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ABSTRACT 
The discrete element method is a powerful numerical tool in simulating the behaviour of granular materials. It bridges the 
gap between continuum mechanics and physical modeling investigations. In spite of the significant achievements to 
date, some major problems still need to be solved including the development of realistic microscopic models and the lack 
of efficient algorithms to generate the initial conditions similar to those used in physical models. This paper introduces an 
effective computational method to generate the initial packing of particles with a pre-defined grain size distribution in 3D 
space. The method was implemented into the open-source code (YADE).  Specimen properties obtained (i.e. porosity, 
coordinate number, radial distribution) were compared to other existing results in the literature. 
 
RÉSUMÉ 
La méthode des éléments discrets est un puissant outil numérique pour la simulation du comportement des matériaux 
granulaires. Cet outil fait le lien entre la mécanique des milieux continus et la modélisation expérimentale.  Malgré de 
nombreux accomplissements effectués à ce jour, certains problèmes majeurs demeurent non résolus notamment le 
développement de modèles microscopiques réalistes et le manque d’algorithmes performants permettant la génération 
des conditions initiales similaire à celles utilisées dans la modélisation expérimentale. Cet article pressente une méthode 
de calcul permettant de générer  l’assemblage initial des particules avec une distribution prédéfinie de la taille des grains 
dans un espace 3D. Cette méthode a été implémentée dans un code source libre (YADE). Les propriétés obtenues (i.e. 
porosité, nombre de coordonnées, distribution radiale) ont été comparées à d’autres résultats disponibles dans la 
littérature. Une étude paramétrique a également été menée pour examiner l’effet du nombre total des particules sur 
l’assemblage.   
 
 
1 INTRODUCTION 
 
Since the first discrete element method code was first 
introduced (Cundall and Strack, 1979), it has been used 
extensively to investigate various engineering problems 
(Jensen et al., 1999; Zeghal and Edil, 2002).  One of the 
most important steps in a simulation using DEM is to 
generate a specimen (particle packing), consisting of 
entities, in a form that represents realistic conditions. 

Particle packing has been long investigated by 
researchers and can be classified into two main types 
based on the spatial pattern of particle location: ordered 
packing and random packing. Ordered packing is 
performed by placing particles systematically in to periodic 
positions (O’Sullivan et al., 2004). On the other hand 
random packing is done using a sequence of packing 
events that result in particles not correlated with one 
another with respect to their locations in the matrix (e.g. 
Feng et al,. 2003; Bagi, 2005).  

In this study, the properties of the specimens 
generated using the dynamic packing method are 
intensively investigated. A new method to generate 
particles with a pre-defined grain size distribution is 
developed and implemented into a computer code. A 
parametric study is then conducted to examine the effects 
of dynamic variables and the total number of particles on 
the packing properties. 
  
 

2 LITERATURE REVIEW 
 
Several methods are currently available to generate 
particle packing. These methods can be divided into 3 
main categories: geometric methods, sedimentation 
method and dynamic method. A brief review of these 
methods is given in the following section. 
 
2.1 Geometric methods 

  
In these methods, a specimen is generated using purely 
geometric calculation without simulating the dynamics of 
particle motion. Stoyan (1998) gave a summary of 
algorithms used to generate spheres starting from a set of 
randomly located points. The set of points is generated 
randomly employing the Poisson process (see 
Molchanov, 1993). Then a set of grains are shifted such 
that they coincide with the points as in Boolean model 
(Molchanov and Stoyan, 1994). As discussed in their 
paper, the points are allowed to grow until the 
corresponding sphere has first contact with one of the 
faces of the Voronoi cell corresponding to that point 
(Stienen model) or the growth process is stopped when it 
comes in contact with another sphere (lily-pond model). 
The sphere radii are dependent on the position of the 
points as located by the random generator. The particle 
size distribution cannot be directly prescribed in the above 
two methods.  

