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ABSTRACT 
This paper challenges geo-environmental practitioners to consider uncertainties when developing sampling plans 
and interpreting chemical analyses data even though environmental assessment and remediation guidelines are 
presented as single-valued threshold levels that define limits between “acceptable” and “unacceptable” contaminant 
concentrations in soil, groundwater and air. This paper also summarizes the uncertainties encountered in an 
environmental site assessment and discusses how analytical and sampling uncertainties can be addressed using 
statistical and probabilistic techniques.  
 
RÉSUMÉ 
A l’heure actuelle, les directives concernant les évaluations et remédiations environnementales ne reposent 
uniquement que sur une valeur seuil, définissant la limite entre une concentration “acceptable” et “non acceptable”, 
pour un contaminant présent dans le sol, l’air ou les nappes d’eau souterraine. Cet article a pour objectif de pousser 
les géo-environnementalistes à cependant prendre en considération les incertitudes lors de l’interprétation de 
données d’analyses chimiques ou du développement  d’un planning d’échantillonnage. Il présente d’une part un 
résumé des différentes incertitudes rencontrées lors d’une évaluation environnementale, et d’autre part comment 
les incertitudes de calcul et de mesure peuvent être prises en compte en utilisant des outils statistiques et 
probabilistes.�
 
 
1 INTRODUCTION 
 
The basic concepts behind environmental assessment 
can be stated as (Cotton and Emond 1981): “(1) early 
identification and evaluation of all potential 
environmental consequences of a proposed 
undertaking;” and “(2) decision making that both 
guarantees the adequacy of this process and reconciles 
to the greatest extent possible, the proponent’s 
development desires with environmental protection and 
preservation”. 

These concepts are further explained in a recent 
Federal Court judgement (Decisions of the Federal 
Court 2008 FC 302) as follows: 

“The Canadian Environmental Assessment Act 
(CEAA)… mandates early assessment of adverse 
environmental consequences as well as mitigation 
measures, coupled with the flexibility of follow-up 
processes capable of adapting to new information and 
changed circumstances. The dynamic and fluid nature 
of the process means that perfect certainty regarding 
environmental effects is not required”. 

The CEAA “calls for an informed decision by a 
responsible authority” and “there is a requirement to 
provide a rationale for its recommendations”. 
It would appear that, by law, some degree of 
uncertainty is allowed in environmental assessments; 
however, an environmental practitioner (from hereon, 
practitioner) is required to provide a rationale for the 
handling of uncertainties. 

At present, the concept of uncertainty is rarely 
publicized by regulatory agencies. As a result, 
remediation guidelines are presented as single-valued 
threshold levels that define limits between “acceptable” 
and “unacceptable” contaminant concentrations in soil, 
groundwater and air. Correspondingly, practitioners 
commonly use a deterministic approach in 
environmental site assessment (ESA) and remediation. 
Discussions in this paper are limited to Phase II ESAs, 
i.e., investigations involving the collection of soil, 
groundwater or air samples to analyze for 
concentrations of potential contaminants of concern. In 
the following sections, uncertainties inherent in site 
investigations and remediation guideline development 
are summarized. Methods that a practitioner may use to 
quantify some of the uncertainties in environmental 
sampling are also described. 
 
2 UNCERTAINTIES IN ENVIRONMENTAL SITE 

INVESTIGATIONS 
 
The two major uncertainties in environmental site 
investigations are (a) uncertainty related to obtaining 
measurements within sampling units and (b) uncertainty 
associated with the variability and/or bias between 
sampling units (USEPA 2001). A sampling unit, also 
referred to as a unit of analysis, can be defined as the 
portion of the environmental population from which one 
or more samples are taken and then measured to yield 
test results appropriate for a specific use. The most 
common sampling unit would be the physical sample 
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taken, e.g., a 1.7 L sample of soil gas or a 600 mm long 
by 32 mm diameter core of soil. Figure 1 illustrates the 
factors contributing to total uncertainty in ESAs (after 
USEPA 2001). 

