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ABSTRACT 
The partition or distribution coefficient (Kd); is an important parameter in estimating the potential for the adsorption of 
dissolved contaminants in soil pollution problems. It has been understood that Kd values can result in significant errors for 
predicting the impacts of contaminant migration or site - remediation options. The empirical predictor equations may be 
derived commonly by statistical analysis and take the form of a linear or nonlinear polynomial expression. In this study 
the artificial neural networks; ANNs; is used to predict the variation of the partition coefficient with variation of 
environmental components of soil. The objective is to investigate the feasibility of ANN technique for predicting of Kd

variation with variation of environmental pH.To accomplish this object the database reported by EPA (1999) for cadmium 
adsorption were used. Results show that ANNs are more powerful tools than statistical analysis for prediction of partition 
coefficient variation with variation of environmental components of soil. 

RÉSUMÉ
Le coefficient de partition ou de distribution (Kd), est un paramètre important pour l’estimation du potentiel d’adsorption 
des contaminants dissous en relation avec les problèmes de contamination des sols.  Il est généralement compris que 
les valeurs de Kd utilisées peuvent engendrer des erreurs significatives dans la prédiction des impacts de la migration 
des contaminants ou pour le choix des options de réhabilitation.  Les équations de prédiction empiriques peuvent être 
communément dérivées par des méthodes statistiques et prendre la forme d’expressions polynomiales linéaires ou non 
linéaires.  Pour notre étude, les réseaux neuroniques artificiels (artificial neural networks, ANNs) sont utilisés pour 
prédire la variation du coefficient de partition avec la variation des conditions environnementales du sol.  L’objectif est 
d’étudier la faisabilité de la technique par ANN pour la prédiction de la variation du Kd avec la variation du pH 
environnemental.  Pour atteindre cet objectif, la base de données de l’EPA (1999) pour l’adsorption du cadmium a été 
utilisée.  Les résultats montrent que les ANNs sont des outils plus puissants que l’analyse statistique pour la prédiction 
de la variation du coefficient de partition avec la variation des conditions environnementales du sol. 

1. INTRODUCTION 

The partition or distribution coefficient (Kd); is an important 
parameter in estimating the potential for the adsorption of 
dissolved   contaminants in soil pollution problems. As 
typically used in fate and contaminant transport 
calculations, the Kd is defined as the ratio of the 
contaminant concentration associated with the solid to the 
contaminant concentration in the surrounding aqueous 
solution when the system is at equilibrium (EPA 1999). 
Soil chemists and geochemists have understood that Kd

values can result in significant errors for predicting the 
impacts of contaminant migration or site - remediation 
options.

The constant Kd model and the parametric Kd model are 
the models that are used in predicting Kd. An important 
limitation of the constant Kd model is that it does not 
shows sensitivity to changing conditions. If some 
properties of groundwater (e.g., pH and solution ionic 
strength) change, a different Kd value should be applied in 
the model. In the parametric Kd model the Kd value varies 
as a function of empirically derived relationships with 
aqueous and solid phase independent parameters. Thus, 
it has the distinct advantage that considers new Kd values

for each environmental condition. The empirical predictor 
equations may be derived commonly by statistical analysis 
and take the form of a linear and nonlinear polynomial 
expression. Table 1 shows some of the relations between 
Kd values and environmental condition in soils. Some of 
these statistical models are based on the limited database 
and show high errors and low correlation factors. 

Some of the researchers tried to find relations for Kd for a 
certain soil in different environmental conditions. The 
relationship between equilibrium concentrations of lead 
and Kd values for a Hanford soil at a fixed pH was 
expressed by Eq.1 (Rhoads et al.1992) as: 

Kd (ml/g)=9550 C -0.335    [1]

where C is the equilibrium concentration of lead (µg/l). 

In recent times, artificial neural networks (ANNs) have 
been applied to many geotechnical and environmental 
problems and showed some degree of success. The 
application of ANNs may overcome the limitations of 
traditional methods. In this study the ANNs is used to 
predict the variation of the partition coefficient, Kd, with 
variation of environmental components. The objective is to 
investigate the feasibility of ANN technique for predicting  
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Table 1. Relations Between Kd Values And Environmental Condition In Soils 

RELATION SHIP Species 1.1.1 Reference Comments

Kd =-0.54 +0.45(pH). Cadmium EPA 1999 Different soils 

log (Kd)=1.2 +1.0 log (CEC) Cesium
Akiba and Hashimoto 
(1990)

A large number of soils, 
minerals, and rock materials 

Kd(ml/g)=1639-902.4(pH)+150.4(pH)2 Lead
Gerritse et al. (1982)
Rhoads et al.(1992)

Different soils 

Kd = 284.6 (DCARB)+27.8 (CLAY)-594.2 Plutonium EPA 1999 Different soils 

Kd=488.3(DCARB)+29.9(CLAY)-119.1(pH)-356.8 
(EC)