An attempt to solve this shortcoming is introduced by 
Evans (1993) where a system called the Simple 
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Sequential Inhibition model (SSI model) is developed. In 
the SSI model, spheres are placed sequentially and 
randomly in a given region. If a new sphere is placed so 
that it intersects a sphere already in place, then the new 
sphere is rejected. The placing process of spheres is 
usually stopped when it is impossible to place any new 
sphere. The method can be used with a user-defined 
grain size distribution. Improved versions of SSI model 
were proposed by Chib and Greenberg (1995); To and 
Zbigniew (2004). In these methods, an initial random 
arrangement of spheres is generated then the next stage 
is to insert, delete or relocate existing spheres with user 
defined probabilities for each action to succeed. 

Another geometric method was suggested by Cui and 
O’Sullivan (2003) for 2D and 3D assemblies of 
circular/spherical grains based on the triangulation 
approach. The concept of this approach is to triangulate a 
system of points within the domain of interest, creating a 
mesh of triangles/tetrahedrons. Then the particles are 
inserted as the incircles/inspheres of these 
triangles/tetrahedrons. 

The above methods; however, generate a relatively 
loose packing specimen. An improved method to generate 
a dense random packing in 2D was proposed by Feng et 
al. (2003). In this method (advancing front approach), 
three initial disks which form an initial front are generated 
and placed at the center of the domain. With this initial 
front established, a new disk is generated to fill the space 
by incrementally advancing the front until it completely 
covers the original domain.  While the method produces a 
relatively dense packing, large gaps may remain at the 
edge of the domain in the case of general grain size 
distribution. Consequently, the inward packing method 
(Bagi, 2005) was developed to generate a packing where 
the boundary grains exactly touch the walls. The initial 
front is created by placing the disk with maximum radius 
into the upper left corner, touching two walls then the next 
disk is attached to the left wall and to the previous 
particle. These methods; however, are only applicable to 
2D problems, the extension to 3D encountered a lot of 
difficulties. 
 
2.2 Sedimentation methods 
 
In order to generate more dense arrangement than most 
of the geometric methods, several authors (Han et al., 
2005; Fu and Dekelbab, 2003; Tory et al., 1968; Visscher 
and Bosterli, 1972) have been developed a so-called 
sedimentation technique. The required domain is filled up 
by placing discs/spheres following the user-defined size 
distribution into the domain and translates it downwards, 
until it collides with an already existing disc/sphere in the 
system. Then the new disc/sphere is further moved just as 
if rolling down along the contacting sphere until it reaches 
a stable position by being supported by two discs (or three 
previous spheres). 

Anisotropy in the loose packing generated using the 
sedimentation methods was observed by Jodrey and Tory 
(1985). The packing fraction (1-n) obtained was found to 
be approximately 0.582 which is close to the dense 
packing density. 

It is worth noting that the translation of discs/spheres is 
determined based on purely geometric calculation, without 
analyzing the dynamics of the system. This leads to 
unrealistic packing structure in terms of radial distribution 
function (Jullien et al., 1996) and mean coordination 
number (Liu et al., 1999). 
 
2.3 Dynamic methods 
 
Dynamic packing process; however, involves various 
forces in addition to gravity (i.e. contact forces due to 
collision and friction among particles, inter-element forces 
such as the Van Der Waals or electrostatic forces). These 
forces can affect the packing structure either individually 
or simultaneously depending on the packing condition. 
These phenomena, which can only be simulated using the 
DEM itself, are not considered in the purely geometric 
packing algorithms.  

A typical approach in dynamic packing method is to 
place a required number of particles into a large domain 
whose walls are slowly moved inwards until the required 
density is reached. Another possibility is to simulate 
gravitational deposition where particles fall down into the 
domain, and their equilibrium position is established under 
the effect of gravity (Kong and Lannutti, 2000).  

Liu et al. (1999) proposed a method to generate 
packing by imposing an assumed centripetal force on 
particles randomly generated in a spherical space. 

The above methods are considered to satisfactorily 
simulate the dynamics of forming a packing and produce 
more realistic structural information (Liu et al., 1999). 
These methods; however, require a huge amount of 
calculation and therefore they are considered to be very 
time-consuming. 
 
