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ABSTRACT
Stochastic inverse methods are occasionally employed to deal with the uncertainties in groundwater flow problems. In this
paper, the adjoint state method combined with cokriging is used to solve an inverse problem of groundwater flow, in which
the distribution of hydraulic conductivity in an aquifer is estimated. The variability in the hydraulic heads and hydraulic
conductivities are considered in the analysis. The adjoint equation is used to calculate the hydraulic heads and the
distribution of adjoint states at all locations at different times. The results are used to obtain the Jacobian, which is needed as
input for the maximum likelihood analysis to obtain the statistical parameters of the model. Using the resulting statistical
parameters as input in the cokriging analysis, the distribution of the log hydraulic conductivity of the aquifer is obtained. A
hypothetical model is presented as an example of the usefulness of the method.

RÉSUMÉ
Les méthodes stochastiques inverses sont occasionnellement utilisées pour composer avec les incertitudes inhérentes aux
problèmes de flux d'eau souterraine. Dans cet article, la méthode de l'état adjoint est combinée au cokrigeage pour résoudre
un problème inverse de flux d'eau souterraine. Dans ledit problème, la distribution de la conductivité hydraulique dans un
aquifère est estimée. La variabilité des charges hydrauliques et des conductivités hydrauliques sont considérées dans
l'analyse. L'équation adjointe est utilisée pour calculer à différents temps les charges hydrauliques et la distribution des états
adjoints en tout endroit dans l’aquifère. Les résultats obtenus permettent la détermination du Jacobien qui est utilisé dans
l’analyse du maximum de vraisemblance afin d’obtenir les paramètres statistiques du modèle. Les paramètres statistiques
obtenus sont utilisés comme entrées dans l’analyse cokrigeant pour déterminer la distribution du logarithme de la
conductivité hydraulique de l’aquifère. Un modèle hypothétique est présenté pour illustrer l'utilité de la méthode présentée
dans cet article.

1. INTRODUCTION

The groundwater flow in heterogeneous aquifers is a
random process. The randomness can be due to the natural
variability in the aquifer characteristics such as the hydraulic
properties of subsurface soil, the recharge or discharge of
groundwater from and to a stream, and the amount of
recharge from precipitation. It is difficult to represent these
kinds of variability in a deterministic analysis because there
is no exact value to be used as input for the parameters. In
this case, stochastic approaches are usually employed.

Stochastic methods in groundwater flow studies have been
used increasingly in the last two decades. Kaluarachchi et
al. (1990) and Myers (2002) stated that stochastic methods
give better and more meaningful results compared to the
deterministic methods in many surface and groundwater
flow studies. This approach provides probabilistic
predictions regarding the behaviour of aquifers by
considering that the parameters are random variables (de
Marsily, 1986; Gelhar, 1986; Dagan, 2002). The probability
density functions (pdf) of parameters in an area are
provided as input for the analysis. The resulting equations
are in the form of differential equations of dependent
variables. Therefore, the dependent variables obtained from
these equations can also be represented as probability
density functions (Dagan, 2002).

In this paper, the stochastic finite element method of inverse
solution based on the work of Neuman (1980), Sun and Yeh

(1992), and Sun (1999) is utilized for the solution of a
transient groundwater flow problem.  A hypothetical model is
presented to show the usefulness of the method.
Subsequently, different values of statistical parameters are
used in the analysis to find their effects on the distribution of
the estimated hydraulic conductivity values in the aquifer.

2. AN INVERSE ANALYSIS USING THE ADJOINT 
FINITE ELEMENT METHOD

This method of calculation has been used previously by
Neuman (1980), Sun and Yeh (1992), Sun (1999), and
Neupauer and Wilson (2001) in groundwater flow studies. In
this method, it is assumed that the coefficient of storage is
constant in the entire aquifer. The random field Y is 
characterized by a constant mean and an isotropic,
exponential covariance as follows. In the present study, Y
represents the logarithm of hydraulic conductivity.
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where Y
2 is the variance of log hydraulic conductivity, lY is

the log hydraulic conductivity correlation length, dij is the
distance between points xi and xj, Y is the mean of log
hydraulic conductivity.

