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ABSTRACT 
In spite of several sophisticated models proposed to quantify the rate of mass transfer between residual non-aqueous 
phase liquid (NAPL) and groundwater, little attention has been paid to the geometry of residual NAPL source zone in a 
fate and transport modeling context. Uncertainty in spatial distribution of residual NAPL often affects the size and 
longevity of predicted dissolved contaminant plume in groundwater. In this work, first, a distance-function based 
approach is presented to quantify the uncertainty in the areal limits of a residual NAPL plume at a site impacted by 
petroleum hydrocarbons. In the second step, multiple secondary data sources such as soil texture and groundwater 
table elevation are combined and used in generating multiple geostatistical realizations of the presence and absence of 
contaminants. The 3D geostatistical realizations are then clipped by 2D realizations of areal extent to give the final 
model of uncertainty for residual NAPL distribution. A cross validation exercise is implemented to show the value of the 
secondary data in improving the prediction ability in the proposed methodology. Finally, results from a set of Monte 
Carlo Simulations shows the impact of uncertain source zone geometry on downstream concentrations for a moderately 
heterogeneous aquifer.          
 
RÉSUMÉ 
En dépit de plusieurs modèles sophistiqués proposé de quantifier le taux de transfert de masse entre résiduels non 
liquides phase aqueuse (NLPA) et les nappes phréatiques, peu d'attention a été accordée à la géométrie de la NLPA 
résiduel dans une zone de la source du devenir et du transport de modélisation contexte. Incertitude dans la répartition 
spatiale de la NLPA résiduel souvent influe sur la taille et la longévité des prédit panache de contaminants dissous 
dans les eaux souterraines. Dans ce travail, d'abord, sur une distance de l'approche fondée sur la fonction est présenté 
pour quantifier l'incertitude dans les limites d'une superficie résiduelle NLPA panache à un endroit touché par les 
hydrocarbures pétroliers. Dans la deuxième étape, de multiples sources de données secondaires telles que la texture 
du sol et l'élévation de la nappe phréatique sont combinés et utilisés en générant de multiples réalisations 
géostatistiques de présence et l'absence de contaminants. Les réalisations géostatistiques 3D sont ensuite clipser par 
2D étendue des réalisations de donner le modèle final de l'incertitude pour la distribution de NLPA. Une croix exercice 
de validation est mis en œuvre pour démontrer la valeur des données secondaires pour améliorer la capacité de 
prévision dans la méthode proposée. Enfin, les résultats d'une série de simulations de Monte Carlo montre l'impact de 
l'incertitude sur la géométrie de la zone source du panache dissous taille et la forme d'une pour classe hétérogène 
aquifère. 
 
 
1 INTRODUCTION 
 
Light non-aqueous phase liquids (LNAPLs) associated 
with petroleum hydrocarbons, are typically produced, 
stored and distributed as gasoline, diesel, heavy fuel, and 
lubricating oil. Many groundwater contamination incidents 
begin with the release of these immiscible fluids into the 
vadose zone. The pattern of movement, distribution and 
redistribution of mobile and residual LNAPL in the 
subsurface is closely related to the soil texture and the 
dominant hydrogeological regime at the site. When 
LNAPL is released, it migrates vertically and laterally 
under the gravity and capillary forces. The LNAPL 
migrates through the unsaturated zone toward capillary 
fringe and the water table (Figure 1). Due to capillary 
forces, some LNAPL is always retained in the soil pores 
as ‘residual’ NAPL. As the remaining ‘mobile’ LNAPL 

continues to migrate through the subsurface, the volume 
of the mobile product decreases and LNAPL becomes 
trapped as isolated droplets within the soil pore network. 
In other words, NAPL plumes are spatially ‘self-limiting’, 
unless continually supplied from an ongoing release. 
While migrating through the subsurface, LNAPL 
distribution is affected by the heterogeneous nature of the 
soil. Slight differences in soil texture may promote 
preferential pathways horizontally and vertically.  Residual 
LNAPL distribution and redistribution is also significantly 
influenced by seasonal fluctuations of groundwater table. 
Removal of residual NAPL is extremely difficult. It slowly 
dissolves into groundwater and creates a long-term 
source of groundwater pollution.   

