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ABSTRACT 
Numerical models can be valuable tools in the prediction of seepage. The results can often be misleading if proper 
variational analysis is not performed. Measurement of the soil-water characteristic curve (SWCC) or saturated and 
unsaturated hydraulic conductivity information is often neglected or minimized. The modeller is therefore forced to 
develop a seepage model based on estimated soil properties. The development of such models based on a best 
estimate of soil parameters is very often of little value. A stochastic analysis of the results of finite element models is 
often required in order to properly interpret what information a numerical model is providing. 

RÉSUMÉ
Analyse stochastique par éléments finis. 

1. INTRODUCTION 

The use of numerical models in the regulatory process 
has increased dramatically in the past few years. The use 
of such finite element or finite difference models has 
become accepted practice. There is great benefit in the 
use of these models as they provide to us a snapshot of 
the theoretical behavior of a system given very specific 
constants.

The danger of these models, however, is that they can 
easily provide us with a false sense of security. In many 
cases the models do not accommodate the material 
heterogeneity of a physical system. Consideration is often 
not provided for experimental error. It is commonplace, for 
example, for measurements of saturated hydraulic 
conductivity to vary between ½ to 2 orders of magnitude 
when measurements are taken on the same soil sample. 
As results are often sensitive to hydraulic conductivity, this 
presents a significant modeling problem. It may be stated 
that a single run of a numerical model given static 
parameters tells us very little with regards to the behavior 
of a physical system. This paper examines methods of 
accommodating stochastic variation in seepage numerical 
models such that realistic laboratory and field sampling 
variables may be accommodated. 

2. SEEPAGE THEORY 

In virtually all studies of flow in the unsaturated zone, the 
fluid motion is assumed to obey the classical Richards 
equation (Hillel, 1980;Bear, 1972). This equation may be 
written in several forms. The three forms of the 
unsaturated flow equation are identified as the “h-based” 
form, the “ -based” form, and the “mixed form”.  A 
transient form of the H-based formulation is presented 
below. 
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Where: 
 h = total head, 
 kx  = hydraulic conductivity of the soil in the x 

direction,
 ky  = hydraulic conductivity of the soil in the y 

direction,
 gw = the unit weight of water (9.81 kN/m3), 
 m2w = the slope of the soil-water characteristic 

curve.

The partial differential equation essentially equates flow 
into and out of a unit volume to the resulting change in 
storage. The equation appears simple but is plagued by a 
number of difficulties in obtaining solutions using the finite 
element or finite difference method. The storage curve 
and the permeability are both highly non-linear for an 
unsaturated soil. This causes numerical instability that 
may be reduced through the application of automatic 
mesh refinement. The form of the Richards equation 
presented above is also susceptible to water-balance 
errors.

There are several advantages to the -based form. One 
advantage is that it can be formulated to be perfectly 
mass-conservative. It is not commonly used, however, 
because this form of the Richards equation degenerates 
in fully saturated media and because material 
discontinuities produce discontinuous  profiles. 

The h-based form of the Richards equation is the most 
commonly implemented form. Its primary drawback is that 
it can suffer from poor mass-balance in transient 
problems. This problem is exacerbated by problems with a 
highly non-linear soil-water characteristic curve. 
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Celia (1990) proposed a “mixed form” of the Richards 
equation that was designed to improve the mass-balance 
of the “h-based” formulation. 
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Where: 
h = total head, 
kx  = hydraulic conductivity of the soil in the x 

direction,
ky  = hydraulic conductivity of the soil in the y 

direction,
 = volumetric water content. 

Translation of the governing equation to 3D is presented 
below. 
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where: 
 h = total head, 
 kx  = hydraulic conductivity of the soil in the x 

direction,
 ky  = hydraulic conductivity of the soil in the y 

direction,
 kz  = hydraulic conductivity of the soil in the z 

direction,
 gw = the unit weight of water (9.81 kN/m3), 

 = volumetric water content. 

