships were found, regression was 
carried out using the non-linear model (6). 

Table 2 Characteristics of core breaks used to evaluate 
ranking (in approximate order of importance) 

less likely      likelihood      more likely 

of being permeable 

Fresh crystalline 
appearance of break 

surfaces

Weathered rounded 
appearance

No calcite on break surface 
Calcite on break 

surface

Complete closure of two 
surfaces possible 

Surfaces cannot be 
closed manually 

Similar break not apparent 
at depth in other boreholes 

Similar break apparent 
at same depth in other 

boreholes

Oriented perpendicular to 
borehole

Oriented with bedding 

Core edges which match 
perfectly 

Core edges are 
rounded

No staining on surface Staining on surfaces 

Clay or mud present No infilling 

Previously classified as 
machine break 

Previously classified as 
vertical or bedding 

plane fracture 

Linear regression was carried out using (5) using both the 
numerical and descriptive logging and both the 2 m and 
0.5 m test interval transmissivity data. For each 
combination (of the possible 4), the regression was 
carried out with data from each of the five boreholes 
individually (n  23 and 92 for the 2 m and 0.5 m test 
intervals, depending on borehole, respectively), and with 
data from all five boreholes simultaneously (n = 117 and 
468 for the 2 m and 0.5 m test intervals, respectively). The 
least squares R2 values for each of these linear 
regression models are shown in Table 3. 

The results shown in Table 3 indicated that, on the whole, 
descriptive logging provided a better fit to the measured 
log(T) data than did the numerical logging, while both core 
logs were more useful at predicting 2 m transmissivities 
than 0.5 m transmissivities. Higher values of R2  were 
achieved when boreholes were considered individually 
relative to when the data from all five boreholes were 
considered simultaneously. 
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Table 3 R2 values determined from linear regression 

Individual
Boreholes

All 5 Together

Numerical Log

2 m CHITs 0.36-0.61 0.24

0.5 m CHITs 0.18-0.41 0.22

Descriptive Log

2 m CHITs 0.47-0.66 0.38

0.5 m CHITs 0.28-0.5 0.30

Table 4 R2 values and parameter estimates from both the 
linear and non-linear models determined using the 2 m
and 0.5 m log(T) data and the numerical log from 
Borehole 57 

Parameter Estimates (b0 to b3)

R2 Intercept 1-3 4-7 8-10

2 m Linear 0.61 -8.3 -0.43 -0.45 -0.24

Non-linear 0.65 -12 -8.6 -7.1 -4.9

0.5 m Linear 0.40 -8.9 0.15 2.1 -0.82

Non-linear 0.44 -10 -9.5 -7.7 -5.3

Figure 4 shows a plot of observed vs. predicted 0.5 m test 
interval log(T). The plot indicates a concentration of
predicted log(T)’s about the mean of the observed data. 
The concentration of data indicates that E( i) i=1,n are not 
uniformly equal to zero, and the first Gauss-Markov 
condition has not been met by this regression model. 
While paramater estimates obtained from this model are
unbiased, certain of their statistical properties, such as 
their variance, cannot be ascertained.

Inspection of Table 4 and Table 5 indicates that
predictions of both 2 m and 0.5 m test interval 
transmissivities based on numerical logging are improved 
with the use of the non-linear model. In contrast, 
predictions of transmissivity from the descriptive logging
are less likely to be acccurate using the non-linear model
than the linear model. The reason for this result is that 
only non-zero ranked breaks in the core are included in
the numerical logging and the individual non-negative 
transmissivities of these entities are naturally additive as
in (1) and (6). In contrast, features possibly associated 
with lower transmissivity such as infill material (see Table
1) are included in the descriptive logging. The contribution 
of these features to the regression model should be 
negative making the linear model more suitable than the 
non-linear model. 
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Figure 4 Observed 0.5 m test interval log(T)’s from all five
boreholes plotted against values predicted using the 
numerical log and the linear model 

Table 4 shows R2 values and parameter estimates
determined using both linear and non-linear regression 
between both the 0.5 m and 2 m log(T) data and the 
numerical core log from Borehole 57. Table 5 shows R2

values and parameter estimates determined using both 
linear and non-linear regression between both the 2 m and 
0.5 m log(T) data and the descriptive core log from 
Borehole 57. These individual boreholes were selected for 
non-linear regression because of the high R2 values 
achieved in the linear regression analysis.

Figure 5 Observed 2.0 m test interval log(T)’s from 
Borehole 57 plotted against values predicted using the 
numerical log and the non-linear model 
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Table 5 R2 values and parameter estimates from both the linear and non-linear models determined using the 2 m and 0.5 
m log(T) data and the descriptive core log from Borehole 57 

Parameter Estimates (b0 to b8)

R2 Int. brc bpf Mbr vfr vug sty fil min

2 m Linear 0.66 -6.3 -0.03 0.1 -0.13 0.54 0.39 -0.04 -0.15 1.8

Non-linear 0.52 -10 -9.8 -8.3 -20 -6.3 -4.9 -8.0 -11 -6.2

0.5 m Linear 0.40 -8.6 -2.0 0.07 -0.1 1.8 -0.87 -1.0 -0.49 -2.0

Non-linear 0.36 -20 -20 -9.1 -17 -6.9 -5.4 -8.1 -16 -6.1

Figure 5 shows a plot of observed vs. predicted 2 m test 
interval log(T)’s. In contrast to Figure 4, the I’s appear 
to have zero mean and to be uncorrelated. The 
variances of the parameter estimates from this model 
may be ascertained.  