Partitioning of NAPL into aqueous and vapour phases 
and dissolution of non-uniformly distributed NAPL into 
groundwater have been extensively studied in the last two 
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decades (Imhoff et al. 1993, Brusseau et al. 2002). 
Nevertheless, there is no systematic approach to 
evaluate the geometry and structure of residual NAPL 
source and its uncertainty in a field-scale.  

In this paper, a two-step geostatistical approach is 
proposed to delineate the space of uncertainty for 
distribution of residual NAPL in a contaminated aquifer. 
First, a distance-function based approach is used to 
characterize the uncertainty in areal limits of the 
contaminant source zone. In the second step, multiple 
secondary data sources are combined and used in 
generating 3D realizations of presence/absence of 
residual NAPL. These realizations are eventually clipped 
by 2D realizations of areal extent obtained in the previous 
step. The value of different secondary data sources in 
improving the prediction ability is then investigated by 
cross-validation. Results of a set of Monte Carlo 
Simulations are then reported to show the importance of 
modeling uncertainty in source geometry in a fate and 
transport modeling context. The proposed methodology is 
presented in the form of a case study for a hydrocarbon 
impacted site located in west-central Alberta, Canada. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A schematic representation of LNAPL release in 
the subsurface.  
 
2 DISTANCE FUNCTION APPROACH 
 
Geostatistical estimation and simulation techniques 
(Deutsch and Journel 1998) are applied with Stationary 
Random Functions (SRF) within geometric limits imposed 
by areal (volumetric) limits. There is often significant 
global uncertainty in areal boundaries depending on the 
amount of data available. Point measurements of soil 
NAPL concentrations should not be directly used in 
geostatistical modeling of contaminant source zone 
unless the areal boundary of the stationary domain is 
reasonably defined and its uncertainty is characterized.   

The definition of distance function (DF) is closely 
related to the notion of distance to an interface separating 
two distinct domains within which two different SRFs will 
subsequently be developed for geostatistical modeling. 
Distance is measured to the nearest interface. An initial 
binary coding of the available sample data in terms of 
being ‘inside’ and ‘outside’ the source zone is a 
prerequisite for constructing a DF. The distance function 
must be calculated for all data locations and control 
points for subsequent interpolation. Figure 2 shows how 

samples are coded for monitoring wells deemed inside 
and outside the source zone and how the DF is 
calculated as the distance to the nearest unlike data 
location. An initial guess for the boundary may be 
obtained by tracing the line corresponding to DF equal to 
0.0. Besides the known well locations, an arbitrary 
number of control points can be added at the locations 
which are known a-priori to be inside or outside of the 
contaminated area (Figure 2).   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Configuration of contaminated (solid circles) 
and uncontaminated wells and calculation of DF values at 
all data locations and control points.      

   
An interpolation technique is employed to define the 

boundary interface in presence of sparse sample data. As 
negative weights should be avoided in interpolation, an 
inverse distance approach is preferred to kriging. An 
inverse distance estimate at an unsampled location u0 is 
a weighted linear combination of N surrounding sample 
data )Z(u i  in a search neighbourhood and is given by 
the following expression: 
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where, ( )iud  is the Euclidian distance between the 

estimation location u0 and )Z(u i  sample data, ω is 

distance exponent and c is a constant. The exponent ω 
controls the smoothness of the inverse distance 
estimates. Often, it takes a value between 0.5 and 2.0. 
Similar to nugget effect in the variogram model used for 
kriging, the constant c controls the short-scale variability 
in the estimates, and should be set to very small value. 
The search neighbourhood for inverse distance 
interpolation is often calibrated by cross-validation to limit 
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the number of data used in interpolation (Rojas-
Avellaneda and Silvan-Cardenas 2006). In the context of 
the DF algorithm, however, it is recommended to use 
large searches to ensure smooth estimates. DF 
conditioning data must be honoured exactly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Conditioning the DF data with scaling and 
separation factors.  
 

The DF is not a stationary random function and 
traditional probabilistic approaches cannot be used for 
uncertainty assessment. Kriging and inverse distance 
weights are typically dependent on the geometrical 
arrangement of the data locations, not the actual data 
values. In this work, a data value dependent weighting 
scheme (Figure 3) is presented by using a general 
parameterization scheme for data conditioning:     
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in which, α and β are scaling and separation factors, 
respectively. All other terms have been defined 
previously. The scaling factor α can take any value 
greater than zero. Increasing or decreasing α results in 
dilated large or eroded small boundary domains. The 
separation factor β is the other data conditioning factor 
that is closely related to the notion of uncertainty band 
and can take any value greater than or equal to zero.  

