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ABSTRACT 
This paper presents three-dimensional analyses of hypothetical slopes with simple ground surface shapes. Three-
dimensional and two-dimensional factors of safety (FS3D and FS2D, respectively) were compared for several geometry 
and stress conditions. The ground surface was varied from convex to concave shapes. Poisson’s ratio was varied in 
order to investigate the influence of horizontal stresses. The analyses were performed using formulations recently 
developed and implemented in the software packages SVOffice 2006 and FlexPDE. The results of this study indicate 
that the computed FS3D is 26% to 50% higher than FS2D, with larger differences corresponding to concave surfaces. 
Poisson’s ratio influence was clearly demonstrated for three-dimensional conditions. Higher factors of safety were 
obtained for higher Poisson’s ratios.  
 
RÉSUMÉ 
Quand des sols contaminés sont chauffés, la pression de vapeur des composés chimiques organiques augmente. 
L’augmentation de la volatilité aide à l’élimination des contaminants par des méthodes conventionnelles telles 
l’extraction par vapeur et l’extraction à phases multiples. On peut chauffer le sol par des méthodes électriques in-situ en 
utilisant le chauffage par conduction conventionnel, le chauffage électrique par résistance ou le chauffage par 
électromagnétisme. 
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1 INTRODUCTION 
 
Most slope stability problems present three-dimensional 
characteristics that are not taken into account by 
conventional models. Two-dimensional plane strain 
representations correspond to field condition only in very 
specific situations. Some of the typical field conditions 
that are believed to be better represented by full three-
dimensional models are excavation fronts, slope corners, 
and earth dams, to name only a few problems.  

Numerous advances in the techniques of geotechnical 
engineering analysis have emerged in the past two 
decades, mostly due to the increase in computational 
power. In fact, one of the potential areas of advance are 
those areas related to techniques of 3D analysis. 

A considerable amount of research has been directed 
towards the development and improvement of 
computational tools for three-dimensional analysis. It 
appears that there is a need to further advance the 
research, in order to bring this type of analysis into 
geotechnical engineering practice. It is important that 3D 
techniques be based on sound theories that are at the 
same time based on familiar concepts adopted in 
conventional 2D analysis. 

This paper presents a general theory, based on a well 
known 2D method of slope stability using finite element 
stress fields. This method is often referred to as 
“Kulhawy’s method” or “enhanced method”. Analyses are 
presented in order to demonstrate the relationship 
between 3D and 2D factors of safety and the effect of 
Poisson’s ration on this relationship. The influence of 
ground surface shape is also investigated, in order to 
illustrate the typical variations to be expected. 
 
2 LITERATURE REVIEW 
 
The methods of three-dimensional analysis of slope 
stability are usually extensions of conventional two-
dimensional approaches. Variational calculus, for 
instance, has been extended to three-dimensional 
conditions by Chen and Chameau (1982). The method 
proposed was an extension of Spencer’s method 
(Spencer, 1967) that is based on the limit equilibrium 
method of slices. Hungr et al. (1989) presented an 
extension of Bishop’s simplified method (Bishop, 1955), 
also based on the method of slices. Lam and Fredlund 
(1993) presented an extension of the GLE limit 
equilibrium method to three-dimensional conditions. 
Chang (2002) proposed an extension of Sarma’s method 
(Sarma, 1979). The method is based on blocks that have 
faces that are not necessarily vertical. 

Variational calculus has also been extended to three-
dimensional conditions (Leshchinsky et al., 1985 and 
Leshchinsky and Baker, 1986). Leshchinsky and Huang 
(1992) further extended their original work, but the 
method was limited to problems with symmetric 
geometry.  

Michalowski (1989) presented a three-dimensional 
solution based on the upper-bound theorem. The solution 
was limited to homogeneous slopes. More recently, 
Farzaneh and Askari (2003) have extended the work by 
Michalowski (1989) to non homogeneous slopes. Chen et 
al. (2001a, 2001b) have also presented an upper-bound 
solution for three-dimensional slope stability. Lyamin and 
Sloan (2002a and 2002b) proposed the use of the upper 
and lower-bound theorems, along with the finite element 
method, in order to produce stress and strain fields. 

From the point of view of practicing geotechnical 
engineers, it becomes difficult to determine what three-

dimensional method of slope stability analysis is the more 
adequate. A sound theoretical basis, a generalized 
approach that is capable of handling field conditions, and 
simplicity, are some of the requirements of a practical 
slope stability method. It appears that if a practical three-
dimensional finite element tool for stress and seepage 
analysis is available, it becomes convenient to extend the 
two-dimensional enhanced method to three-dimensional 
conditions. Such method could be considered a practical 
tool for routine analyses. 
 