Examination of the non-linear parameter estimates 
provides some insight into the reliability of the numerical 
vs. the descriptive logging. In the case of the numerical 
logging Table 4 indicates that the transmissivity of the 
aquifer in absence of any macro-porosity (i.e. matrix 
transmissivity), as estimated by the model intercept, is 
estimated as 1x10-12 and 1x10-10 m2/s from the 2 m and 
0.5 m test interval models respectively. The respective 
mean transmissivity estimates for the 1-3 ranked 
fractures are 3x10-10 and 3x10-9 m2/s, for the 4-7 ranked 
fractures are 8x10-8 and 2x10-8 m2/s, and for the 8-10 
ranked fractures are 1x10-5 and 5x10-6 m2/s. The 
consistency of these estimates between models, and 
the trend of increasing transmissivity with increasing 
rank reflects well on the accuracy of the estimates and 
on the numerical logging methodology in general. In the 
case of the descriptive logging, reasonable consistency 
is observed in non-linear parameter estimates derived 
from the 2 m vs. the 0.5 m test data, but the parameter 
estimates are more difficult to reconcile with our 
understanding of what they represent. For instance in 
both the 2 m and 0.5 m test interval models, the 
estimates of bedding plane mean transmissivity are less 
than 5x10-9 m2/s – virtually impermeable by the 
standards of the aquifer. In fact, the only features with 
appreciable transmissivity are estimated to be vertical 
fractures, vugs, and mineralization. With the exception 
of mineralization, none of these features appeared 
during the informed logging of the core to be 
permeable.

Examination of the linear model parameter estimates 
determined from the descriptive logging further 
indicates ambiguity in the relationships between the 
presence of features in the core and enhanced 
transmissivity. In this model the sign of the parameter 
indicates the sign of the correlation between the feature 
and log(T), while the magnitude of the parameter 
indicates the strength of this correlation. The fact that 
the magnitude of parameter estimate for broken core 
(brc) is the smallest of those determined from the 2 m 
data and is the largest of those determined from the 0.5 

m data indicates the above-noted ambiguity. Similarly, 
the large magnitude but opposite sign of the two 
estimates of the mineralization parameter points to 
ambiguity. 

In light of the ambiguities in parameter estimates 
associated with the descriptive logging, it is worth 
considering why the R2 values are similar, or higher, 
than those from the numerical logging. The likely 
reasons are the greater number of parameters in the 
former model relative to the latter, and the greater 
number of features included in the descriptive log 
(breaks in the core plus lithological features) relative to 
the numerical log (breaks in the core only). 

6. CONCLUSIONS 

Regression analysis was carried out with the 
independent variables being the probable numbers of 
classes of feature present within hydraulic test intervals, 
and the dependent variable being log(T)'s measured in 
these tests. The probable numbers of features within 
the test intervals were determined by considering the 
locations noted in the core log to be Laplace distributed 
random variables, whose parameter was determined as 
part of the study. Regression was carried out using both 
a linear and non-linear model, with the advantage of the 
former being its simplicity and the uniqueness of its 
solution, while the advantage of the latter being that its 
parameters are the mean log(T)'s of each class of 
feature included in the model. Estimates of individual 
fracture transmissivities are useful in predicting the 
movement of solute within fractured bedrock aquifers. 

Classes of feature were made up from two separate 
loggings of the core from five boreholes diamond-drilled 
in Smithville, Ontario. The first logging of the core was 
carried out during drilling and was descriptive in nature. 
Every relevant feature in the core was classified 
according to its geological characteristics and estimated 
provenance. The second logging of the core, carried out 
in response to the lack of correlation between the 
descriptive logging and the transmissivity, was carried 
out some eight years later. It was numerical in nature, 
with each break in the core being ranked according to 
its likelihood of being permeable. 
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It was found that accounting for the location error of 
feature noted in the core log provided some 
improvement in correlation between the core log and 
log(T), with the mean error being approximately 0.3 m. 
It was found that classes of feature derived from the 
descriptive logging were best related to log(T) using the 
linear model due to its ability to account for both 
positively and negatively correlated independent 
variables. In contrast, classes of feature derived from 
the numerical logging, all of which were theoretically 
associated with some positive value of transmissivity, 
were best related to log(T) through the non-linear 
model. The reason for this is that this model reflects the 
additivity of transmissivities in a horizontally-bedded 
aquifer.

In general, fits between the observed and predicted 
log(T)'s were poor, and the statistics of parameter 
estimates could not be ascertained. However, the 
estimates of mean log(T)'s for classes of numerically 
logged fractures were consistent whether the regression 
was carried out using individual boreholes or the five 
boreholes simultaneously. In one particular borehole, 
an R2 of 0.65 provided some confidence that the 

statistics of parameter estimates might be determinable. 
The reason for the overall difficulty in determination of 
parameters is attributed to the large variance in log(T) 
of the overall population of fractures intersected by the 
boreholes at Smithville. 
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