Between-unit uncertainty (UB) addresses how well 
sampling units selected by a sampling design represent 
the population of interest. Within-unit uncertainty, UW, 
addresses how well samples and measurements 
performed on them represent their true conditions. Total 
uncertainty, UT, can be modelled with an additive 
variance formula, assuming that within-unit uncertainty 
is independent of between-unit uncertainty (USEPA 
2001). As shown in Figure 1, within-unit variability can 
be estimated using field duplicate data and total 
uncertainty can be estimated based on the total site 
investigation variance. Based on the additive variance 
relationship, the total uncertainty, UT, is given by: 
 

22
WBT UUU +=      [1] 

 
The successful management of uncertainties 

requires practitioners to implement quality systems, 
consisting of quality assurance (QA) and quality control 
(QC) procedures to obtain data of known and sufficient 

quality (Maney 2002). Statistics is a key tool for 
planning and determining how best to manage sources 
of uncertainty in environmental data sets and ensure 
that data based decisions are made within a desired 
level of confidence. 

 
2.1 Uncertainties in Environmental Field Sampling 
 
Many practitioners incorrectly assume that the quality of 
their data is primarily determined by the analytical 
methods used to produce the results. On the contrary, 
uncertainties for individual analytical measurements are 
often insignificant in comparison to the total statistical 
variation in the population (APLAC 2004). No amount of 
improvement in analytical precision can significantly 
reduce total uncertainty when the contribution of 
analytical uncertainty is relatively minor (Jenkins et al. 
1997). Perhaps this mistake in reasoning is partially 
due to the relative ease in which environmental 
analytical laboratories quantify and mitigate their 
associated uncertainties. Strategies do exist for the 
estimation and mitigation of environmental field 
sampling uncertainties, and will be further discussed in 
Section 4.  

Approximately 90% of uncertainty in environmental 
data can be attributed to sampling variability due to the 
heterogeneity of environmental matrices (Crumbling et 
al. 2001), encompassing both within-unit and between-
unit uncertainties. Soils are more heterogeneous in 
comparison to other matrices such as surface water, 
groundwater or air and form a major source of 
uncertainty in sampling and sub-sampling (Jenkins et 
al. 1997). Factors that need to be considered in the 
selection and collection of samples which are 
representative of the population include their physical 
dimensions, location, timing of collection, preservation, 
transportation and storage (Crumbling et al. 2001). 

 
2.2 Uncertainties in Environmental Laboratory 

Chemical Analyses 
 
Environmental laboratories produce chemical analytical 
results, which are the product of a process involving 
sampling and measuring. Statistical estimation of 
uncertainty is the best indication of the precision 
(reproducibility) of an analytical test result, and most 
Canadian laboratories employ well-defined methods to 
estimate the associated method uncertainty.  

In a typical laboratory, analytical method standard 
operating procedure (SOP) and final result calculation 
equation(s) (if any) are used to identify potential 
sources of uncertainty in the method. Uncertainty in 
analytical methods can arise from sources such as 
(CAEAL 2006): definition of the measurand; 
transportation, storage and handling of samples; 
preparation of samples and subsampling; 
environmental and measurement conditions; the 
analyst; variations in test procedures and measuring 
instruments; calibration standards and reference 
materials; software and/or methods associated with the 
measurement and uncertainty from the correction of the 
measurement results from systematic affects. Once all 
potential quantifiable sources of uncertainty in an 

 

 
 
Figure 1.  Components of Total Uncertainty in 
Environmental Site Investigations (Modified from 
USEPA 2001) 
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analytical method are identified, QA/QC and inter-
laboratory proficiency testing (PT) data are matched 
with sources of uncertainty and tabulated with their 
associated standard deviation and/or relative standard 
deviation. For example, PT data are used as a source 
of both inter-laboratory and intra-laboratory 
reproducibility uncertainty. Reference samples, such as 
certified reference materials and laboratory control 
standards, are used to quantify uncertainty due to 
different analysts, calibration sets and standards, 
environmental conditions and instrument drift. Matrix 
spikes evaluate uncertainty due to different sample 
matrices; while method validation data examine 
uncertainty at low analyte concentration ranges, due to 
different analysts, instrumentation and environmental 
conditions. Laboratory duplicates are another measure 
for reproducibility uncertainty, which takes into account 
factors such as heterogeneity of samples, weighing, 
volumetric manipulations and instrument drift.  