 
3 THEORY 
 
The analysis method presented herein is an extension of 
Kulhawy’s method (or enhanced method), to three-
dimensional conditions. The factor of safety is defined as 
the ratio by which the shear strength must be reduced in 
order to bring the soil mass to a state of limit equilibrium. 
For a three-dimensional slip surface, the factor of safety 
may be computed by taking the total resisting shear force 
divided by the total shear force: 
 

�� ττ==
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where: R is the total resisting shear force; S is the total 
shear force; τf is the shear strength; τa is the shear stress; 
and A is the slip surface area.  

The resisting and shearing stresses acting along a 
three dimensional slip surface must be determined. The 
state of stress and pore-water pressure at any point in the 
soil volume is determined using the finite element 
method. The computation of the factor of safety can be 
summarized as follows: 

 
• The distribution of stresses and pore-water pressures 

are determined using the finite element method. 
Appropriate boundary conditions, constitutive models, 
and constitutive parameters must be adopted;  

• The normal and shear stresses are computed for a 
grid of points located at the base of the slip surface. 
The normal stress depends on the position along the 
slip surface. The shear stress depends not only on the 
position at the slip surface but also on the direction of 
slippage projected on the horizontal plane; 

• Integration of the acting and resisting stresses is 
performed along the slip surface area. 
Spherical and ellipsoidal slip surface shapes have 

been implemented by Adriano (2008), but only spherical 
shapes are used herein. The shape and position of a 
spherical slip surface are defined as follows: 
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where: x0s, y0s, and z0s are the coordinates of the center 
of the sphere in the x, y, and z directions; and rs is the 
radius of the slip surface. Only the bottom half of the 
sphere is taken by using the negative value of the square 
root. 

The direction of a plane tangent to any point on the 
slip surface is defined by the angles its normal makes 
with x, y, and z, which is given by the direction cosines: 
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where: f denotes the equation defining the geometric 
location of the slip surface (Eq. 2) and 

222 )()()( zfyfxff ∂∂+∂∂+∂∂= . The first index 

indicates the x, y, and z directions. The second index 
indicates the direction normal to the surface.  

For a spherical slip surface, the derivatives are as 
follows: 
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The normal stress acting in a plane tangent to any 
point of the slip surface is given by the following equation: 
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Given the computed σn, the shear strength can be 

calculated using the Mohr-Coulomb criterion for 
saturated/unsaturated soils: 
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 (6) 
 
where: c’ is the effective cohesion; ua is the pore-air 
pressure; φ’ the angle of internal friction; uw is the pore-
water pressure; and φb is the angle of friction with respect 
to changes in matric suction. Equation 6 reduces to the 
conventional Mohr-Coulomb criterion when the soil 
becomes saturated. 

In order to compute the acting shear stress, the 
direction of slippage movement must be known. The 
direction of the slippage movement may be determined 
as part of the optimization technique used in the 
determination of the critical slip surface. The slippage 
direction may also be adopted. For instance, the slippage 
movement could be assumed to be given by the average 
slope face direction.  

The projection of slippage direction in the horizontal 
plane is given by a unit vector with components in the x 
and y direction, b1 and b2. The third component, b3, 
indicates the direction normal to the slip surface and is 
orthogonal to b1 and b2: 
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The direction cosines that indicate the slippage 

direction are as follows: 
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Finally, the shear stress acting at any point and 

slippage direction at the base of the slip surface is given 
by the stress state and direction cosines, defined by Eqs. 
3 and 8: 
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Finite Element models usually employ procedures 

based on stresses that are computed at the integration 
points. Therefore, in order to compute the normal and 
shear stress at any point at the base of a given slip 
surface, the state of stress determined at the integration 
points must be used. If necessary, these stresses can be 
extrapolated to the nodes using simple mapping 
techniques. The procedure presented herein must be 
employed for each trial slip surface established during the 
optimization analysis. Several optimization techniques are 
available for critical slip surface search. 
 
4 DESCRIPTION OF HYPOTHETICAL SLOPES 

ANALYZED 
 
There are few practical tools of numerical analysis 
capable of analyzing three-dimensional stress states. 
Most available tools are not practical and efficient, 
therefore not being adequate for routine geotechnical 
design.  

