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ABSTRACT 
The contribution deals with reduction of dimension of transport-reaction problem using Principal Component Analysis – 
a method that is widely used in signal processing and other technological branches but not standard in the context of 
transport-reaction problem. The contribution does not bring a complete methodology of reduction of dimension of a 
general problem. It shows the main ideas applied on one specific problem and shows main questions that should be 
solved specially for each specific problem. 
 
RÉSUMÉ 
La contribution s’occupe de la réduction de la dimension du problème transport réactif utilisant Analyse en 
composantes principales – une méthode utilisée souvant en traitement du signal et autres disciplines techniques, mais 
ne pas standarde en contexte de problèmes transports réactives. La contribution n’apporte pas de méthodologie 
complete de la réduction de la dimension du problème général. Elle démontre les données appliquées à une problème 
concrete et formules les questions principales qui doivent être résourdrées pour tout problème en particulier. 
 
 
 
1 INTRODUCTION 
 
The basic problem of transport problems significantly 
influenced by chemical reactions is a big dimension 
(number of solutes) of the problem. The acceptability or 
unacceptability of the system dimension is given by the 
specific solved problem. Basic approach to dimension 
reduction used by chemists is classification of solutes to 
primary ones and marginal ones and considering only 
main chemical reactions among primary solutes. The 
primary solutes significantly influence the problem 
solution and marginal ones somehow supplement the 
system or can be completely neglected. Application of 
such an approach can often reduce the solved problem 
dimension so that the primary solute concentration and 
main reactions are simulated and marginal solute 
concentration can be possibly consequently derived from 
simulation results. 

Such an approach is efficient in case of observation of 
primary solute concentration development or condition 
changes influenced by it.  If we are interested in 
phenomena significantly influenced by any marginal 
specie, we can extend the model by this specie (re-
classify it as a primary one) and enlarge the problem 
dimension. But in case of system with many 
approximately equally important species application of 
this approach can efficiently reduce the problem 
dimension only with parallel reduction of simulation result 
quality. 

Such a system takes place in the problem of long-time 
prediction of contamination in the site Stráž pod Ralskem 
after proposed in-situ neutralization. Formerly, at that 
place there uranium was being leached using injected 
sulphuric acid. Now, the site is contaminated in several 
hundreds meter depth by sulphuric acid and secondary 
leached contaminants, especially heavy metals and other 
toxic species. The water there is very acidic – in some 
parts of the site pH is less than 2. S. e. DIAMO now 
remediates the site. One of preliminarily proposed ways 

of possible remediation is neutralization in-situ injecting 
neutralization agent into the contaminated rock to stop 
further leaching of secondary contaminants. For 
possibility of meaningful planning of in-situ neutralization, 
a good model of transport and chemical interactions 
should be built. 

In the underground, there are 22 analysed solution 
components. Some of them directly control the chemical 
processes – that is why they should be considered. The 
marginal solutes are more or less dangerous 
contaminants and so they should be observed and their 
spread and balance should be predicted as precisely as 
possible. The current computational capacity and 
algorithmic demandingness of the transport problem for 
such a long-time large-area simulation allows us to 
simulate transport of at most five solution components. 

The number of simulated components should be 
maintained but the dimension of the problem should be 
significantly reduced. It can be done using a procedure 
coming out from linear algebra. Let us consider the set of 
all executed chemical analyses of solutions as set M of 
vectors in 22-dimensional linear vector space V whose 
coordinate axes correspond to concentrations of 
individual solution components. Let us look for such a n-
dimensional linear vector subspace Vn of space V such 
that it lies “the most close” to the set M, so that it 
minimize the error of projection En

2 defined as the sum of 
quadrates of distances of all vectors from M from their 
projections to Vn: 

 
 

En
2 = �x∈M || x-ΠVn x ||2.    [1] 
 
 
Here ΠVn denotes the operator of orthogonal 

projection to space Vn. If we find the subspace Vn0 of 
enough small dimension n0 and enough small projection 
error En0

2, we can reduce the dimension of the transport 
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problem from original 22 to n0 with omitting no solute for 
chemical simulations. 
 