Each source of uncertainty and its associated 
standard deviation (SD) and/or relative standard 
deviation (RSD) are tabulated, eliminating doubly 
counted sources. Combined standard uncertainty, UC, 
is then calculated using standard propagation of error 
roots (root sum of squares), where Un is an individual 
source of uncertainty (CAEAL 2006): 

 

�=
n

nC UU 2       [2] 

 
Measurement uncertainty, UM, is expressed as an 
expanded UC for a two-tailed confidence level of 95% 
using 
 

CM UtU ×=       [3] 
 

where t is the appropriate 95% confidence level 
Student’s t-distribution t-value. The true analytical result 
should then be interpreted as a value within the 95% 
confidence limits that are given by the reported result, 
X, and UM as shown:  

 
95% confidence limits = X ± UM   [4] 

 
The confidence level is often used loosely as a 

probability statement that the true result lies within the 
limits given by Equation 4 with a 95% probability. “Such 
a probability statement is, strictly speaking, 
inadmissible since the true result is not a random 
variable” (Benjamin and Cornell 1970). They further 
commented that: 

 “the engineer who has observed X and calculated 
confidence limits should not say ‘The probability that 
the true mean lies between X-tUc and X+tUc is 95%’ but 
rather just ‘the 95% confidence limits on the true mean 
are X-tUc and X+tUc’… Such ‘probability statements’ 
remain the most natural way of describing the situation 
and of conveying the second kind of uncertainty, that 
surrounding the value of a parameter. Consequently, 
such statements should probably not be discouraged, 
as they seem to express the way engineers operate 
within such limits….” 

The use of confidence limits is most appropriate in 
reporting of data. It provides a convenient and concise 
method of reporting which is understood by a wide 
audience of readers, and which encourages 
communications of measures of uncertainty as well as 
simply ‘best’ (or point) estimates of parameters. In spite 
of the somewhat arbitrary nature of the conventionally 
used confidence levels, and in spite of the philosophical 
difficulties surrounding their interpretation, confidence 
limits remain, therefore, useful conventions.” (Benjamin 
and Cornell 1970). 

 
3 UNCERTAINTY IN ENVIRONMENTAL RISK 

ASSESSMENT AND REMEDIATION 
GUIDELINES 

 
Methods currently used to develop soil and 
groundwater remediation guidelines in Canada (AENV 
2007; CCME 2008a) do not explicitly take uncertainty 
into account and as a result they may be a product of 
overly conservative estimates of cleanup criteria by 
combining, through multiplication, several 
conservatively biased parameters. The methods are 
based on a coupling of traditional risk assessment 
process (e.g., Health Canada 2004, CCME 2008b) with 
an environmental fate and transport model, i.e., the 
Johnson and Ettinger (1991) vapour intrusion model, 
and are discussed further below. 

 
3.1 Risk Assessment Process  
 
The two types of uncertainties involved in risk 
assessment are (Finkel 1990): uncertainty due to 
variability (type A) and uncertainty due to lack of 
knowledge (type B). Type A uncertainty represents 
variability in values for a parameter, i.e., the actual 
distribution of values in time, space or among 
individuals. This type of uncertainty cannot be reduced 
or eliminated in risk assessment; it can only be 
characterized or understood. Major sources of 
variability in risk assessment include exposure 
variability and inter-individual variability in susceptibility 
(dose-response) (Finkel 1990). Exposure variability 
results from many parameters in various stages of the 
exposure assessment process including, but not limited 
to, microenvironmental and personal time-activity 
behaviour differences (NRC 1994). Human inter-
individual variability includes differences in genetic 
predisposition, biological function, and behaviour 
(Finkel 1990). 

Type B uncertainty, "true uncertainty", represents 
lack of knowledge about what the true value is for a 
parameter. This uncertainty can only be reduced by 
gaining knowledge to improve how much one knows 
about the value. The potential is very large for overly 
conservative estimates of remediation guidelines using 
standard risk assessment methods due to inadequate 
understanding of true uncertainty. The largest sources 
of true uncertainty in risk assessment occur in the dose-
response assessment because of numerous 
assumptions and inferences which must be made. 
These relate to extrapolation of tested doses to 
estimated human doses, extrapolation between 
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species, and the approaches and model selections for 
these extrapolations. Tested doses are often values 
derived from animal studies and from human 
epidemiological studies. The process is highly uncertain 
because it involves extrapolating these data at relatively 
high exposure concentrations (in laboratory animal 
studies) to estimated effects on humans at much lower 
exposure concentrations. While the lower exposure 
concentrations are more often encountered in reality, 
health effects based on these low exposure 
concentrations are not generally measurable. 