In the small perturbation method, the hydraulic conductivity
and hydraulic head are presented as their means plus a
small variation about their means as written below.

fFY   and [3]hH

where is the hydraulic head, F is the expected value of Y, 
i.e. F=E[Y], H is the expected value of , i.e. H=E[ ], f is the 
variation of Y about the mean value,  and h is the variation
of  about the mean value.

In the adjoint state method, Eq. 3 is substituted into the
classical groundwater flow equation. In this study, a
transient groundwater flow in a confined aquifer is analyzed.
After introducing an objective function and the adjoint state
or importance function, , into the resulting equation from
the previous step and using the Green’s first identity, the 
following equations are obtained (see Sun and Yeh, 1992).
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Equation 4 represents the adjoint problem of the
groundwater flow equation and Eq. 5 is the functional
derivatives of the objective function of Eq. 4 (Neuman, 1980;
Sun and Yeh, 1992). In Eqs. 4 and 5, J is the objective
function, G is a user-chosen function, B is the flow region, T
or t is time, and x and y are the Cartesian coordinates. By
solving Eq. 4, the adjoint state, , is obtained. Equation 5 is
used to calculate the functional derivatives needed in the
calculation of Jacobian.

In the finite element method, the following equations are
utilized (Neuman, 1980, and Sun and Yeh, 1992).

ttt HDMHA  [6] 

ttt DEA  [7] 

k

t

mn

NNODE

1n

NNODE

1m
inm

i

kl 1k

k

dtHB
f

)t,x(h
 [8] 

where [A] is a characteristic matrix, [D] is a matrix that
accommodates the storage coefficient in the calculation, {M} 
is a column matrix that contains source or sink terms, and
{E} is a column matrix that contains the G function, and
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Equations 6, 7, and 8 are used to calculate the expected
hydraulic heads, the adjoint states, and the functional
derivatives, respectively. These values are needed in the 
calculation of covariance matrices used in the maximum
likelihood (MLE) analysis to obtain the statistical parameters
and in the calculation of the distribution of estimated
hydraulic conductivities using the cokriging method.

3. CALCULATION OF STATISTICAL PARAMETERS
AND THE DISTRIBUTION OF HYDRAULIC
CONDUCTIVITIES

Following Kitanidis and Vomvoris (1983), and Sun and Yeh
(1992), the MLE is used to estimate the statistical 
parameters, which appear in Eqs. 1 and 2. The negative
log-likelihood equation is
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where  is the statistical parameter vector. The elements of
 are Y, Y

2, and lY, the values of which are not known.  In 
Eq. 10, ly is the correlation length, z is the measurement
vector, LT is the total number of measurements, QD is the 
measurement covariance matrix, and µ  is the mean vector
of measurements. Both QD and  are functions of unknown
statistical parameters. The structure of QD can be found in a 
paper of Sun and Yeh (1992). The details of the calculation
using the MLE are given in Kitanidis and Lane (1984).

Once the statistical parameters are obtained, the distribution
of the hydraulic conductivities in the aquifer can be
estimated by using cokriging. The general equation of
cokriging is as follows (Isaaks and Srivastava, 1989). 
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where Y is the estimate of  logarithm of K,  and  are the
cokriging coefficients, and the subscripts k, l, and m indicate
the number of observation times, hydraulic heads, and
hydraulic conductivities, respectively.

The variance of cokriging can be estimated by the following
equation (Isaaks and Srivastava, 1989).
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where

Cov[ (xl, tk), Y(x0)] =  the covariance between the hydraulic
head observation at point xl and time tk and logarithm of K
measurement at point x0.

Cov[Y(xm), Y((x0)] =  the covariance between the logarithm
of  K measurement at point xm and point x0.

 = the Lagrange multiplier.

The details of cokriging method can be found in Isaaks and
Srivastava (1989) and Kitanidis (1997).