 
2 PRINCIPAL COMPONENT ANALYSIS 
 
The problem that we solve is to find such a vector space 
Vn of given dimension n that is the most close to the data 
set M in sense of the last paragraph. The best possibility 
is to have an orthogonal basis of V such that the last 
basis vector would be of “the least importance” to the set 
M, i.e. the projections of members of M to the hyperplane 
orthogonal to it would be minimal from all possibilities. 
The second last basis vector would be selected from the 
rest of space V (the mentioned hyperplane) and it would 
have the same property considering the mentioned 
hyperplane. And so on. Such a basis would be orthogonal 
and the optimal space Vn would be generated by the first 
n vectors of this basis. 

Looking for such a basis can be realized using 
Principal Component Analysis (PCA). It is a method of 
dimension reduction with minimal information loss often 
used for solution of various technological problems (e.g. 
data decorrelation in signal processing). It is being 
applied also in economy or medicine. It is based on 
coordinate system transformation – finding a special 
orthonormal basis of the space where the data are 
placed. The basis vectors are arranged so that the first 
one determines the direction containing the most possible 
one-dimensional information in data and the direction of 
last basis vector includes the minimal possible 
information contain. 

The algorithm of Principal Component Analysis – see 
e.g. Smith (2002) – looks like this: 

1. Arrange the data into matrix X of type r×s. Each row 
contains one of r chemical analyses, the columns 
correspond to measured solutes. 

2. Compute average data vector (average row of X): 
xavg=(x1

avg,...,xs
avg)T, xi

avg=(1/r)�j∈{1,...,r}Xji (Xji means the 
element of matrix X in row j and column i); constitute the 
matrix X*=X-1�xavgT, where 1=(1,...,1)T. 

3. Compute the covariance matrix C=1/(r-1)X*T
�X*. 

4. Compute the eigenvalues and unite eigenvectors of 
C, sort the eigenvectors descendent to their 
corresponding eigenvalues and constitute the 
transformation matrix T (of type r×s) so that in the ith 
column of T there is the ith eigenvector of C. 

5. Constitute the transformation matrix Tn (of type r×n) 
containing n principal components (first eigenvectors of 
C) omitting last s-n columns of matrix T. 

6. Reduce the centred data (orthogonally project them 
to the subspace generated by the first n eigenvectors of 
C): Zn = X*�Tn. 

7. Reconstruct reduced centred data Y*=Z�Tn
T. 

8. Reconstruct reduced original data Y=Y*+1�xavgT. 
The matrix Y then includes the original data 

orthogonally projected to the affine space of dimension n 
that is the best one in the sense of minimization of the 
projection error En

2 (Eq. 1). Simplicity of projection step 6 
comes from that the covariance matrix C is always 
symmetric positive semidefinite and so its unite 
eigenvectors form an orthonormal system. Matrix T is 
then orthogonal and its inverse is equivalent to its 

transposition. Similarly pseudoinverse matrix to Tn is its 
transposition. 
 
Table 1. Table of projection errors En

2, En, and pEn for set 
of analyses M22. 
 
n 21 20 19 18 17 16 15 

En
2 0.135 25.8 60.0 155 291 559 1432 

En 0.367 5.08 7.75 12.5 17.1 23.6 37.8 

pEn (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
n 6 5 4 3 2 1 0 

En
2 3�106 6�106 1�107 3�107 4�108 9�108 6�1011 

En 2�103 2�103 3�103 6�103 2�104 3�104 8�105 

pEn (%) 0.21 0.31 0.44 0.70 2.60 3.81 100 

 
 
The steps 2 and 8 are executed only to obtain better 

approximation of uncentred data looking for best affine 
subspace and they are not principal for the method. If we 
substitute the steps 2 and 8 by steps 

2a. X* = X, 
8a. Y = Y*, 
the method will not find the best affine subspace but 

the best linear subspace – precisely the one that we 
called Vn. 
 