For a given well arrangement, an ‘uncertainty band’ is 
defined as a probabilistic areal interval that includes the 
actual boundary which is unknown. The factors α and β 
control the band-width and the location of the centerline 
of the uncertainty band. They should be calibrated to 
appropriately represent the space of uncertainty for areal 
limits. The calibration is implemented using a large 
number of synthetic plumes. Every time, a number of 
wells are randomly added to the existing well 
configuration and the new setting is used to create a 
synthetic plume. First, all observation wells and control 
points are coded as either 1 (contaminated) or 0 
(uncontaminated), and a directional search angle, θ, is 
specified. Next, for every contaminated well, a directional 
search is implemented and the directions that include a 

closest ‘unlike’ data location are identified as ‘valid’ 
search directions and those that include a closest ‘like’ 
data location are identified as null search directions 
(Figure 4). Then, for each contaminated well a search 
direction is randomly selected. If the selected search 
direction is valid, a new imaginary well is added to the 
setting. In essence, this imaginary well is randomly 
located on a line that connects the original contaminated 
well to the closest uncontaminated well location, and it is 
randomly coded as either contaminated or 
uncontaminated. The DFs are then recalculated for the 
new setting and mapped by inverse distance 
interpolation. The line of DF = 0.0 is then traced to create 
a new realization. The size of the search angle, its 
starting orientation and search neighbourhood for 
interpolation are important parameters in this process. A 
large number of synthetic realizations created using this 
approach fully represents the space of uncertainty 
associated with areal limits. 

 
 
 
 
 
 
 
 
      

     
 
 
 
 
 
 
 
 
Figure 4. Implementation details of directional search in 
generating synthetic realizations.  
 
As explained before, α and β control the centerline and 
the width of uncertainty band and should be calibrated 
simultaneously against the generated realizations. The 
centerline is calibrated to ensure unbiasedness and the 
width is calibrated to ensure fair probability distribution. 
This is a problem of optimization with the following 
objective function to be minimized:  
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where, jP represents the true probabilities corresponding 

to quantiles M1 q,...,q used in optimization. The calculated 

probabilities ( )R�,�,P*
j  are defined as the proportion of 

synthetic plumes (R) that their areas completely fall 
inside the M1 q,...,q quantile maps. These quantile maps 
are derived from the conditional cumulative distribution 
function (CCDF) of an uncertainty band calculated for 
some α and β values. In this work, downhill simplex 
optimization algorithm has been adapted. The calibrated 

Null search 
direction 

Valid search 
direction 

θθθθ    
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SCI 

values of α = 1.36 and β = 12.92 minimize the objective 
function presented in equation 4. The calibrated 
uncertainty band and corresponding quantile maps are 
presented in Figure 5.   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The calibrated uncertainty band (top-left) and 
p90 (top-right), p50 (bottom-left), and p10 (bottom-right) 
quantile maps.  
 
3 SECONDARY DATA INTEGRATION 
 
Data from multiple data sources such as soil texture and 
groundwater surface elevation can be combined with the 
assumption of conditional independence. This gives rise 
to a 3D map for conditional distribution of presence-
absence of contamination conditioned to secondary data 
sources. In a sequential indicator simulation (SIS) context 
(Goovaerts 1997), this conditional distribution is 
combined with prior probability map to build a 3D updated 
posterior probability map. In this work, indicator hard data 
as well as soil texture data come from Ultra-Violet 
Induced Fluorescence Cone Penetration Testing (CPT-
UVIF). Groundwater elevation data are obtained from 23 
piezometers installed at the contaminated site.  
 