To compare the resulting distribution of estimated hydraulic
conductivities with the distribution of the “true” hydraulic
conductivity values, the L2-norms for the logarithm of K and
for prediction errors, as written below, are used (Sun and
Yeh, 1992).
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4. HYPOTHETICAL MODEL

The case study used in this paper makes use of the two-
dimensional stationary random field provided in a
publication by Mantoglou and Wilson (1982). In their paper,

the stationary random field was generated using the turning
bands method that was first introduced by Matheron (1973).
In generating this random field, they used a mean value of
five for the region, an exponential covariance with
correlation length   b-1, number of points in the P field, NP =
8000, number of lines, L = 16, the discretization length
(band width),  = 0.012 b-1, the number of harmonics along
the lines, M = 100, 2 = 1, and the maximum frequency at
which the spectrum is truncated,  = 40 b. The reproduction
of the random field is presented in Fig. 1. The distribution of
hydraulic conductivities presented in this figure is
considered as the “true” values of hydraulic conductivities in
the aquifer. In the real life problems these values are not
known everywhere.

Note: in this paper, it is assumed that b-1 = 833.33 m 

Figure 1. The reproduction of random field provided in a
paper by Mantoglou and Wilson (1982), which is used in the
hypothetical model

Legend: X = the pumping well
 O = observation wells

Figure 2. Plan view of the hypothetical aquifer
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In this paper, the hypothetical confined aquifer is 1000
metres long and 800 metres wide as shown in Fig. 2. The
aquifer region is discretisized into 160 triangular elements
with 99 nodes. The aquifer has a constant depth of 100
metres with the value of storage coefficient 0.0009
everywhere. The hydraulic heads between A and B and
between D and E along the boundaries are assumed to be
constant at values of 200 m and 190 m, respectively. At the 
other sides of the region, there is no flow across the
boundaries. The aquifer is divided into three parameter
zones 1, 2, and 3 that are indicated by different types of
shading. There is a pumping well located at node 49 with
the discharge of 5000 cubic metres per day. The initial
values of hydraulic heads in the aquifer before pumping are 
shown in Fig. 3. The pumping well is also used as an
observation well. There are two more observation wells
located at nodal points numbered as 25 and 78. The
hydraulic heads that are observed at 3 observation wells are
presented in Table 1. The observed hydraulic conductivities
in these wells are also shown in Table 1. 
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Figure 3. The initial hydraulic heads before pumping

Table 1: The observed hydraulic heads and hydraulic
conductivities

Observed hydraulic heads (m) Time
(days) Node #25 Node #49 Node #78

0.1 196.32 190.58 192.03
0.5 194.77 188.91 191.18
1 194.14 188.27 190.73
5 193.81 187.94 190.50
10 193.78 187.91 190.48
20 193.76 187.89 190.46

Observed
Hydraulic

conductivities
(m/d)

5.64 5.05 3.90

5. RESULTS AND DISCUSION 

The results of the inverse analysis are discussed. The
hydraulic conductivities in each zone resulting from the
inverse analysis are 5.7 m/d, 4.66 m/d, and 4.22 m/d for
zones 1, 2, and 3, respectively.
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Figure 4.  The distribution of estimated hydraulic conductivi-
ties in the aquifer (m/d) -- Y = 1.61, Y

2 = 0.05, and lY = 900
m
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Figure 5. The distribution of variance of the estimated 
hydraulic conductivities in the aquifer -- Y = 1.61, Y

2 = 
0.05, and lY = 900 m 

The resulting statistical parameters of the model are Y =
1.61, Y

2 = 0.05, and lY = 900 m. The distribution of the
estimated hydraulic conductivities in the aquifer is shown in
Fig. 4 and the distribution of variance of the estimated
hydraulic conductivities is presented in Fig. 5.
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The distribution of the estimated hydraulic conductivities
shown in Fig. 4 indicates an agreement, in most locations,
with the distribution of the “true” values of hydraulic
conductivities shown in Fig. 1. The degree of agreement
between the two distributions of hydraulic conductivities can
also be shown by calculating the value of L2-norm of the 
hydraulic conductivity values. The value of L2-norm in this
case is 0.12, which is an indication of a good agreement.
Moreover, the amount of agreement also can be determined
by using the value of L2-norm calculated for the prediction
errors. The L2-norm of the prediction errors is found to be
0.33 in this comparison.