 
3 RESULTS OF APPLICATION OF PRINCIPAL 

COMPONENT ANALYSIS 
 

We have applied the algorithm to two sets of chemical 
analyses of solutions taken from various parts of Stráž 
pod Ralskem site in various times. The first set (denoted 
M22) includes 90 complete analyses of 22 components. 
The second set (denoted M6) included 638 analyses of six 
primary solutes. 
 
 
Table 2. Table of projection errors En

2, En, and pEn for set 
of analyses M6. 
 
n 5 4 3 2 1 0 

En
2 6.3�105 1.3�107 6.7�107 1.6�108 2�109 3�1012 

En 793 3591 8156 1.2�104 5�104 2�106 

pEn (%) 0.05 0.22 0.50 0.76 2.82 100 

 
 
We have applied Principal Component Analysis to 

each of the two sets and enumerated the projection error 
En

2 (Eq. 1) for each dimension n. Tables 1 and 2 include 
the results. Here En is the square root of En

2 and pEn is 
fraction of En and E0 which is a measure of the whole 
information in the set M22. 

We can see from the Tables 1 and 2 that using 
subspace of dimension 3 the projection error is lower than 
1%. It means that the analysed data are highly correlated. 
Opposite observation would discredit intended procedure 
of dimension reduction.  
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3.1 Acceptability of identified subspace 

 
After application of PCA we have observed other 
properties of chemical analysis projections to the selected 
subspace. No precise requirements for acceptability of 
results were defined before so we have defined two 
acceptability parameters: 1) Non-negativity of each 
component of projected vector. It comes from natural 
requirement of possibility of interpretation of the projected 
vectors and their projections as chemical analyses of 
solutions – concentrations of all solutes should be non-
negative. 2) Proximity of the projections to the projected 
vector not only in l2 norm but also in some specific scaled 
maximum norm || x-ΠVn x ||�2 = maxi �i |xi − (ΠVn x)i|, 
where components of positive vector � correspond to 
importance of each solution component. It comes from 
requirement of restriction of differences in each 
component separately. 

A natural choice of vector � is vector of multiplicative 
inverse of average concentrations of individual solutes 
which scales the importance of solutes considering their 
different typical concentrations. 
 
 
Table 3. Table of projection errors �n and p�n for set of 
analyses M22. 
 
n 21 20 19 18 17 16 15 

�n 9�103 1�104 2�104 2�104 2�104 2�104 3�104 

p�n (%) 1.22 1.49 2.37 2.39 2.47 2.72 3.31 

 
n 6 5 4 3 2 1 0 

�n 4�104 5�104 5�104 7�104 8�104 9�104 8�105 

p�n (%) 4.98 5.91 6.36 8.87 9.50 11.70 100 

 
 

The second part of our definition of acceptability leads 
us to a slide modification of PCA algorithm: replace of 
steps 2a and 8a of the algorithm by steps 

2b. X* = X · diag(1/x1
avg,..., 1/xs

avg). 
8b. Y = Y* · diag(x1

avg,..., xs
avg). 

We scale this way the data matrix X to the average 
concentrations of individual solutes. The algorithm then 
does not minimize the projection error En

2 (Eq. 1) but 
minimizes another projection error 

 
 

�n
2 = �x∈M || x-ΠVn x ||2,�

2    [2] 
 
 
in scaled norm || x ||2,�

2 = �i∈{1,...,n}(�i xi)2. It is not 
possible to simply modify the PCA algorithm for 
minimization of any maximum norm, so this is the best 
possible approximation we have thought. 