 
3.2 Guideline Development Using Environmental 

Fate and Transport Modelling 
 

Environmental fate, transport, and transformation 
aspects of uncertainty have been separated out of the 
risk assessment process because of their importance in 
developing risk-based remediation guidelines for soil 
and groundwater contamination. The Johnson and 
Ettinger (1991) vapour intrusion (J&E) model was 
developed as a screening model and is no different 
than many other environmental fate models in use 
today in that it approximates various highly complex 
engineering and physical relationships associated with 
vapour migration in soil. The model uses steady state 
assumptions, infinite sources, limited soil 
biodegradation, negligible free phase, and equilibrium 
partitioning into air and water phases to represent 
advective and diffusive processes in soil. Even though 
the model makes some simplifying geometrical 
assumptions, it still requires a large number of 
parameters and assumptions, which translate into a 
potential for large uncertainties to be associated with its 
results. Dubus et al. (2003) offer the example that 
pesticide fate modelling in soils has an extensive list of 
parameter and assumption requirements and sources 
of uncertainty clearly demonstrating that the process is 
laced with uncertainty.  Dubus et al. (2003) also 
importantly point out that model error and modeller 
preferences – which cannot be taken into account in 
formal sensitivity analysis – are also likely to have an 
important effect on the prediction of pesticide 
concentrations in soil. 

The J&E model is admittedly complex and others 
have shown that complexity of models does not 
necessarily increase the precision of model predictions 
and might often decrease it (McKone 1996). “Sensitivity 
analysis” of model parameters in environmental 
modelling – which is critical to model validation – is 
seldom performed (Hamby 1994).  In the case of the 
J&E model, these types of analysis are only beginning 
to emerge (Tillman and Weaver 2006) despite the 
model being introduced over 15 years ago. Tillman and 
Weaver (2006) further report that little published 
information is available on the combined effects of 
multiple uncertain model parameters and their effect on 
results in using the J&E model.  Compounding 
conservatism by nearly a factor of 10 in model output – 
as represented by predicted cancer risk – was 
demonstrated by Tillman and Weaver (2006) during 
formal sensitivity analysis using a multiple-parameter 

uncertainty approach versus a single-parameter (one-
parameter-at-a-time) uncertainty approach. 

Those involved in development of remediation 
guidelines all too often fail to fully consider problems 
when there are data limitations or other issues that 
introduce uncertainties. The importance of thorough 
uncertainty analysis would mostly be acknowledged, 
but all too often uncertainties are not specifically 
quantified or understood in favour of qualitative 
statements that conservatism in the guideline 
development process counter-balances uncertainty in 
the data. In all but the most sophisticated and costly 
risk-based processes for guideline development, 

uncertainty analysis is seldom conducted – usually at 
the end of the process and often only in a qualitative 
way. Unfortunately, just using high (conservative) end 
value for each parameter endpoint in the guideline 
development calculation results in conservatism 
compounded to an extent that is not understood well 
enough. The soil quality guideline development 
processes that currently exist (e.g., AENV 2007; CCME 
2008a) can be viewed as generally cautious 
approaches, for which reasonable data and sensible 
knowledge of uncertainties (i.e., established through 
some type of formal sensitivity analysis) are likely to 
yield reasonable estimates that will protect public 
health.  However, where poor data and lack of 
knowledge contribute to uncertainty, and limited 
attention is paid to analyzing uncertainty in the 
development process, resulting guidelines are very 
likely to be over-protective.  For this latter case, the 
ability of soil and groundwater contamination levels that 
are a factor of two or possibly more than current 
guideline levels to pose health risks should be 
interpreted with a great deal of caution and healthy 
scepticism. 
 
4 DEALING WITH UNCERTAINTIES IN ENVIRON-

MENTAL SITE INVESTIGATIONS 
 
As discussed in the previous sections, uncertainties in 
environmental site investigations are incurred in: field 
sampling, chemical analysis, the environmental risk 
assessment process and in guideline development. 
Uncertainties in the risk assessment process and 
guideline development are the responsibility of 
regulatory agencies. Some of the methods that can be 
used by practitioners to quantify, interpret and mitigate 
uncertainties in environmental site investigations are 
outlined in the following. 