3 DISCRETE ELEMENT SIMULATION 
 
3.1 Governing equation and force description 
 
This simulation was carried out using the Open Source 
code YADE (Kozicki and Donze, 2008). The code is 
designed using dynamic libraries to facilitate the addition 
of user-defined models. The centered second order finite 
difference scheme is employed in the software. For this 
method, the position (orientation) of each particle remains 
unchanged during each time step; the forces are 
calculated from the force-displacement relationship. When 
all forces acting on a particle i, either from other particles 
or from the boundaries, are known, the problem is 
reduced to the integration of Newton’s equations of 
motion for the translation and the rotational degrees of 
freedom 

ii fr
dt
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where mi, ir ,and iΦ  are the mass, the vector of 

position and the vector of orientation in space of particle i, 
respectively. iI is the moment of inertia of particle i 

defined as: 
2)2/( iiii dmqI =   (3) 

where di is the diameter of particle i and qi is the 
dimensionless shape factor. 

Interactions are short range and active on contact 
only, so that the total force (torque) on particle i is 

�� ==
c

c
i

c
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c
ii MMff )( , where the sum runs over all 

contacts c of particle i. The torque c
i

c
i

c
i flM ×=  is 

related to the force c
if  via the branch vector c

il  from the 
particle center to the contact point. The damping 
coefficients are applied to forces and moments for 
computational purposes.  Hence the problems can be 
solved if all the forces acting on the contact (see Figure 1) 
are determined. The procedure to calculate the contact 
force will be discussed in the following.  

 
3.1.1 The contact forces 
 
The contact forces are calculated based on the penalty 
method which means that the contact forces are 
evaluated from the overlap volume of two interacting 
spheres. 
 
 
 
 
 
 
 
 
 

Figure 1. The force-displacement law 

 
3.1.2 The normal force 
 
The normal force is calculated as follow: 

 nnnci kf δ=  (4)

where ncif is the normal force at contact c on particle 

i, kn is the normal stiffness at contact, nδ  is an relative 

normal displacement between two particles and n  is the 
branch vector from the contact point to the particle center.  

 
3.1.3 The shear force 
 
The shear force is calculated incrementally using (Hart et 
al. 1988): 

tssci ukf ∆=∆  (5)

where scif∆ is the incremental shear force, sk is the 

tangential stiffness and tu∆  is the incremental tangential 
displacement. 

The shear force is truncated if its absolute value is 
larger than the maximum value given by Mohr–Coulomb 
criterion: 

incisci ff φtanmax ×=  (6)

 where iφ  is the internal friction coefficient. 
 

3.1.4 Macro-micro relationship 
 
The strain energy stored in a given interaction cannot be 
assumed to be independent of the size of the interacting 
elements. Therefore interaction stiffnesses are not 
identical over the sample, but follow a certain distribution 
depending on the shape and size of the pair of particles 
interacting. “‘Macro-micro’’ relations are then needed to 
derive the local stiffnesses from the macroscopic elastic 
properties and from the size of the interacting elements. 
The hypothesis of best fit (Liao et al., 1997; Hentz et al., 
2004) is employed to fit the relationship between the 
Young’s modulus E, Poisson’s ratio  and the 
dimensionless value of ks/kn:  
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where ba
initD ,  is the initial distance between two 

interacting elements a and b, coefficients α , β  and 

γ are the fitted values and initS  is an ‘‘interaction 
surface’’:  

2)),(min( bainit RRS π=  (9)

These relations are simply inverted to obtain the local 
(micro) stiffnesses at the contacts. 

Material properties used in the simulation are provided 
in Table 1. 
 
3.2 PACKING METHOD 
 
3.2.1 Requirement of a specimen generation algorithm 
 
It is important to clearly define the requirement of a 
specimen generation algorithm for granular problems. The 

kn 

ks Sphere a 
Sphere b 
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specimens generated should be in equilibrium under 
gravitational loading and consequently will have realistic 
properties (porosity, grain size distribution, fabric tensor).  

As the geometric and sedimentation algorithms 
become very complicated when dealing with particles of 
different shapes, the specimens generated by the above 
methods need to be compressed (or shaked) using a 
DEM simulator in order to acquire a dense packing. 
Moreover, since the specimens is generated once and 
then used various times in a specific application, the 
ability to reflect the real condition of the specimen is of 
more important than the performance in terms of the 
computational cost of the algorithm itself. 