We have analysed the matrices M22 and M6 using the 
modified algorithm. Tables 3 and 4 include data 
comparable with that in Tables 1 and 2. For purpose of 
comparability the presented errors are not �n but  

 

 
�n

2 = || X - Y ||2     [3] 
 
 

where X is the data matrix (M22 or M6) and Y is its 
approximation obtained using PCA with the last 
modification. 

The errors measured this way have evidently risen. 
This should be so as the first modification of PCA lead 
always to optimal subspace in non-scaled norm l2. 
 
 
Table 4. Table of projection errors �n and p�n for set of 
analyses M6. 
 
n 5 4 3 2 1 0 

�n 4.7�104 5.8�104 8.3�104 8.5�104 9�104 2�106 

p�n (%) 2.87 3.51 5.07 5.16 5.58 100 

 
 
We have also mutually compared the results of both 

modified algorithms considering both parameters of 
accessibility, i.e. non-negativity of all components of 
reconstructed data and short distance between original 
and reconstructed data in scaled maximum norm || · ||�. 
The first parameter can be well evaluated from Table 5 
where numbers of original data in set M22 or M6 whose 
projections have at least one negative component. 
 
 
Table 5. Number of elements of M6 and M22 whose 
projections to the optimal subspace obtained using non-
scaled or scaled PCA contain at least one negative 
component. 
 
n 1 2 3 4 5 

M6 non-scaled 0 0 0 3 0 

M6 scaled 0 2 7 0 1 

 
n 1 2 3 4 5 6 7 8 9 10 11 12 to 21 

M22 ns. 0 6 2 7 6 7 3 7 10 5 5 0 

M22 sc. 0 6 7 4 5 7 6 1 0 0 0 0 

 
 
Reduction to dimension 1 cannot show any projection 

with negative components as positive data are projected 
to positive first principal component. If we want to project 
complete M22 to dimension higher than 1 we should select 
dimension higher than 11 or scale the data and use 
dimension higher than 9. Generally scaling does not 
make the first parameter of accessibility better as can be 
seen from the first part of Table 5 where numbers for M6 
are collected. 

The second accessibility parameter was investigated 
by statistical analysis of maximal norm || · ||� of difference 
between original data from M22 or M6 and their 
projections. We illustrate the results in Table 6 including 
selected statistical quantities for reduction of M6 to 
dimensions 3 and 4. 
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Table 6. Maximum, average, and median of maximum 
norm || x-ΠVn x ||� of all elements of M6 for n=3 and 4 
using both modifications of PCA. 
 
 dimension 3 dimension 4 

 non-scaled scaled non-scaled scaled 

maximum 132 149 158 47 

average 4.33 1.84 3.91 1.49 

median 0.18 0.08 0.17 0.04 

 
 

Table 6 shows that scaling does not reduce the 
maximal error (see dimension 3). But typically can be 
observed decrease of average and median after scaling. 
Much higher average than median indicates presence of 
several extremely great errors. Supposed property of 
scaling is equalizing the importance of individual 
components of data vectors. This fact can be 
documented by Tables 7 and 8 including incidence of 
maximal error in individual vector components of vectors 
from M6 for all reduction dimensions. Occurrence of 
maximal error in ith component of x∈M6 here means that 
|| x-ΠVn x ||� = �i |xi-(ΠVn x)i |. 
 
 
Table 7. Incidence of maximal error in individual 
components for M6 non-scaled. 
 
 component 

n 1 2 3 4 5 6 

1 0 3 165 39 347 84 
2 0 0 168 40 344 86 
3 0 0 267 22 141 208 
4 0 0 357 2 0 279 
5 0 0 0 0 0 638 

 
 

Table 7 shows that non-scaled algorithm optimizes the 
subspace so that projection generates higher proportional 
differences in components with lower average xi

avg (here 
they are i=6, 3, 5, and 4). Table 8 shows much more 
balanced error distribution due to scaling. 