3.1 Primary hard data 
 
CPT-UVIF has been frequently used in environmental site 
characterization. Commercially available CPT-UVIF is a 
standard CPT cone coupled with the UVIF module to 
detect zone impacted by aromatic hydrocarbons. The 
cone records the mechanical responses of the soil at the 
same scale as recorded UVIF signals. The UVIF 
responses can be only reliably used as a screening tool 
to identify contamination by LNAPLs. In other words, the 
UVIF response is an indictor of presence/absence of 
contamination and can easily be incorporated into 
geostatistical modeling. In this work a categorical variable 
(T-UVIF) is introduced to represent the presence or 
absence of contamination based on the UVIF responses:    
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The global proportions for presence or absence of 
contamination are 0.267 and 0.733, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The CDF of the SCI data with 10 equal-sized 
classes defined by the  deciles  
 
3.2 Secondary soft data: soil texture 
 
One of the most important aquifer properties affecting 
residual NAPL distribution is soil heterogeneities. Short-
range variability in soil properties results in preferential 
flow. In a heterogeneous setting, the distribution of NAPL 
is generally correlated to the distribution of higher porosity 
and more permeable units. In this study, cone penetration 
testing (CPT) data have been used to model the 
geological structure at the site. The CPT instrument 
continuously records the mechanical response of the soil 
at a high resolution. Following the methodology 
introduced by Zhang and Tumay (2003), soil classification 
index (SCI) can be calculated at every data location. 
Figure 6 shows the cumulative distribution function (CDF) 
of SCI data. The presence/absence of contamination 
(from UVIF output) is calibrated against the SCI data and 
a calibration table is established (Table 1).   
 
Table 1. Calibration of SCI based on the observed T-UVIF 
 ( )SCIy1kp =  ( )SCIy0kp =  

[-2.14,-1.01] 0.093 0.907 
[-1.01,-0.8) 0.1515 0.8485 
[-0.8,-0.56) 0.2 0.8 

[-0.56,-0.39) 0.2424 0.7576 
[-0.39,-0.29) 0.2353 0.7647 
[-0.29,-0.16) 0.3243 0.6757 
[-0.16,0.04) 0.2632 0.7368 
[0.04,0.31) 0.3429 0.6571 
[0.31,1.11) 0.3902 0.6098 

S
C

I –
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la
ss

 
(y

S
C

I) 

[1.11,1.77) 0.4211 0.5789 
 
A positive correlation is observed in table 1 between the 
two attributes. To generate a 3D map of conditional 
probabilities, ( )SCIykp , 100 realizations of the SCI field 

are generated by sequential Gaussian simulation 
(Deutsch and Journel 1997) on a 120 × 160 × 56 grid. 

CDF 
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The equal-sized cell dimensions are 0.5m × 0.5m × 
0.25m. Appropriate conditional probabilities (from Table 
1) are assigned to each cell in every realization and then 
averaged over all realizations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Global proportions of contamination for different 
classes of normalized elevation 
 
3.3 Secondary soft data: location relative to GW table 
 
The vertical movement of groundwater table affects the 
volume of mobile and residual LNAPL. Given some 
mobile LNAPL sitting on the groundwater table, a rise in 
groundwater table elevation causes the hydrocarbon to 
migrate upward as groundwater displaces it from the pore 
space. As water fills the pore network, LNAPL becomes 
trapped in the form of small droplets. These isolated 
droplets remain suspended in the network until the water 
table elevation drops. Lowering the water table enables 
the LNAPL drain from the pore network. During drainage, 
droplets of LNAPL remain within the pore interfaces 
leaving residual LNAPL within the unsaturated zone. The 
resultant vertical movement of the water table produces a 
residual ‘smear zone’ within the saturated and 
unsaturated zones.  
 
Table 2. Calibration of normalZ based on observed T-UVIF 

 ( )GWy1kp =  ( )GWy0kp =  

[-4.3m,-0.57m] 0.212 0.788 
[-0.57m , 0.38m) 0.294 0.706 
[0.38m ,0.987m ) 0.326 0.674 
[0.987m ,1.63m) 0.461 0.539 
[1.63m ,2.19m) 0.384 0.616 
[2.19m ,2.77m) 0.326 0.674 
[2.77m ,3.47m) 0.333 0.667 
[3.47m ,4.14m) 0.083 0.917 
[4.14m ,4.93m) 0.151 0.849 

Z n
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[4.93m ,6.68m) 0.029 0.971 
 
 
To account for the effects of groundwater table 
fluctuations, a parameter ‘normalized elevation’ is defined 
as the elevation of T-UVIF data point relative to 
groundwater table elevation at the same location:   
 

GWUVIFnormal ZZZ −=                                                     [6] 

 

The presence/absence of contamination is calibrated 
against normalZ data and conditional probabilities are 

calculated. Figure 7 shows the global probabilities of 
contamination for different classes of normalized 
elevation.  Calibration of absence/presence of 
contamination has been summarized in Table 2.  
 