Motivated by the fact that dynamic methods can 
satisfactorily simulate the dynamics of forming a packing 
and produce more realistic structural information, an 
algorithm to generate a specimen with realistic properties 
(compared to samples generated experimentally) is 
developed. The packing method is described in the 
following section.  

Table 1 Material properties 

Parameter Value 
Particle density (kg/m3) 2600 
Young’s modulus (Pa) 15000000 
Poisson’s ratio  0.5 
Friction degree (degrees) 18 
Box’s Poisson’s ratio  0.2 
Box’s friction degree (degrees) 0 
Force damping coefficient 0.2 
Moment damping coefficient 0.2 
 
3.2.2 The packing technique 
 

A number of spheres were first generated without 
overlap in a predefined rectangular space (1 in width, 0.3 
in depth). This step is similar to the SSI model. The 
positions and the space dimensions can be changed 
during the simulation by controlling the input parameters. 
The particles were then assigned a gravity force to settle 
down under gravity conditions, they would have 
interaction with neighbouring particles. Additional particles 
were generated after a predefined time interval. This 
process continued until a specific number of particles or a 
specimen height is reached.  
The DEM computational process was kept running until a 
stable condition is obtained. The specimen is considered 
to be stable if the ratio of the unbalanced force to the total 
force is less than a predefine value. In this study, stability 
value was taken as 0.01  

01.0≤=
�
�

nci

i
c

f

f
S  (10)

where fi is the resultant force on the body and fnci is the 
contact force acting at the contact. 

 

3.2.3 Generating spheres with a predefined grain size 
distribution 

 
In the DEM simulation, sphere radii were generated 
randomly according to a given sieve analysis test results. 
The sieve analysis test generally provides the percentage 
of aggregates passing through a series of sieves. It is 
worth noting that in DEM, only the percentage of sphere 
numbers can be controlled, thus the percentage passing 
by weight should be converted to a percentage number of 
spheres (see Table 2). A random number generator is 
used to generate pseudo number distributed over the 
interval [0,1]. The radius of particle i is then calculated 
using the following equation in order to generate a 
population of aggregates consistent with the sieve 
analysis result: 

2/)]/()()100([ 121211 PPDDPRANDr ii −−×−×+= (11)

 
where ir  is the radius of particle i, 1P and 2P  are the 

percentage number of total grain calculated from the 
percentage volume passing through sieves S1 and S2, 
respectively. D1 and D2 are the diameters of sieves S1 
and S2, respectively. iRAN is the ith random number 
generated for particle i. Sieves S1 and S2 are determined 
by comparing iRAN with the sieve analysis percentage 

passing results. Note that 1100 PRANi ≥× and 

2100 PRANi <× . A representative set of parameters 
used to generate spheres based on sieve analysis results 
is provided in Table 2. 

 

Table 2 Typical conversion from percentage by weight to 
percentage by number of spheres 

Sieve ID 
Sieve 

diameter 
(in) 

Percent 
passing  
(weight) 

Percent 
passing 

(number) 
#200 0.0029 0 0 
#100 0.0059 0 0 
#50 0.0117 0 0 
#30 0.0232 20 82.25 
#16 0.049 50 98.07 
#8 0.097 80 99.86 
#4 0.185 100 100 

 
An algorithm was implemented to generate arbitrary 

grain size distribution; however, only two different values 
of radii were considered in the present study in order to 
examine the effects of grain size ratio.  
 
3.3 Variables considered 
 
The variables examined in this study can be classified into 
two groups: the first group of variables are related to the 
particles size ratio whereas the second group of variables 
are related to the dynamic properties, i.e. the total number 
of spheres in the simulation, the number of spheres 
generated each time interval, the dimensions and position 
of the box (in which spheres are generated), mean sphere 
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radius and sphere radius distribution. The ranges 
assigned to these variables are given in Table 3. Both 
groups were examined using 1000 to 20000 particles. 
Unless otherwise stated, the effect of each variable on the 
packing was examined while other variables were kept 
constant. 
 