Plutonium EPA 1999 Different soils 

Kd =25.7 (DCARB)+12.14 CLAY)+2.41  Kd<767.5 

Kd=286.0(DCARB)+21.3(CLAY)-81.2     Kd>767.5 
Plutonium EPA 1999 Different soils 

log (Kd)=-0.13 +0.69(pH). Thorium EPA 1999 The pH range of 4 to 8 

DCARB = The Concentrations Of  Dissolved Carbonate Of Soils 

CLAY = The Clay Content Of Soils 

EC = Electrical Conductivity 

of Kd variation with variation of environmental pH.To 
accomplish this object the database reported by EPA 
(1999) for cadmium adsorption were used. 

2. DATABASE 

EPA (1999) reported cadmium Kd values and some 
important ancillary parameters that have been shown to 
influence cadmium sorption. Data set were from studies 
that reported Kd values and were conducted in systems 
consisting of 

 Natural soils (as opposed to pure mineral phases) 
 Low ionic strength solutions (<0.1 M) 
 pH values between 4 and 10 
 Solution cadmium concentration less than 10-5 M 
 Low humic materials concentrations (<5 mg/l) 
 No organic chelates (such as EDTA) 

Totally, 170 cadmium Kd values were tabulated by EPA 
(1999). Of the 170 cadmium Kd values, 62 values had 
associated clay content data, 170 values had associated 
pH data,22 values had associated CEC data,63 values 
had total organic carbon data, 170 values had associated 
cadmium concentration data, and 16 had associated 
aluminum/iron-oxide data.

2.1 APPROACH AND REGRESSION MODELS 

According to EPA report, linear regression analyses were 
conducted between the parameters and cadmium Kd

values. The coefficients of correlation from these analyses 
are presented in Table 2. The largest correlation 
coefficient was between pH and log(Kd). This value is 
significant at the 0.001 level of probability (EPA 1999). 
Attempts at improving this correlation coefficient using 
additional variables, i.e., using multiple-regression 
analysis, were not successful (EPA 1999). 

Table 2 .Correlation coefficients (r2) of the cadmium Kd 
data set for soils EPA (1999). 

Kd log(Kd)
Clay 

Conc.
pH CEC TOC Cd

Kd 1

log(Kd) 0.69 1

Clay 
Conc.

-0.04 0.03 1

pH 0.5 0.75 0.06 1

CEC 0.4 0.41 0.62 0.35 1

TOC 0.2 0.06 0.13 -0.39 0.27 1

Cd -0.02 -0.1 -0.39 0.22 -0.03 -0.09 1

Conc.Fe 
Oxide

0.18 0.11 -0.06 0.16 0.19 0.18 0.01

Figure1 shows the cadmium Kd values as a function of 
pH. A large amount of scatter exists in these data (EPA 
1999). At any given pH, the range of Kd values may vary 
by 2 orders of magnitude. This is not entirely satisfactory, 
but as explained above, using more than 1 variable to 
help categorize the cadmium Kd values was not fruitful 
(EPA 1999). The regression equation 2 presents the line 
in Figure 1: 

log Kd =-0.54 +0.45(pH)                [2] 
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Figure 1. Relation between cadmium Kd values and pH in 
soils.

3. NN MODEL

Work on artificial neural networks, commonly referred to
as “neural network”, has been motivated right from its 
inception by the recognition that the brain computes in an
entirely different way from the conventional digital 
computer (Haykin, Simon 1994). To apply a NN to solving 
a real world problem, four basic steps are involved: (1) 
analyze the real world problem and select proper network
architecture; (2) collect and pre-process data for training
and testing; (3) design, train, and test the network model; 
and (4) deploy the network to the end user (Shi et al. 
1998).

Among various network architectures, Multilayer
perceptrons have been applied successfully to solve some
difficult and diverse problems by training them in a 
supervised manner with a highly popular algorithm known
as the error back-propagation algorithm. This algorithm is 
based on the error correction-learning rule. In the 
implementation of MLPs, data are categorized as input 
patterns and target patterns. The input patterns are fed to 
the network, which then performs feed-forward
computations to calculate output patterns. The output
patterns are compared with corresponding target patterns
and the summation of the square of the error is calculated. 
The error is then back propagated through the network
using the gradient-descent rule to modify the weights and 
minimize the summed squared error (Ellis et al. 1995).
Thus, a good mapping between input patterns and target 
patterns can be achieved, resulting in a network capable 
of predicting the target pattern for a given input pattern. 

In this research, two kinds of ANNs models were used to 
predict Kd values reported in literature, as follows: (1) 
Multilayer perceptrone network (MLP); (2) Generalized 
regression neural network (GRNN). 