The issues regarding the solution of the 3D governing 
partial differential equation are similar to 2D. While the 
equations appear concise, there are significant numerical 
pitfalls related to the solution of these equations. The 
results can vary dramatically dependant upon the soil 
properties provided.

3. NEED FOR STOCHASTIC ANALYSIS 

It was during a first-year laboratory assignment that the 
importance of variation was impressed on me. We were 
presented with our electrical system and a formula 
governing its behaviour. Our assignment was to run the 
system, collect input data, then use the formula to 
calculate results. Our laboratory group did precisely as 
was asked and to our surprise, received a surprisingly low 
mark. The reason for our low mark, it was discovered, was 
that we had neglected to incorporate possible limits of 
variation in our answer, given the possible variation errors 
in our input parameters. Sixteen years later I have 
discovered that the state of practice of geotechnical 
engineering does not apply the concepts presented in 
first-year engineering when it comes to numerical 
modelling of soil processes. 

Numerical models are routinely set up and run in 
geotechnical practice with little regard for possible 
variation in input parameters. A single run of a typical 
finite element model gives little information, and should 
not be heavily weighted in the regulatory process. 
Variational analysis in some form should always be 
performed to answer the question, “What is the model 
truly telling us?” 

4. EXAMPLE 1: UNSATURATED FLOW IN CLAY 
DAM

One example of a seepage analysis involves determining 
the amount of flow through the unsaturated (vadose) zone 
in an earth dam. A clay core is implemented in this 
example to dissipate the head accumulated on the 
upstream side of the dam. The physical dimensions of the 
dam are presented in Figure 1. The model was setup and 
run using the SVFlux (Fredlund, 2002) seepage software 
package.

Figure 1  Cross-section of example dam (Stianson, 

2004)

The amount of flow proceeding over the clay core and 
through the unsaturated zone is largely controlled by the 
unsaturated hydraulic conductivity. The unsaturated 
hydraulic conductivity is frequently estimated, as 
laboratory costs may be quite high ($7,000 - $10,000 
CAD). In typical estimation methods the slope of the 
unsaturated hydraulic conductivity curve is related to the 
slope of the soil-water characteristic curve (SWCC) 
through a power function.  

In this particular example the Modified Campbell 
(Fredlund, 1996,2004) method of estimating the 
unsaturated hydraulic conductivity was used in this 
example. The Modified Campbell method uses the 
Fredlund and Xing (1994) equation to represent the soil-
water characteristic curve as the basis for it’s estimation of 
unsaturated hydraulic conductivity. The Modified 
Campbell equation is presented below. The slope of the 
unsaturated portion of the curve is controlled principally by 
the “p” parameter. 

min6min

)1exp(ln

1

10
1ln

1ln

1)()( k

a
h

h
kkk

p

m
n

f

r

r

s
f

f

where: 
 hr = suction at residual water content, 
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 = soil suction, 
 ks  = saturated hydraulic conductivity, 
 kmin  = minimum hydraulic conductivity, 
 af  = Fredlund and Xing “a” parameter, 
 nf  = Fredlund and Xing “n” parameter, 
 mf  = Fredlund and Xing “m” parameter, 
 p = Modified Campbell “p” parameter. 

A Monte Carlo analysis was then set up that allowed the 
“p” parameter in the Modified Campbell method to vary 
such that the mean value was 5 and the standard 
deviation was 2. 200 variations were generated and the 
resulting normal distribution is presented in Figure 2. The 
conductivity of the core material was not modified. 
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Figure 2  Variation of the "p" parameter in the 

Modified Campbell equation 

A series of 200 runs were used with the Monte Carlo 
analysis. The results are presented in Figure 3. 
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Figure 3  Percent unsaturated flow as related to the 

slope of the unsaturated hydraulic conductivity curve 

The results indicate that the amount of unsaturated flow 
over the core is highly sensitive to the slope of the 
unsaturated hydraulic conductivity function. Overall, the 
amount of flow through the dam as a percentage of total 
flow varies between 18% and 83%. This example 

illustrates the importance of a sensitivity analysis when 
interpreting model results.