3.4 Integration of secondary data sources: permanence 

of ratios 
 
A robust approach is to assume the data is conditionally 
independent given the primary data event. The 
expression for conditional probability of the primary data 
event k given the secondary data events

SCIy and
GWy  is: 

 

( ) ( ) ( ) ( )
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where, the joint probability ( )GWSCI y,yp is required. 

According to Journel (2002), Bayesian analysis goes 
around this problem by considering the ratios of the 
updated probabilities of the type. This results in the 
permanence of ratios (PR) assumption. Thus, the 
expression for the conditional probability based on the 
assumption of permanence of ratios (conditional 
independence) is expressed by:  
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in which, the event k

~
 represents the complement of the 

primary data event k . The secondary sources of 
information (ySCI, yGW) are combined using Equation 8 to 
create a 3D map for conditional probability distribution of 
presence/absence of contamination. This conditional 
probability distribution is then used in the next sub-step to 
find the updated posterior distribution of residual NAPL.   
 
3.5 Integration of the prior probability distribution with 

the conditional probabilities 
 
The conditional probabilities obtained in previous steps 
should be integrated to the prior probability map, which is 
conditioned to hard data only and built using the SIS. 
There are a number of techniques used to constrain the 
SIS to soft secondary data. In this work, two different 
techniques are used and their results are compared. 
First, we implement sequential indictor simulation with 
locally varying means (SIS-LVM). Bayesian Updating 
(BU) is performed next. Performance of the two 
approaches is then compared by cross-validation.  

The conditional probabilities can be incorporated as 
the locally varying means for simulation. Therefore, the 
expression for probability of presence or absence of 
contamination can be written by (Deutsch 2006):  
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where, ( )ku;i*

LVM  are the estimated local probabilities of 

presence/absence of contamination to be used for 
simulation, n is the number of data in the search 
neighbourhood, λα are kriging weights, ( )k;ui �

are the 

local indicator data, and ( )GWSCI y,ykp  is the conditional 

probability obtained previously.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Planar view of two corresponding 3D 
realizations obtained using SIS-LVM (left) and BU (right)  

 
Bayesian updating is one of the simplest forms of 

indicator co-simulation. At each location along the 
random path, indicator kriging is used to estimate the 
probability of presence/absence of contamination 
conditioned to local hard data alone ( ( )ku;i*

SK
). Then, 

Bayesian updating updates the probabilities as follows:  

( ) ( ) ( )
C

p

y,ykp
ku;iku;i

k

GWSCI*
SK

*
BU ⋅⋅=   [11] 

where, ( )ku;i*
BU  are the estimated local probabilities of 

presence/absence of contamination, 
kp is the global 

probability of absence/presence of contamination, and C 
is the normalizing constant to ensure that the sum of final 
probabilities is 1.0.  
   
3.6 Clipping the geostatistical realizations 
 
Following a ‘cookie-cutter’ approach (Deutsch 2002), the 
3D geostatistical realizations obtained by SIS are clipped 
by 2D realizations of areal extent obtained from the DF 
approach. This clipping is implemented in a Bayesian 
framework and ensures the stationarity of the indicator 
hard data. Two of these 3D clipped realizations obtained 
from SIS-LVM and BU analyses are shown in Figure 8.  
 
4 CROSS-VALIDATION 
   
Cross-validation techniques are adapted to categorical 
variables to check the probabilistic prediction of the 
geostatistical approaches used. Cross-validation with and 
without conditional probabilities illustrate the value of 
inclusion of secondary data sources. There are two ways 
of implementing cross-validation in presence of limited 
well data: (1) removing each sample and all other 

samples from the same well, or (2) removing each 
sample only, while keeping all other samples from the 
same well. The first option is pessimistic, especially when 
there only a few wells. The second option is too 
optimistic. In this work, the first approach is implemented 
to provide a ‘lower bound’ on the likely goodness of the 
prediction, and to evaluate the added value of 
incorporating the available secondary information.  
 