The analyses presented herein were undertaken 
using the software package SVOffice 2006 (SoilVision 
Systems Ltd., 2007). The theory presented in the last 
section was implemented using FlexPDE (PDE Solution 
Inc., 2007). FlexPDE is a general-purpose partial 
differential equation (PDE) solver. FlexPDE is capable of 
solving 1D, 2D, and 3D PDEs that can be steady-state, 
transient, linear, or nonlinear. Numerical integration, such 
as that required by Eq. 1, can be performed for any 
defined variable. Scripts on a specifically developed 
language are used in order to develop model in FlexPDE. 
The formulation presented herein has been verified by 
Gitirana Jr. et al. (2008) using several benchmark 
problems. 

The hypothetical problems analyzed herein represent 
a slope with varying shapes, namely concave, plane or 
convex (Fig. 1). The mid cross-section was maintained at 
a constant slope of 1V:2H and the slip surfaces analyzed 
for all scenarios present the same shape and position 
with respect to the mid-cross section (see Fig 1a). The 
shape of the ground surface was varied by adopting 
different values of � (Fig. 1).
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     (a)    (b) 
 

(c)  (d) 
 
Figure 1. Hypothetical slopes analyzed: (a) two-dimensional slope; (b) Three-dimensional slope with plane shape; (c) 
Three-dimensional slope with convex shape; d) Three-dimensional slope with concave shape. 

 
The hypothetical parameters adopted herein for the 

linear elastic analysis of stresses using finite elements 
are as follows: Young Modulus of 3500 kPa, Poisson’s 
coefficient varying from 0.1 to 0.49 and unit weight of 1 
kN/m3. The shear strength parameters adopted 
correspond to a cohesive material with cohesion of 0.1 
kPa. Pore-water pressure effects are not taken into 
account. This combination of parameters and geometry of 
the mid-section is identical to that studied by Hungr et al. 
(1989). Chen at al. (2001a) has analyzed the same slope, 
with a different but equivalent combination of shear 
strength and unit weight values. 

The critical slip surface adopted has a radius of 1 m 
and its center is located at coordinates x = 2, y = 1.78 and 
z = 1.45. Boundary conditions were established in order 
to allow the generation of stresses due to the self-weight 
of the soil without boundary effects. The lower boundary 
was subjected to an essential boundary condition 
representing zero displacements. The lateral boundaries 
suffered restriction on the x-displacements (see Fig. 4 for 
an indication of the x- y- and z- directions with respect to 
the problem domain). The front and back boundaries was 
fixed in the y direction. The ground surface was let free to 
move and no external load was applied. 

 
 

 
5 RESULTS AND DISCUSSION 
 
This section presents the result of analyzes of 
hypothetical slopes and the discussion of the results. 
 
5.1 5.1 Analysis of the Sensitivity of the Factor of Safety 

to Mesh Control Parameters 
 
FlexPDE adopts a number of mesh control parameters 
that can be employed in a variety of ways, in order to 
obtain accuracy levels required. The parameter “Errlim” 
determines the amount of automatic mesh refinement 
that will take place during an analysis. “Errlim” is an 
important parameter during stress analyses. The 
parameter “NGRID” controls the mesh density at the 
beginning of an analysis and is a convenient control 
parameter for stress integration along a given slip 
surface. It is important to point out that stress integration 
is performed in a separate numerical model, taking the 
stress field previously computed along with the slip 
surface shape and position adopted.      

The slope geometry presented in Fig. 1b was 
analyzed with varying valued of “Errlim” and “NGRID”, in 
order to establish appropriate values. The computed 
factor of safety and the computation time were adopted 
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as reference parameters to be evaluated.  
Figure 2 presents the results obtained by varying 

“Errlim”. Relatively low factors of safety are obtained for 
coarse meshes obtained using Errlim = 1×10-1 to 1×10-2. 
A “well behaved” trend is observed for lower values of 
“Errlim” and the factor of safety appears to the insensitive 
when “Errlim” is equal of lower than 1×10-5. A value of 
1×10-4 appears to provide sufficiently accurate results at 
a considerably lower computational cost. 

  Figure 3 presents the results obtained by varying 
“NGRID”. The factors of safety appear to increase when 
using finer meshes (i.e., larger values of “NGRID”). The 
changes in factor of safety appear to reduce to 
insignificant values for NGRID beyond 40 or 50. However, 
the computation time when using NGRID of 50 is 
considerably higher. Therefore, a value of NGRID = 40 
appears to provide a better balance between accuracy 
and analysis time. 