3.1 MLP MODEL

In back-propagation learning, we typically start with a 
training set and use the back-propagation algorithm to 
compute the synaptic weights of a multilayer perceptron 
by loading (encoding) as many of the training examples as 
possible into the network. The hope is that the neural 

network so designed will generalize. A network is said to 
generalize well when the input-output relationship 
computed by the network is correct (or nearly so) for 
input/output patterns (test data) never used in creating or 
training the network; the term “generalization” is borrowed
from psychology. Here, of course, it is assumed that the
test data are drawn from the same population used to 
generate the training data. Validation subset is typically 10 
to 20 percent of the training set (Haykin, Simon 1994).
Here 30 patterns were used for testing. 

Designing BP network architecture includes determining 
the number of input and output variables (i.e., neurons in 
input and output layers) and selecting the number of 
hidden layers and neurons in each hidden layer. The
number of hidden layers and number of neurons in each 
hidden layer in a BP network may affect the training
efficiency and the precision of prediction. It is impossible 
to prove how many hidden layers and how many neurons 
in each hidden layer can result in the most effective 
training and the most accurate prediction, although the 
genetic algorithm can help us to some extent. The
common practice is to experiment with different numbers 
of hidden layers and different numbers of neurons in each 
layer. The number of neurons in the input and output
layers corresponds to the expected input and output 
variables of problem. Output variables are the expected
answers to the problem, and the input variables are 
factors that affect the answers.
The NN program used was MATLAB 6.5. We have
experimented with various BP networks with different
hidden layers and different numbers of neurons in each
hidden layer.

Figure 2. 3×4×2×1 MLP Network

3.2 GRNN MODEL

Generalized regression neural networks are a kind of 
radial basis network that is often used for function 
approximation.  GRNNs can be designed very quickly.

The design of a supervised neural network may be 
pursued in a variety of different ways. The back-
propagation algorithm for the design of a multilayer
perceptron (under supervision ) as described in the
previous part may be viewed as an application of an 
optimization method known as stochastic approximation
(Haykin, Simon 1994). In this part, we take a different 
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approach by viewing the design of a neural network as a 
curve-fitting (approximation) problem in a high-
dimensional space. According to this viewpoint, learning is 
equivalent to finding a surface in a multidimensional space
that provides a best fit to the training data, with the 
criterion for “best fit” being measured in some statistical 
sense. Correspondingly, generalization is equivalent to
the use of this multidimensional surface to interpolate the
test data. Such a viewpoint is indeed the motivation
behind the method of radial-basis functions in the sense 
that it draws upon research work on traditional strict 
interpolation in a multidimensional space (Haykin, Simon 
1994). In the context of a neural network, the hidden units 
provide a set of “function” that constitute an arbitrary
“basis” for the input patterns (vectors) when they are

expanded into the hidden-unit space; these functions are 
called radial-basis functions. 

The construction of a radial-basis function (RBF) network
in its most basic form involves three entirely different 
layers as illustrated in Figure 3. The input layer is made 
up of source nodes (sensory units). The second layer is a 
hidden layer of high enough dimension, which serves a 
different purpose from that in a multilayer perceptron. The
output layer supplies the response of the network to the 
activation pattern applied to the input layer. The
transformation from the input space to the hidden-unit 
space is nonlinear, whereas the transformation from the 
hidden-unit space to the output space is linear. 

Figure 3. Radial Basis Function Network
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RBF network creates as many radial-basis neurons as 
there are input vectors in X, and sets the first-layer
weights to X. Thus, we have a layer of radial-basis 
neurons in which each neuron acts as a detector for a 
different input vector. If there are Q input vectors, then 
there will be Q neurons. Each bias in the first layer is set 
to 0.8326/SPREAD. This gives radial basis functions that 
cross 0.5 at weighted inputs of +/- SPREAD. This
determines the width of an area in the input space to 
which each neuron responds. If SPREAD is 100, then 
each radial-basis neuron will respond with 0.5 or more to 
any input vectors within a vector distance of 100 from their 
weight vector. SPREAD should be large enough that
neurons respond strongly to overlapping regions of the 
input space.

3.3 TRAINING AND TESTING OF MLP MODEL 

All measured data were tabulated EPA (1999). 170 valid 
data patterns were extracted. As explained the largest 

correlation coefficient was between pH and log(Kd).
Among them, 138 patterns were used for training. In back-
propagation learning, we typically start with a training set 
and use the back-propagation algorithm to compute the 
synaptic weights of a multilayer perceptron by loading 
(encoding) as many of the training examples as possible 
into the network. The hope is that the neural network so
designed will generalize. A network is said to generalize 
well when the input-output relationship computed by the 
network is correct (or nearly so) for input/output patterns 
(test data) never used in creating or training the network;
the term “generalization” is borrowed from psychology.
Here, of course, it is assumed that the test data are drawn
from the same population used to generate the training 
data. Validation subset is typically 10 to 20 percent of the
training set (Haykin, Simon 1994). Here 33 patterns were
used for testing. 