Table 3. Measures of closeness and percentage 
improvement, considering secondary data only 
 

K = 0 K = 1 
0p  = 0.733 1p  = 0.267 

 

closeness % Imp. closeness % Imp. 

SCI 0.737 0.52 0.283 5.92 
GWE 0.757 3.52 0.326 21.94 

PR 0.759 3.54 0.344 28.88 

 
 
According to Deutsch (1999), a quantitative measure 

of ‘closeness’ to true categories (presence or absence of 
contamination) can be summarized by:  
 

( ){ } 0,1 k       ,      k  truek;upEC �k ===                     [12] 

which may be interpreted as the average predicted 
probability of the true categories. With no primary or 
secondary data, the closeness measure will equal the 
global proportions. The measure of ‘percent improvement’ 
over the no-data case is expressed by:    
 

0,1 k        ,      
p

pC
C

k

kkrel
k =−=       [13] 

The third measure of goodness that is presented in this 
work is a measure of ‘accuracy’. As we deal with a binary 
case, at every cross-validation location four cases can be 
considered: (1) the location is truly contaminated and has 
been correctly identified, (2) the location is contaminated, 
but predicted to be clean, (3) the location is clean and 
predicted to be clean, and (4) the location is clean, but 
predicted to be contaminated. Cases (1) and (3) are 
plausible and cases (2) and (4) are not. A measure of 
‘accuracy’ can be defined as:    
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A
R
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−
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in which, N is the number of wells, 11
ip , 10

ip , 00
ip and 01

ip are 
proportions corresponding to the cases 1 to 4, explained 
earlier, and 0p , 1p are the global proportions of the two 

categories. M is the global measure of plausibility. Its 
upper bound is 1.0, which is obtained in ideal case of 
correct prediction at all cross-validation locations. Its 
lower bound is MR, which corresponds to no-data case.  

Table 3 shows some improvements in the predictions, 
using secondary data only. It can be observed that 
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incorporating secondary data (in particular groundwater 
elevation data) considerably improves the prediction of 
contaminated locations, even before incorporating the 
hard data. Tables 4, 5 and 6 show the cross-validation 
results, using the indicator hard data (T-UVIF) as well as 
secondary soft information such as SCI data, 
groundwater elevation data (GWE) and their combination 
with the permanence of ratios (PR) approach. Results 
from sequential indicator simulation with no secondary 
data show slight improvement over the global proportions. 
In all cases, inclusion of secondary data improves the 
predictive ability. As it was expected, inclusion of 
secondary data sources improved the prediction ability in 
almost all cases. Bayesian updating (BU) approach does 
significantly better than SIS with no secondary data and 
SIS-LVM in prediction of contaminated locations. 
However, it seems it slightly over-estimates the presence 
of contamination and the results tend to be conservative. 
SIS-LVM also improves the prediction ability for both 
contaminated and uncontaminated locations.  
 
Table 4. Measure of closeness, accounting for indicator 
hard data and soft secondary information 

K = 0 K = 1 Measure of 
closeness SIS LVM BU SIS LVM BU 

no secondary 
data 0.7532 - - 0.2801 - - 

SCI - 0.7553 0.657 - 0.2985 0.3989 

GWE - 0.7345 0.6793 - 0.3388 0.6633 

PR - 0.7638 0.6933 - 0.3898 0.6878 

 
Table 5. Improvement over global proportions, accounting 
for hard data and soft secondary information 

K = 0 K = 1 Percentage 
improvement SIS LVM BU SIS LVM BU 

no secondary 
data 2.76 - - 4.86 - - 

SCI - 3.04 -10.35 - 11.81 49.4 

GWE - 0.21 -7.32 - 26.9 148.45 

PR - 4.2 -5.42 - 45.99 157.6 

 
Table 6. Relative measure of accuracy, accounting for 
hard data and secondary data from different sources 

Accuracy (%) SIS LVM BU 

no secondary data 4.62 - - 

SCI - 6.28 -5.28 

GWE - 5.14 16.94 

PR - 14.01 21.23 

 