The realized analyses do not answer generally the 
question which of the modified PCA algorithms is better 
for application. The presented analysis should be done 
for every specific problem again. Suitability of specific 
selected procedure then depends on specific definition of 
acceptability and other priorities given by specific 
problem. For our application, one parameter of 
acceptability was non-negativity of all components of 
projections of all data. It needs not to be so strict 
requirement in case of another application if a part of the 
data would be omitted or changed. An interesting 
direction of research can be construction and testing of 
different scaling vectors � for getting another distribution 
of importance of individual components considering e.g. 
various accuracy of determination of individual 
component concentrations or various importance in the 
model (in sense of classification to primary and marginal 
solutes). 

Table 8. Incidence of maximal error in individual 
components for M6 scaled. 
 
 component 

n 1 2 3 4 5 6 

1 0 14 142 59 315 108 
2 23 73 336 109 25 72 
3 76 171 2 243 17 129 
4 163 235 1 239 0 0 
5 592 0 1 45 0 0 

 
 

For presentation of further analysis of our data we 
choose 3D reduction of the set M6 obtained by PCA 
without scaling. 
 
 
4 LOOKING FOR SUITABLE BASIS VECTORS 

 
Finding of the suitable reduction of original space 
described in the last section is an important but not last 
step before simulation of solute transport and chemical 
reactions. Besides identification of the suitable subspace 
it is necessary to choose its suitable basis which will be 
used for decomposition of all vectors of initial conditions 
and then all vectors used in the model will be 
reconstructed using this base for interpretation of results. 

The selection of the basis is not important from the 
point of view of mathematics but it is crucial from the point 
of view of chemical interpretation – some properties of the 
basis can significantly help a good interpretation and 
result presentation. Also the basis vectors can be 
interpreted like all other vectors as chemical analyses of 
some real solutions. We will call them basis solutions. 
Considering it we naturally require that the basis vectors 
would have only non-negative components. 

The coordinates of an individual solution in the basis 
can be interpreted as mixing ratios of basis solutions. 
Then we should require that the coordinates of all 
analysed and all computed solutions in the chosen basis 
would be non-negative (and additionally their sum would 
not be higher than one). The second condition is written 
in brackets because that if we would have the basis with 
non-negative components so that all measurements had 
non-negative coordinates in it, fulfilling of that condition in 
brackets could be arranged by simple multiplication of all 
basis vectors by suitable positive numbers. 

The above mentioned two requirements are not 
necessary for the model itself but they are important for 
the interpretation of the modelling results. It is useful to 
look for such a basis and use it if it exists. Obviously the 
existence of such a basis is not guaranteed and if it 
exists, it is not unique. We did not try to make the 
definition of suitable basis unique as we do not any 
practical reason for it. We tried to find a method for 
verification of existence of at least one such a basis. The 
results of partial automation of process of looking for a 
suitable basis can be found in Zedek (2008). Here we 
present the idea of geometrical interpretation of the 
process of looking for a suitable basis. 
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An important fact is that the basis obtained by 
Principal Component Analysis cannot fulfill the first 
condition (non-negativity of all components of all basis 
vectors) for dimensions higher than one. The first basis 
vector has rather always all positive components (it is 
oriented in some sense to the centre of the set of 
measured data which is positive) but all other basis 
vectors are always normal to it, thus they will have at 
least one negative component. 

To be a basis of the optimal subspace Vn and fulfill 
above mentioned two parameters of suitability, the set of 
vectors should in geometrical terms fulfill the following 
conditions: 
• They should lie in the subspace Vn and number of 

them should be n (the dimension of Vn), 
• they should be oriented to the positive orthant of 

space V (their components should be non-negative), 
and 

• the convex cone confined by the vectors must 
include all projections of measured data to the 
subspace Vn (the coordinates of all projections of 
data in that basis should be non-negative). 