At this stage of the investigation, it was decided to find out
how the results of the inverse analysis would change if the
statistical parameters had different values than those given
in the previous paragraph. It was assumed that the
statistical parameters of the model had a range of values as
indicated next. The mean, Y, ranged between 1.5 and 1.7,
the variance, Y

2, ranged between 0.03 and 0.06, and the
correlation length, lY, varied between 700 and 1000 m in
repeated calculations. However, in the calculation of the
distribution of hydraulic heads using the cokriging method
the value of Y is not needed; therefore, the use of Y is 
excluded from the comparison. The resulting distribution of
hydraulic conductivities calculated by using different values
of Y

2 and lY are presented in Figs. 6 to 9. 
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Figure 6.  The distribution of estimated hydraulic conduc-
tivities in the aquifer (m/d) -- Y = 1.61, Y

2 = 0.05, and lY = 
700 m 

From these figures, it can be seen that the patterns of the
distribution of hydraulic conductivities do not change as the
value of lY increases. However, the contour lines shift
slightly toward the edge of the aquifer. The values of L2-
norm for the hydraulic conductivity values are 0.11944,
0.11927, 0.11925, 0.11926, and 0.11937 for lY values of 700
m, 800 m, 850 m, and 1000 m, respectively. The values of
L2-norm for the predicted errors are 0.341531, 0.342174,
0.334046, 0.33713, and 0.337436 for lY values of 700 m,
800 m, 850 m, and 1000 m, respectively.
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Figure 7.  The distribution of estimated hydraulic conduc-
tivities in the aquifer (m/d) -- Y = 1.61, Y

2 = 0.05, and lY = 
800 m 

The differences among the values of L2-norm both for the
hydraulic conductivities and for the prediction errors are not
significant. These values show that the minimum values of 
L2-norm for the K values and the prediction errors are
reached when the value of lY is 850 m. However, it was
found that the value of Y

2 does not affect the distribution of
hydraulic conductivities. This is happening, because, in the
calculation of the cokriging coefficients for the estimated
hydraulic conductivities using the cokriging method, Y

2

cancels out. The values of Y
2 only affect the distribution of

variance of the hydraulic conductivities. A large value of the
statistical parameter, Y

2, produces an estimated hydraulic
conductivity distribution with a large variance.
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Figure 8.  The distribution of estimated hydraulic conduc-
tivities in the aquifer (m/d) -- Y = 5, Y

2 = 0.05, and lY = 850
m
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Figure 9.  The distribution of estimated hydraulic conduc-
tivities in the aquifer (m/d) -- Y = 1.61, Y

2 = 0.05, and lY = 
1000 m 

6. CONCLUSION

The adjoint finite element analysis is a powerful method to 
estimate the distribution of hydraulic conductivities in an
aquifer. In this study, the values of L2-norm between the
estimated and true values of hydraulic conductivities are
found to be relatively small for different values of lY. In
addition, L2-norms for the prediction errors in the estimated
and true values of hydraulic conductivities are also very
small for different values of lY.  Smallest values of L2-norms,
for both the estimated values of hydraulic conductivities and
the prediction errors, are obtained when the value of ly is 
850 m. However, L2-norms for different values of ly are very
close to each other for the problem investigated in this
study. Further studies are necessary to confirm the
generality of this finding. Different values of Y

2 do not affect
the resulting distribution of hydraulic conductivities in this
particular study. The value of Y

2 only affects the distribution
of variance of the hydraulic conductivities. A large value of
the statistical parameter, Y

2, produces an estimated
hydraulic conductivity distribution with a large variance.
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