5 MONTE CARLO SIMULATIONS (MCS) 
 
To study the effect of uncertain source geometry on 

downstream concentrations, Monte Carlo Simulations are 
performed. A moderately heterogeneous synthetic aquifer 
is considered (figure 9) and fate and transport of 
dissolved BTEX under uncertain source condition 
(uncertain geometry and mass transfer rate), uncertain 
transmissivity field, and uncertain biodegradation rate 
constant is simulated. The modeling domain is 300m × 
160m and modeling cell sizes are 1m × 1m, and a 
hydraulic gradient of 0.01 is imposed to the synthetic 
aquifer. The partial differential equation describing the 
fate and transport of BTEX can be expressed as 
(Chapelle et al. 2003 with some modifications):  
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�

∂
∂

∂
∂=

∂
∂     [15] 

where, C is dissolved concentration of BTEX, θθθθ is 
effective porosity, xi is the distance along the respective 
Cartesian coordinate, Dij is the hydrodynamic dispersion 
coefficient tensor, vi is pore water velocity, RNAPL is NAPL 
dissolution term and nR is the chemical reaction term. 
According to Imhoff et al. (1993), the rate of mass transfer 
between NAPL and water can be expressed as:    

 
( )]CCkmax[0,R s

eq
s

NAPLNAPL −=                                    [16] 

 
in which, kNAPL is mass transfer rate coefficient, eq

sC is 

NAPL-water equilibrium concentration and sC is the actual 

aqueous concentration. In this work, the chemical 
reaction term is assumed to be a first-order irreversible 
rate reaction given by ( ��C- ). This is a reasonable 
assumption for dissolved BTEX undergoing 
biodegradation. As part of this work a transport simulator 
is developed to solve the Equation 15. The method of 
characteristics has been applied to develop the simulator.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Heterogeneous aquifer and location of 
suspected source zone (left), and simulated BTEX plume 
in steady-state condition (right) 
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The aquifer material is considered to be 
heterogeneous with a log-normal transmissivity 
distribution. The mean of the log-normal transmissivity 
distribution (in natural logarithmic units) is -11.12 (and it is 
assumed known in Monet Carlo Simulations) and the 
standard deviation equals to 1.0. The correlation length of 
the synthetic transmissivity field is Ly = 25m. As Ly is 
considerably larger than the modeling cell sizes, 
longitudinal and transverse dispersivities are set to small 
constant values of 1.0 m and 0.2 m, respectively. In this 
work, 100 realizations of transmissivity filed conditioned 
to transmissivity measurements and head observations 
are generated by sequential Gaussian simulations 
(Deutsch and Journel 1997). The geometry of the source 
zone is considered to be uncertain and 100 equi-
probabale realizations are generated using the DF 
approach presented above.  kNAPL and first order rate 
constant λλλλ are also considered to be uncertain. kNAPL has 
a uniform statistical distribution with a minimum of 0.1 
and maximum of 0.6, and λλλλ is log-normally distributed 
with a mean of 0.0031 day-1 and standard deviation 
(natural-log) of 0.16.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 10. Contribution of uncertain parameters in 
propagation of uncertainty in average BTEX concentration 
across different transects downstream of the source area  

 
Figure 10 shows the contribution of each of the 

uncertain input parameters in propagation of uncertainty 
in downstream concentrations across different transects. 
It is observed that for a moderately heterogeneous 
aquifer the contribution of uncertain biodegradation rate 
and transmissivity distribution are more significant. 
Nevertheless, uncertain source zone geometry is also 
important and accounts for 15 to 20 percent of overall 
variability at locations close to the source area.     

 
6 CONCLUSIONS 
 

A two-step geostatistical approach was presented to 
model three-dimensional distribution of residual NAPL, 
while accounting for secondary sources of information 

such as soil texture and groundwater elevation. The 
performance of the proposed methodology was evaluated 
by cross-validation and the value of secondary data 
sources and their combination in improving the predictive 
ability was assessed. Assumption of conditional 
independence (permanence of ratios) was made to 
integrate the secondary data. Sequential indicator 
simulation with locally varying mean as well as Bayesian 
updating approaches were used to combine the prior 
probability map with conditional probabilities obtained 
from secondary data. Results from a set of MCS shows 
that the uncertainty in source geometry accounts for 15 to 
20 percent of overall uncertainty in downstream 
concentrations at locations closer to source area.   
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