Here the term “convex cone” means an infinite pyramid of 
dimension n with its top in the origin of coordinate system 
and edges parallel with individual basis vectors. For n=2 it 
is a triangular sector in a plane defined by two basis 
vectors, for n=3 it is a trihedral pyramid defined by three 
basis vectors etc. 

The first two conditions can be fulfilled simply and a 
problem defined by them has certainly infinitely many 
solutions because the subspace Vn always includes at 
least one positive vector. The first vector of the new basis 
can be chosen as equal to the first vector obtained by 
PCA and each other ith vector can be given as a linear 
combination of the first and ith vectors from PCA 
containing non-zero multiple of the ith vector and having 
non-negative components. The last condition technically 
complicates the problem because the first vector from 
PCA is oriented into the centre of measured data and so 
it cannot be a member of any basis fulfilling the third 
condition. 

 The meaning of term “suitable basis” should be 
precisely defined separately for each problem and our 
definition is not general. That is why the algorithmization 
of construction of a suitable basis is in general problem 
with many parameters. Some algorithms for special 
purposes were proposed in Zedek (2008). Here we only 
present a possibility of geometrical analysis of the 
problem for help the expert precisely define his basis 
requirements or straight propose the basis for his 
problem. For making an idea about solubility of the 
problem, make the following steps: 
• Apply PCA to your set of measurements M in your 

space V – choose your optimal subspace Vn and get 
the set of projections of elements of M to Vn (denote 
it �). 

• Find the set of projections of standard basis vectors 
of V to Vn (denote it É). 

• Project the sets � and É in Vn to the unit ball with its 
centre in the coordinate origin (you get sets M and E 
on spherical manifold Vn of dimension n-1). 

• Find the convex hull of M in Vn (the set of its vortices 
denote M*) and convex hull of E in Vn (the set of its 
vortices denote E*). 

The last operation (looking for the convex hull) can be 
realised using e.g. Incremental Method described and 
demonstrated on the web page Lambert (1999). 

The choice of a suitable basis then can be realized on 
n-1-dimensional manifold Vn so that we choose a set B 
including n convexly independent vectors from Vn so that 
the whole convex hull of B in Vn lies in the convex hull of 
E* and it includes the whole convex hull of M*. Then we 
propose the new basis as a set of positive multiples of 
vectors of B in Vn so that the sum of all coordinates of 
each member of � in the new basis is lower than one. 

The set B needs not exist for any set M and any 
subspace Vn. If it exists, it needs not to be unique. 
 
 

 
Figure 1. Projection to the unit ball around coordinate 
origin in the space V3 obtained by PCA without scaling. 
Small points: the set M6, big stars: the set E�E*, empty 
circles: vertices of the convex hull of the set M6, filled 
circles: chosen basis of optimal 3D subspace B. 
 
 

Figure 1 shows the result of proposed procedure 
applied to the set M6 reduced to the optimal 3-
dimensional subspace obtained by PCA without scaling. 
The picture shows that in this case we are very free 
choosing the basis. The realised choice is made so that 
one of the basis vectors corresponds to one projection of 
measured data (the member of �6 corresponding to 
solution with the lowest content of solutes) and the other 
two basis vectors are chosen as close to other measured 
data as possible. 

So we have done an efficient decomposition of 
simulated solutions to a three-member basis. Each 
solution in analysed set can be interpreted as a mixture of 
the three basis solutions (mixing ratio of each of them is 
given by the corresponding coordinate in the new basis) 
and distilled water (its chemical analysis corresponds to 
zero vector and its mixing ratio is given as one minus sum 
of all coordinates in the new basis). 
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Figure 2. First coordinate of chemically analysed 
solutions in 4-componental basis pictured in a map. The 
first basis vector corresponds to composition of original 
Cenoman water. 
 
 

Figure 3. Second coordinate of chemically analysed 
solutions in 4-componental basis pictured in a map. The 
second basis vector corresponds to composition of 
technology solution formerly injected to north-western 
part of the site. 
 