The NN program used was MATLAB 6.5. We have
experimented with various BP networks with one or two
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hidden layers and different numbers of neurons in each
hidden layer using the above collected data patterns. The
networks with two or three hidden layers and different 
hidden neurons for hidden layers, respectively, have 
shown better agreement to the training patterns. 

3.4 TRAINING AND TESTING OF GRNN MODEL 

Similar to the MLP model, the GRNN model was trained 
and tested using the same data in the previous part. The
NN program used was MATLAB 6.5. The network with
one hidden layers and 138 hidden neurons for that hidden
layer, has shown good agreement to the training patterns.

4. RESULTS AND DISCUSSION 

Totally, four networks; GRNN, MLP 10x5x1, MLP 20x10x1 
and MLP 10x5x3x1; are presented in this paper and
compare to Mathematical model.  The statistical accuracy
parameters are tabulated in Table 2a, 2b and 2c for the
training data, the testing data, and total (training and 
testing) data respectively. Some of this tabulated 
information is presented by next figures for convenience. 

Table 2a. Training data 

Model
Math.
Model

GRNN
MLP

10x5x1
MLP

20x10x1
MLP

10x5x3x1
Mean
Squared
Error

428,661 180,696 239,415 253,168 242,584

Standard
Error

519 304 235 206 210

Minimum
Absolute
Error

0.651 0.000 0.023 0.302 0.036

Maximum
Absolute
Error

3,668 2,839 3,608 3,689 3,656

Correlation
Coefficient

0.366 0.712 0.628 0.613 0.636

Mean
Relative
Error (%) 

199.4 139.5 96.0 101.1 95.5

Table 2b. Testing data 

Model
Math.
Model

GRNN
MLP

10x5x1
MLP

20x10x1
MLP

10x5x3x1
Mean
Squared
Error

78,473 92,255 53,066 56,281 53,636

Standard
Error

212.5 296.3 131.2 140.5 127.5

Minimum
Absolute
Error

0.384 1.900 0.758 1.302 1.158

Maximum
Absolute
Error

768.4 1,051.3 610.6 645.4 625.5

Correlation
Coefficient

0.410 0.562 0.604 0.575 0.609

Mean
Relative
Error (%) 

130.3 152.1 108.4 102.8 105.8

Table 2c. Training and testing data 

Model
Math.
Model

GRNN
MLP

10x5x1
MLP

20x10x1
MLP

10x5x3x1
Mean
Squared
Error

361,081 163,628 203,453 215,173 206,121

Standard
Error

475.3 302.5 218.5 195.2 197.1

Minimum
Absolute
Error

0.384 0.000 0.023 0.302 0.036

Maximum
Absolute
Error

3,668 2,839 3,608 3,689 3,656

Correlation
Coefficient

0.370 0.691 0.627 0.610 0.634

Mean
Relative
Error (%) 

186.1 141.9 98.4 101.4 97.5

Figure 4 presents the MRE (mean relative error) for 
predicted and measured for different models. It can be 
seen that for all sets of data the MLP networks show
significant lower MRE. However, the GRNN shows higher 
MRE relative to the MLP. However, the number of hidden
layers and neurons does not affect the MRE significantly.
According to this figure, the MRE for total set of data is
reduced from 186% for mathematical model to about 
100% for MLP models. 

Figure 4. Mean relative error for different models

Figure 5 shows the correlation coefficient between
predicted and measured Kd  for different models. 
According to this figure, the correlation coefficient of 
mathematical model presented by EPA(1999); about 36 
and 37%; are increased to more than 60% by ANNs
models.
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Figure 5. Correlation coefficient between predicted and 
measured Kd  for different models

Such results are presented in Figure 6 for standard error. 
The standard error calculated by EPA mathematical 
model is about twice the MLP models. 

Figure 6. Standard error for different models

5. CONCLUSIONS 

In this study the ANNs was used to predict the variation of 
the partition (or distribution) coefficient, Kd, with variation 
of environmental components of soil. The objective is to 
investigate the feasibility of ANN technique for predicting 
of Kd variation with variation of environmental pH.To
accomplish this object the database reported by EPA

(1999) for cadmium adsorption were used. Results show
that ANNs are more powerful tools than statistical analysis
for prediction of partition coefficient variation with variation 
of environmental components for a certain soil. 

The MRE for total set of data is reduced from 186% for 
EPA mathematical model  to about 100% for MLP models. 
Higher coefficients of correlation were obtained using the 
ANNs. The coefficient of correlation of mathematical 
model presented by EPA(1999); about 36 and 37%; are
increased to more than 60%  by ANNs models. Although 
results show the feasibility of pridiction of Kd, but more 
investigation is required. 
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