 
4.1 Quantifying Uncertainties in Sample Collection 

and Sampling Plan Development 
 
Environmental site investigations generally involve 
collecting samples of soil, water and/or air media, and 
measuring the concentrations of the potential 
contaminants of concern (pcoc). Traditionally, sampling 
plans for these investigations have been developed in a 
subjective manner by practitioners. The selection of 
sampling locations is dependent on a number of factors 
such as the experience level and personal judgement of 
the project team members, the available historical land 
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use information, budget, client preferences or third 
party concerns. It is recognized by most experienced 
practitioners that successful identification of the pcoc 
and the likely impacted areas depends on the accuracy 
and level of detail available regarding historical land 
uses. The quality of historical information about 
contaminated sites is variable and, in some cases, 
critical historical land use details have been lost. The 
absence or unavailability of valuable information has 
the potential to unknowingly minimize the value of the 
professional judgement. Statistics Canada (2006) 
classifies judgement sampling, along with convenience 
or haphazard sampling (where samples are collected 
based solely on accessibility), as non-probability 
sampling methods in which “it is impossible either to 
estimate sampling variability or to identify possible bias” 
(Statistics Canada 2006).  

As discussed in Section 2, the total uncertainty in a 
site investigation is made up of within-unit and between-
unit uncertainties. Within-unit uncertainties in soil 
sampling can be managed by using “correct sampling 
procedures” and equipment, as detailed by Gy’s 
sampling theory (GST) for particulate matter (Gerlach et 
al. 2002; Gerlach and Nocerino 2003). GST stresses 
the importance of carefully considering the processes 
used to physically obtain and extract samples in order 
to achieve a representative, non-distorted sample from 
a sampling unit. The amount and weight of a sample 
should be considered in relation to the matrix particle 
size and shape (Gerlach et al. 2002; Gerlach and 
Nocerino 2003). One limitation to GST is that it is not 
intended for volatile and semi-volatile constituents 
(Gerlach and Nocerino, 2003). GST often involves 
drying and communition (particle size reduction), which 
could result in significant losses of volatile constituents 
(ASTM, 2003). 

Between-unit uncertainties can be quantified and 
managed using a probability-based sampling design, 
which determines the required type, quality, quantity 
and placement of samples to ensure that the resulting 
data are statistically representative of the sampling 
units and overall population of interest, and can support 
a sufficiently confident decision (Pulsipher et al. 2003). 
Visual Sampling Plan (VSP) software (PNNL 2008) is a 
tool that can help manage between-unit uncertainties by 
creating a probability based sampling design. VSP can 
be used to assess the relative contributions of sampling 
and analytical uncertainties to the total uncertainty, and 
evaluate how to best to reduce uncertainty. Methods to 
reduce uncertainty include: obtaining more samples 
and/or improving sampling technique or conducting 
replicate analyses and/or improving precision of the 
analytical method. Another strategy for managing 
between-unit uncertainties is the use of composite 
sampling. Composite sampling can help to improve the 
representativeness of samples, and is a more cost-
effective strategy for reducing spatial uncertainty than 
merely obtaining a greater number of samples (Jenkins 
et al. 1997). However, composite sampling is not an 
appropriate method for certain volatile and semi-volatile 
contaminants due to concerns regarding constituent 
loss during compositing procedures. Moreover, when 
using composite sampling, the comparative guideline 

value may have to be divided by the number of samples 
used in compositing (Patil 1995). Soils are more 
heterogeneous in comparison to other matrices such as 
surface water, groundwater or air; soil heterogeneity is 
a major source of uncertainty in sampling and sub-
sampling (Jenkins et al. 1997). Factors that need to be 
considered in the selection and collection of samples 
that are representative of the population include their 
physical dimensions, location, timing of collection, 
preservation, transportation and storage (Crumbing et 
al. 2001) 

A probability-based sampling plan supports valid 
inference of the mean and variance of the target 
population, provides quantitative estimates of 
uncertainty and variance and indicates limits on 
uncertainty associated with a decision. The idea of 
applying statistical and probability concepts to improve 
sampling plan development and decision-making 
processes has been around for more than 50 years 
(e.g., Freeman et al. 1948; Gilbert, 1982). Details of 
statistical methods for environmental site sampling are 
well presented in Gilbert (1987). 