3.3.1 Porosity 
 
Porosity is the most accessible parameter in defining 
macroscopically a packing and thus has been studied 
widely in engineering practice. It describes the fraction of 
void space in the material and is defined by the ratio: 

TVVp /V=  (12)

where vV  is the volume occupied by void and TV  is 
the total volume of material including soil and void 
components 
 
Table 3 Simulation parameters 

Parameter Base 
value Varying range 

Total number of particles 5000 [1000,20000] 
Particle mean radius (m) 0.0153 [0.009-0.026] 
Dropping height (m) 4 [1,4] 
Number of particles 
generated each time 
(percent) 

2  [1-20] 

Sphere generation rate 
(time step) 5000 [200-5000] 

 
3.3.2 Coordination number 
 
Coordination number is the number of spheres in contact 
with a considered sphere. It varies with the definition of 
contact, i.e. the minimal or cut off distance between two 
spheres by which they are regarded to be in contact. In 
the present work, the critical distance was set to 1d. 
 
3.3.3 Radial distribution function (RDF) 
 
Radial distribution function RDF is the probability of 
finding one particle center at a given distance r from the 
center of a given particle and is defined by 
 

rr

rN
rg

∆
= 24

)(
)(

π
 (13)

where N(r) is the number of sphere centers situated at 
a distance between r and r+∆r from the center of a given 
sphere. In this study, RDF was averaged for spheres 
within the specimen and ∆r is set to 0.001. 

 
3.3.4 Fabric tensor Fij 
 

In soil mechanics, the term fabric is used to refer to the 
arrangement of particles, particle groups and pore 
spaces. Typically, quantitative measures of fabric are 

considered; however, fabric can be quantified using the 
fabric tensor (e.g, Cambou, 1998). The contact fabric 
(second rank) can be expressed as: 
 

�=
cN

ji
c

ij nn
N

F
1

 (14)

 where Nc is a number of contacts, and ni and nj are 
contact normals in the i and j directions, respectively. 
 
 
4 RESULTS AND DISCUSSION 

 
A set of parameters (see Table 3) have been prepared 

for evaluation. Results in terms of represented volume 
were also investigated. Only a limited number of results; 
however, are presented due to space limitation. The first 
series is the results from the packing of mono-sized 
spheres and the second is the result from the packing of 
spheres of two different radius values.  
 
4.1 Overall porosity 

 
The overall porosity is determined using the calculated 

average volume of the specimen as: 

AhV ave ×=  (15)

where have is the average height of the specimen and 
A is the surface area of the specimen. 

To study the effect of the number of spheres 
generated each time increment (Not), five packing of 5000 
spheres were generated with five different number of 
particle generated each time increment, i.e. 1, 2, 5, 10 
and 20 percents of total number of spheres. The results 
shown in Figure 2 are consistent with the simulation 
results of Zhang (2001). Generally, porosity increased as 
the number of spheres generated each time increased. 
For example, with 1 percent of spheres generated, the 
porosity is 0.418 while a value of 0.443 was obtained 
when the 20 percents of spheres are generated each time 
increment. This indicates that a denser packing can be 
achieved by generating a small percentage of spheres 
each time. When Not increased from 1 to 5 percent, a 
significant increase in the porosity was calculated; 
however, when Not is larger than 5 percents, the rate of 
increase is less significant. This can be explained by the 
arching or bridge phenomenon that results from the 
simultaneous dropping of spheres at a relatively close 
distance. 

Figure 3 show the dependence of the overall porosity 
on the total number of particles. Obviously, the overall 
porosity decreases with increasing the number of 
particles. When the numbers of particles increased from 
1000 particles to 5000 particles, the porosities decrease 
from 0.457 to 0.425; however, further increasing the total 
number of particles to 20000 particles results only in a 
porosity value of 0.421. As discussed by Jodrey and Tory 
(1985), homogeneous packing is possible when the 
packing size is large enough. As seen in Figure 3, a 
reasonably homogeneous packing can be obtained if the 
number of particles is larger than 20000 particles. 
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Effect of drop height on the overall porosity is shown in 
Figure 4. The overall porosity decreases as the drop 
height increased. Increasing the drop height implies that 
more energy is applied to the particles to rearrange 
leading to breaking of the bridge or arching among 
particles. Consequently, a denser packing is achieved. 
For the range of drop height of 40 to 164 sphere 
diameters, the threshold of drop height at which packing 
density does not change much as reported by Zhang 
(2001) was not found to clearly exist in the present 
analysis. 