In summary, based on these analyses it is 
recommended that a value of “Errlim” of 1×10-4 and a 
value of “NGRID” of 40 be adopted. These values have 
been employed in all further analyses presented herein, 
except for a few cases, which will be discussed later.  
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Figure 2. “Errlim” versus the factor of safety and the 
analysis time.  
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Figure 3. “NGRID”versus the factor of safety and the 
analysis time. 
 
 It is also important to point out that the computation 
times can be kept within acceptable limits while 
guaranteeing an accurate numerical solution. This is an 

important departure from last decade’s 3D numerical 
models, which could not be used in routine due to 
unacceptable computational requirements. 
 
5.2 5.2 Analysis 3D Factors of Safety for Varying 

Geometries and Stress Conditions 
 
The two-dimensional factor of safety obtained for the 2D 
cross section presented in Fig 1a was 1.085. This value 
serves as a basis of comparison for all remaining 
analysis, which will all be three-dimensional. This cross 
section is identical to the mid cross section of all 3D 
geometries analyzed herein. Therefore, the FS2D obtained 
for that cross section can be interpreted as the factor of 
safety that would be obtained by a geotechnical engineer 
employing conventional 2D tools and selecting the “most 
representative” cross section. 
 Figure 4 presents a typical plot of vertical stresses 
obtained when solving the PDEs governing the 
equilibrium of forces. Similar plots are also obtained for 
the remaining stress state components. After quick 
inspection of Fig. 4 it can be seen that the vertical 
stresses are compatible what would be expected based 
on the unit weight adopted for the material. 
 Figure 5 summarizes the results obtained herein for 
the various geometries and Poisson’s ratio values. It can 
be observed that the factors of safety increase as the 
surface geometry moves from convex towards concave 
conditions. This result was expected based on the arch 
effect widely reported in the literature. 
 It is also interesting to note that all the 3D factors of 
safety obtained are higher than the 2D factor of safety 
obtained at the mid cross section (FS2D = 1.085). The 
lowest value of FS3D obtained was approximately 26% 
higher than the value of FS2D. This difference is due to 
the border effects that are taken into account on a 3D 
analysis and completely disregarded on the conventional 
2D analysis. 
 Moving towards concave conditions, the arch effect 
start to cause and increase on the FS3D, which, combined 
with the border effects, will cause an increase of the 
FS3D/FS2D ratio in the order of 50%.  
 Poisson’s ratio appears to have a significant effect on 
the values of FS3D. Larger values of Poisson’s ratio 
appear to result in an increase in the factor of safety. This 
is due to the decrease in deviator stresses generated by 
the self-weight of the soil. One interesting effect of 
Poisson’s ratio was the change in the variation of FS3D for 
concave geometries. Larger values of Poisson’s ratio 
have resulted in values FS3D that are not dependent on 
the angle defining the concave geometry. As the values 
of Poisson’s ratio decrease, the angle of the concave 
surface starts to affect the value of FS3D. 
 Fig. 6 presents plots illustrating the distribution of local 
factors of safety for four selected geometries. The results 
obtained are as expected, with higher values along the 
crest and foot of the slopes. The comparison between 2D 
and 3D representations helps understanding the arch 
effect. 
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Figure 5. Three-dimensional factor of safety for various scenarious. 

 

 
Figure 4. Vertical stress istribution. 
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Figure 6. Local factor of safety for Poisson’s ratio of 0.3: a) Two-dimensional analysis; (b) Three-dimensional slope with 
plane shape; (c) Three-dimensional slope with convex shape; d) Three-dimensional slope with concave shape. 
 
 
 Figure 6c clearly indicated the arch effect, which is 
absent in the remaining figures. This effect is apparent by 
the contours of higher factor of safety that move towards 
the mid cross section of the domain. 
 
6 CONCLUSIONS 
 
This paper presented a methodology for computing three-
dimensional factors of safety. The method has been 
implemented and tested for various conditions. The 
results indicate that the computational cost is reasonable, 
with typical analyses taking less than 10 minutes for 
completion. Model setup times are also kept low thanks to 
a user-friendly interface and to the fact that the finite 
element mesh is automatically generated. 
 Several slope surface geometries were analyzed and 
the results compared to the two-dimensional factor of 
safety. Poisson’s ratio was also varied during the 
analyses. The differences between two- and three-
dimensional factors of safety are significant and indicate 
that FS3D can often be excessively conservative. The ratio 

between FS3D and FS2D varied from 26% to 50%, 
depending on the ground surface shape. Poisson’s ratio 
also plays a significant role on the 3D factors of safety. 
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