Since the late 1980s, the US Environmental 
Protection Agency (USEPA) has been advocating the 
use of statistical evaluation methods for establishing 
environmental data quality objectives (DQO) and for 
assessing, in a statistically unbiased manner, whether 
the number and spatial distribution of the samples are 
sufficient for characterizing the pcoc at a site with an 
acceptable level of confidence. However, the use of a 
probability-based sampling plan without careful 
consideration of site-specific factors and economics can 
be hampered by: the appearance that the sampling 
locations do not make sense, by mathematical 
concepts that are difficult to explain to the general 
public, and by little perceived control of sampling costs. 
To facilitate the implementation of a significant portion 
of a DQO program, the Visual Sampling Plan (VSP) 
software (PNNL 2008) has been developed to design 
statistics-based soil and sediment sampling plans for 
impacts due to metals or unexploded ordnances. The 
application of VSP to establish the required areal extent 
of a remedial excavation is described as follows. 

 
4.2 Example: Development of Sampling Plans Using 

VSP 
 
Sampling methods allowed for in VSP include: simple 
random sampling, systematic grid sampling, stratified 
sampling, cluster sampling, sequential sampling, 
collaborative sampling, ranked set sampling and 
judgment sampling (not probability-based) (Matzke et 
al. 2007). In the following, results using systematic grid 
sampling to determine, with a specified probability, the 
locations of hot-spots of a specified size and shape in a 
study area are discussed. 

By definition, a hot-spot is “a local contiguous area 
that has concentrations that exceed a threshold value” 
(Matzke et al. 2007). In a site assessment, the size and 
shape of hot-spots are determined through consultation 
among regulators, practitioners and, sometimes, stake-
holders. In this example, the hot-spots are arbitrarily 
chosen to be circular and 1.0 m in radius and 
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systematic grid sampling is used. Figure 2 shows a 
significant reduction in the probability of detection, 
p(detect), with increasing sampling grid spacing using 
VSP. For example, 0.67 m x 2 m grid (area = 1.34 m2) 
is able to detect a 1.0 m radius hot-spot with a p(detect) 
= 95%; whereas a 3 m x 3 m grid (area = 9.0 m2) can 
only achieve a p(detect) of 33%. 

When locating a hot-spot, VSP calculates the 
necessary sampling grid size based on input hot-spot 
size and β �, the probability of not detecting a hot-spot or 
the “consumer’s risk”. If the probability of detecting at 
least a hot-spot is p(detect), then β = 1 – p(detect). The 
commonly accepted values of β are between 5% and 
10%. For a p(detect) = 95%, β = 5%. Gilbert (1987, 
Chapter 10) presented three graphs relating β to the 
spacing required for regular square, rectangular and 
equilateral triangular grids, respectively. However, the 
sampling grid spacing thus obtained can be increased if 
prior information about the probability that a hot-spot 
actually occurs is available. This a priori probability, 
p(A), can be obtained using pilot surveys or other 
knowledge such as historical data. The procedure of 
adjustment is based on conditional probability to 
determine the probability that a hot-spot exists and is 
not detected, and is described in detail by Gilbert (1987, 
p.128). 

For example, if the acceptable probability (β) for a 
sampling grid to miss a circular hot-spot 1 m in radius is 
5%, the spacing for a square grid would be 1.69 m 
without knowing p(A). If p(A) = 15%, then modified 
consumer’s risk is calculated to be 0.298 (Gilbert 1987, 

Equation 10.5) and the grid spacing obtained from 
Gilbert’s chart is 2.15 m. The variation of (square) grid 
spacing with p(A) is summarized in Table 1 for a 
consumer’s risk of 5%. 