To study the effect of the particle size ratio on the 
overall porosity, fifteen packing with particles size ratio of 
4:5, 3:5 and 2:4 were generated. As shown in Figure 5, 
the overall porosity increases with increasing particle size 
ratio. As the number of particles increase to 10 000, the 
changed rate in overall porosity significantly decreased. 
Note that similar behaviour was observed in the case of 
mono-sized sphere packings. 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.2 Coordination numbers 
 
Figure 6 shows the mean coordination number for 
packings constructed using different Not. It can be seen 
that increasing Not results in decreasing mean 
coordination number. Variation of the coordination 
numbers with different value of total number of particles is 
shown in Figure 7. It is observed that as the number of 
particles increase from 1000 to 5000, the coordination 
number increases from 5.07 to 5.14; however, the 
coordination change only a small value as the number of 
particles increases from 5000 to 2000. It again confirms 
that homogenous packing can be obtained if the number 
of particles larges is large enough. 

From Figure 2, Figure 3, Figure 6 and Figure 7, it can 
be seen that decreasing porosity results in an increase in 
mean coordination number which is in well agreement 
with those observed by Pinson et al. (1998). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Variation of porosity with number of spheres 
generated each time 

Figure 3 Variation of porosity with number of total 
spheres used in the simulation Figure 6 Variation of mean coordination number with 

number of total spheres used in the simulation 

 

Figure 4 Variation of porosity with sphere drop height 

 

 
Figure 5 Variation of porosity with sphere size ratio and 
total number of particles 
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4.3 Radial distribution function 
 
Figure 8 shows four radial distribution functions 
corresponding to the packings of 1000, 5000, 10 000 and 
20 000 mono-sized spheres obtained by averaging the 
RDFs for all the particles. It can be seen that the four 
packings demonstrate a common feature of a split second 
peak, followed by other peaks. The four radial distribution; 
however, do not expose any clear difference in all four 
cases. 

The positions of the second peaks are in consistent 
with the results of Finney (1970). It has been well 
established (Zhang et al., 2001 and Liu et al., 1999) that 
for a dense random packing, there is a split second peak 
in the RDF with its first component at �3d and the second 
component at 2d. The split peak phenomenon can be 
obtained by a collective but not one-by-one simulation 
algorithm. 

 
4.4 Fabric tensor 
 
As the spheres settle down under gravity, the specimens 
exhibit a strong anisotropy in the direction of gravity. The 
anisotropy in the horizontal plane; however, is relatively 
small (see Figure 9). As the number of particles increases 
from 1000 to 10 000, the difference decreases to half of 
the magnitude (from 0.02 to 0.009). Further increasing 
number of particles to 20 000 results in a very small 
change (0.009 to 0.00894). 

Figure 10 shows the effects of different particle size 
ratios on the packing anisotropy. Obviously, packing 
become more isotropic when the size ratios decrease and 
the numbers of particles increase. The packing is almost 
isotropy when the number of particles is 20 000 for all 
three particle size ratios. 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 Variation of mean coordination number with 
total number of spheres used in the simulation 

 

 

 

Figure 8 Radial distribution functions: (a)1000 particles; 
(b)5000 particles; (c)10000 particles; and (d)20000 
particles 

a) 

b) 

c) 

d) 
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5 CONCLUSIONS AND IMPLICATION 
 
A dynamic method of packing to a specified grain size 
distribution was proposed and used to investigate the 
properties of mono-sized sphere packings and packings 
with different-size ratios. The results obtained are in good 
agreement with those reported in the literature. 

The packing of uniform spheres is strongly affected by 
the dynamic variables, i.e. drop height, number of 
particles generated each time. 

The particle size ratio has a significant influence on the 
packing porosity and packing fabric tensor. 

As the number of particles reached a certain value, the 
packing exhibited a very small change in all of the 
examined properties. 
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