 
5 MOTIVATION EXAMPLE FOR APPLICATION OF 

THE METHODOLOGY 
 

In this paragraph we interpret possible value of proposed 
methodology on the result of Ing. Vladimír Wasserbauer, 
CSc. from DIAMO, s. e. He decomposed data from 
chemical analyses of solutions taken from various parts 
of Stráž pod Ralskem site during one year to 4 basis 
solutions. They were not selected using the proposed 
methodology and it is not reproducible. The results 
obtained by our methodology are not presented here 
because we have not enough information about location 
of individual measurements and so cannot draw maps 
similar to the presented ones. Here presented maps were 
drawn in s. e. DIAMO by Ing. Ji�í Šrámek using software 
SURFER and they were provided to authors for purpose 
of such illustration of possible results of presented 
method. 

 
Figure 4. Third coordinate of chemically analysed 
solutions in 4-componental basis pictured in a map. The 
third basis vector corresponds to composition of 
technology solution formerly injected to south-eastern 
part of the site. 
 
 

 
Figure 5. Fourth coordinate of chemically analysed 
solutions in 4-componental basis pictured in a map. The 
fourth basis vector probably corresponds to composition 
of products of reaction between the formerly injected 
technology solutions. 
 
 

The chemical analyses were projected to a subspace 
defined by four basic vectors corresponding to 
composition of three real solutions present at the site and 
one more solution obtained by iterative optimization. The 
first basis vector corresponds to composition of original 
Cenoman water which was present in the underground 
before leaching started. Other two basic vectors 
correspond to composition of two different technology 
waters formerly injected into the underground for purpose 
of leaching uranium. Looking for the fourth basis vector 
was done so that differences of individual measurements 
from their orthogonal projection to the subspace defined 
by the four basic vectors were minimized. It does not 
correspond to any real solution. 
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Figure 6. Measured concentrations of SO4 pictured in a 
map 
 
 

 
Figure 7. Concentrations of SO4 reconstructed from data 
reduced to 4D subspace pictured in a map. 
 
 

Figures 2 to 5 show decomposition of chemical 
analyses into above described basis. Each analysed 
solution was taken from a particular place at the site and 
corresponds to its respective point in the map. The values 
were expanded to the plane using software SURFER. The 
values pictured in Figures 2 to 5 correspond to 
coordinates of projection of analysed solutions to the 
four-dimensional subspace in above mentioned basis. 
Figures 2 to 4 show dominant representation of original 
Cenoman water around the leaching fields and 
domination of the two technology waters in the parts of 
the site where they were injected. Figure 5 shows 
significant representation of the fourth basis solution at 
the interface between the regions dominated by 
technology waters and it can be interpreted so that the 
fourth basis solution corresponds to products of reactions 
accompanying mixing of the two technology waters. 
 
 

 
Figure 8. Proportional differences between measured 
concentration of SO4 and concentration of SO4 
reconstructed from data reduced to 4D subspace pictured 
in a map. 
 
 

Figure 6 pictures the map of measured SO4 
concentrations. Similar map at Figure 7 shows distribution 
of SO4 concentration obtained from data projected to 
four-dimension-subspace. Figure 8 shows the map of 
differences in concentration of SO4 between original and 
projected data. Although the introduced result does not 
correspond to decomposition to the optimal four-
dimension-subspace, the observed differences in SO4 
concentration do not exceed 20% and in most samples 
they are less than 5%. 
 
 
6 CONCLUSION 
 
We have proposed a new approach to reduction of 
dimension of a transport-reaction problem for reducing 
computing time needed for its simulation. The core of the 
proposed procedure is constituted by application of 
Principal Component Analysis. 

We have not formulated a complete methodology of 
reduction of dimension of a general problem but we have 
shown the main ideas applied on one specific problem 
and formulated the main questions that should be solved 
specially for each specific problem. 
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