To allow for a highly non-uniform distribution of 
contaminants across a site, the sampling grid spacing 
may also be locally refined within an initial grid using a 
step-out procedure. Figure 3 shows a 3 m x 3 m grid 
used to delineate an area to be excavated in order to 
remediate metal impacts. As shown in Area A, the 
perimeter of excavation is determined by bounding the 
grid points where exceedances are detected with a line 
connecting the grid points where guideline 
exceedances are not detected. To ascertain (as well as 
to increase)  p(detect), additional samples can be taken 
at step-out locations, i.e. from grid points with 
exceedance to the centroids of the adjacent grid 
squares as shown on Figure 3. The step-out grid will 
thus be at 3/�2 = 2.12 m spacing. Depending on the 
chemical analyses results, the step-out procedure may 
reduce the area to be excavated. For example, without 
stepping out, Area B as shown in Figure 3 will cover 11 
grid squares (99 m2). Based on the chemical analyses 
results at the step-out sampling points, the area to be 
excavated is reduced to 9 grid squares (81 m2). The 
economy of reducing the extent of excavation would 
have to be balanced against the increased cost of 
sampling and chemical analyses. 

The above discussion does not consider possible 
vertical variation in chemical concentrations. To 
account for vertical variations, samples could be taken 
at depth-specific intervals. The final extent of 
excavation is determined by overlaying the areal 
extents obtained for each depth-specific layer. 
 
4.3 Interpreting Laboratory Data Uncertainty 
 
In 2003, recognizing that measurement uncertainties 
are inherent in chemical analyses, the Canadian 
Association for Environmental Analytical Laboratories 
(CAEAL) began requiring laboratories accredited under 
ISO/IEC 17025 to provide information on measurement 
uncertainty in test reports when requested by clients or 
when the uncertainty affects compliance to a 
specification limit (CAEAL 2006; ISO/IEC 2005). 
Unfortunately, the significance of uncertainty has not 

Table 1. Modification of (Square) Grid Spacing by 
A Priori Probability of Exceedance for a 
Consumer’s Risk of 5% 

A Priori Probability p(A) 
 

10% 15% 20% 25% 50% 

Grid 
Spacing (m) 2.45 2.15 2.03 1.95 1.69 

 

 
 
Figure 3, Schematic Showing Delineation 
Procedure for a Remedial Excavation  

 
Figure 2. Decreasing Probability of Detection with 
Increasing Grid Size 
 

GeoEdmonton'08/GéoEdmonton2008

876



yet been fully appreciated by many Canadian 
practitioners, who continue to compare laboratory 
results with a single-valued regulatory guideline in a 
deterministic manner.  

How would a practitioner responsibly compare and 
report laboratory results, complete with measurement 
uncertainties, with a single regulatory standard for 
decision making? The importance of the laboratory 
measurement uncertainty can be illustrated by the 
following example. Consider laboratory test results as 
shown in Figure 4. Two test results with their 
corresponding uncertainties are modelled as normal 
distributions in Figure 4(a) and Figure 4(b), respectively. 
As shown in Figure 4(a), the test result was measured 
at 135 ± 4 mg/kg. Statistically, 95% confidence intervals 
will contain the true mean 95% of the time. In this 
example, one particular 95% confidence interval is 
obtained as 135 ± 4 mg/kg and this interval does not 
contain the regulatory limit, which is set at 140 mg/kg. 
As discussed in Section 2.2, a practitioner can loosely 
interpret that the test result lies between 135 ± 4 mg/kg 
with a probability of 95% and conclude that there is less 
than 5% chance that the true sample result may exceed 
the regulatory guideline. In Figure 4(b), the regulatory 
limit falls within the interval 120 ± 21.6 mg/kg. In this 
case, the practitioner cannot draw the same conclusion, 
regardless of the fact that the actual reported test result 

is considerably lower than the criterion as shown in 
Figure 4(a).  

 
5 CONCLUSIONS 

 
An environmental practitioner encounters uncertainties 
in every step of a Phase II Environmental Site 
Assessment including sampling, chemical analysis and 
evaluating analytical results against regulatory 
guidelines. It is the responsibility of professional 
environmental assessment practitioners to state their 
rationale when dealing with these uncertainties. 

As discussed above, some of these uncertainties 
can be quantified using probability-based sampling 
plans and statistics. However, substantial uncertainty 
can also exist in development of guidelines – which are 
used by practitioners to interpret site investigation 
results and make decisions respecting the need for 
additional investigation or remediation. Unfortunately, 
uncertainties associated with guideline development 
are seldom adequately quantified or clearly 
communicated by the Canadian regulatory agencies. 
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