It would be easy to run this example using average model 
parameters. Such model parameters would give the 
impression that approximately 50% to 60% of flow goes 
over the core and through the unsaturated zone (using 
average values of 3.8-5.0 for the “p” parameter of the 
Modified Campbell equation. Such an impression would 
be misleading with regards to the results presented by the 
full stochastic analysis. 

It should be noted that the current model was set up using 
average soil properties. It would also be possible to get 
variation in results through the variation of other soil 
parameters such as the air-entry value (AEV) of the soil-
water characteristic curve used for the primary dam 
material.

5. EXAMPLE 2: FOOTING DEFORMATIONS 

Calculations involving stresses and deformations beneath 
a strip footing form an important part of the design 
process. The deformations caused by the application of 
load are central to the design tolerances. In a way similar 
to other finite element models there are certain soil 
properties that are sensitive and soil properties that are 
not sensitive. The determination of the sensitive soil 
properties is of paramount importance. Such a 
determination can be made through the use of stochastic 
analysis. 

The geometry for the mentioned example problem is 
shown in Figure 4. A footing is placed at the corner of a 
30m x 30m soil region. A load expression of 1 kPa is then 
applied at the base of the footing and the resulting 
stresses and deformations are calculated.
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Figure 4  Geometry of strip footing 

In this particular analysis the Poisson’s ratio was varied 
via the Monte Carlo method with a mean value of 0.4 and 
a standard deviation of 0.03. 200 runs of the problem 
were generated and solved. The distribution of Poisson’s 
Ratio used in this example is shown in Figure 5. 
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Figure 5  Frequency of Poisson's Ratio used in 

example 

The model results show an insensitivity to stresses in the 
y direction but a sensitivity to vertical deformations. 
Deformations were summarized at 3m depth increments 
beginning at a depth of 1m. The stress deformation 
beneath the footing is shown in Figure 6. The resulting 
deformations as a function of model run number are 

shown in Figure 7. Model runs were organized in terms of 
increasing Poisson’s Ratio values. 

Figure 6  Vertical stress distribution beneath strip 

footing 
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Figure 7  Deformations plotted as a function of model 

run.

Stochastic analysis gives us a method of determining 
variability of output. In this example we can include the 
possible variation of output deformations given the 
possible variation in input soil properties. The resulting 
analysis increases our ability to comprehend the value of 
the numerical results. 

6. CONCLUSIONS 

Probabilistic methods have not been as widely used in 
geotechnical engineering as might be expected. Often it is 
the difficulty in application that results in avoidance. The 
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application of probabilistic methods in finite element 
analysis has typically not been performed because models 
lacked i) an ability to batch solve a group of differing 
problems. This limitation has largely been overcome given 
the application of automatic mesh generation and 
automatic mesh refinement. Batches of problems may be 
set up and run with varying soil properties and the mesh 
will automatically optimize for each scenario. 

A single run of a finite element model is often of little value 
to the practicing engineer. A group of runs based on a 
certain varying of soil properties provides much improved 
information regarding the possible variance of model 
output. The value of finite element analysis is dramatically 
improved by implementing the techniques of stochastic 
analysis. As a result, consultants can provide clients with 
a statistical basis for their modeling results. The result of 
the application of this technology will result in increased 
clarity of regulation guidelines as well as improved 
defensibility of modeling results by geoconsultants. 

“Probabilistic methods, while not a substitute for traditional 
deterministic design methods, do offer a systematic and 
quantitative way of accounting for uncertainties 
encountered by geotechnical engineers, and they are 
most effective when used to organize and quantify these 
uncertainties for engineering designs and decisions.” 
(NRC, 1995) 
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