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ABSTRACT 
A review of interpretation methods for falling-head tests is presented. The statistical robustness of each method is then 
evaluated through the use of synthetic data. Six datasets are used for this evaluation. Each dataset has an absolute 
error in Z respectively of 0.10, 0.25, 0.50, 0.75, 1.00 and 2.00 mm. Each dataset is composed of 40 synthetic tests (each 
test consisting of 18 data couples of synthetic falling-head measurements). Results show that the most accurate and 
precise method is the Z-t one, followed by corrected Hvorslev and alternate velocity. The velocity method is found to be 
the worst of the four studied methods. It should thus only be used when data scatter in the velocity plot is negligible, that 
is when both Z-t and velocity methods give comparable results.  
 
RÉSUMÉ 
Un examen des méthodes d'interprétation des essais à charge-variable est présenté. La robustesse statistique de 
chaque méthode est ensuite évaluée à l'aide de mesures synthétiques. Six ensembles de mesures sont utilisés dans cet 
examen.Chaque ensemble a une erreur absolue ∆Z respectivement de 0.10, 0,25, 0,50, 0,75, 1,00 et 2,00 mm. Chaque 
ensemble est composé de 40 essais synthétiques (chaque essai consistant de 18 couples de données de mesures 
synthétiques de charges descendantes). Les résultats montrent que la méthode la plus exacte et précise est la Z-t, suivi 
de Hvorslev corrigé et puis de la méthode alternative des vitesses. La méthode des vitesses est la moins performante 
des quatre méthodes étudiées. Elle doit donc seulement être employée lorsque les points du graphe des vitesses sont 
sans dispersion. Ceci sera le cas lorsque la méthode Z-t et celle des vitesses donnent des résultats comparables. 
 
 
 
1 INTRODUCTION 
 
A number of methods exist to measure saturated 
hydraulic conductivity of soils. The constant head test 
(ASTM 2008) is one of these methods. In a laboratory 
setting, water inlet and outlet need to be maintained at 
constant elevations. Measurements of water flow rate in 
function of hydraulic gradient (head loss per flow path 
distance) allow the computation of the hydraulic 
conductivity of the soil using the following equation: 
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where Q is the flow rate, L is the distance separating the 
piezometer measuring tips, hj are measured heads at 
measuring tips 1 and 2 and A is cross-section of the 
permeameter. ASTM (2008) is a good source for 
permeameter design and testing procedures. When 
performing hydraulic conductivity tests in the laboratory, 
Chapuis et al. (1989) stress the importance of good 
saturation. They describe a testing protocol to reach and 
measure saturation levels of tested samples. 

Constant head tests can also be performed in the field. 
CAN/BNQ (1988a and b) describe methods where water 
is injected in a cased borehole at a constant head in an 
aquifer under steady state conditions. Hydraulic 
conductivity can then be computed by using: 
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where C is a shape factor that is for example 2.75 times 
the inner diameter D for the case of an end of casing test, 
h1 is the total head of water in the cased borehole, h2 is 
the total head at the aquifer free surface (or piezometric 
level of aquifer). This method is based on the hypothesis 
that the injected volume of water will have negligible 
influence on the piezometric level (PL) of the soil 
surrounding the injection zone. 

When testing low hydraulic conductivity soils, the main 
drawbacks of constant head tests are that they are 
extremely lengthy in time and in the case of field tests, the 
PL of the soil layer may be unknown or difficult to 
measure. Falling-head tests are effective answers to both 
these drawbacks. They can be completed in a short time 
span and Chapuis et al. (1981) demonstrated that their 
interpretation does not necessitate the PL of the 
surrounding soil layer. 

This paper will review the theoretical background for 
the interpretation of falling-head tests and present five (5) 
interpretation methods: log (or Hvorslev), velocity (or 
Chapuis), alternate velocity, Z-t and optimised log (or 
corrected Hvorslev). Each method will be applied on 
synthetic datasets. Data within each set includes a 
random error component of predefined variance. The 
object will be to evaluate how each interpretation method 
is sensitive to random measurement error. A comparison 
between methods and a discussion on the interpretation 
of falling-head tests will follow. 
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2 INTERPRETATION OF FALLING-HEAD TESTS 
 
Data from falling-head tests, be they obtained in the 
laboratory or in the field, may be interpreted by a number 
of methods. Chapuis (1998) indicates that when the 
deformations of the soil can be neglected, falling-head 
tests are governed by the Laplace equation. Its solutions, 
the harmonic functions, have several properties. One of 
them relates flux into the soil (Qsoil) to flow into the pipe 
(Qinj) through a mass-balance equation. 

 
ckHQQ soilinj ==  [3] 

 
where c is a shape factor that depends on the geometry of 
the injection zone and on the hydraulic boundaries of the 
problem, H is the applied hydraulic head difference and k 
is the hydraulic conductivity. This equation is the starting 
point of the Hvorslev, velocity (Chapuis) and Z-t methods. 
Another equation is the starting point of another method 
for cases where the soil deformation is assumed to be 
elastic and not negligible (Cooper et al. 1967). However 
this method contains physical and mathematical 
confusions according to the mathematical, physical and 
numerical proofs by Chapuis (1998), and the experimental 
proofs of Chapuis and Chenaf (2002). According to the 
equations of Chapuis (1998), the effect of soil deformation 
can be neglected when the soil is an aquifer or an 
overconsolidated aquitard. It is no longer negligible for 
compressible aquitards when they are tested using either 
a falling-head test with a very small injection pipe or a 
pulse test between packers. Chapuis and Cazaux (2002) 
gave suggestions on how to correctly handle the 
instantaneous (elastic) and delayed deformations in such 
cases. In a falling-head test, Qinj is the flow through the 
inflow pipe (often a standpipe connected to the borehole 
casing) of internal cross-section Sinj. 
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where t is time. Eqs.[3] and [4] yield: 
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Rearranging gives: 
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Integrating leads to the solution proposed by Hvorslev 
(1951): 
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where Hj is the head loss at time tj obtained from the 
difference between the total head in the inlet standpipe 
and PL at the boundary of the surrounding soil, and 

C=c/Sinj is a shape factor that depends on the inlet/outlet 
geometry (see Chiasson 2005 for recommended shape 
factor equations for field tests). In the case of laboratory 
falling-head tests, C is given by: 
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where A is the area of the permeameter cross-section, “a” 
is the cross-section of the inlet standpipe and L is the  
flow distance through the soil sample. In the laboratory, 
the outlet is a constant head basin controlled by an 
overflow weir. In the field, the outlet head is set by the 
boundary conditions of the surrounding soil, i.e. the PL of 
the surrounding soil. In the laboratory, it is relatively easy 
to accurately and precisely measure the outlet piezometric 
head. In the field, an accurate measure of the PL of the 
surrounding soil is not necessarily trivial. An error in 
measurement will introduce an error in head difference Hj 
of equation [7]. Chapuis (1999) and Chiasson (2005) 
showed that this error will produce a curved ln H versus 
time plot. Since the hydraulic conductivity k is the slope of 
this plot, a curved plot implies that k changes with time. A 
concave downward curve suggests that k increases 
during the duration of the test. If the test is repeated with 
the same error in the PL of the surrounding soil, the same 
result will be observed. Chiasson (2005) mathematically 
demonstrated that when the error in the PL of the 
surrounding soil is not zero (i.e. Ho ≠ 0), the relationship 
between hydraulic conductivity and the slope of the plot 
as expressed by eq. [7] is no longer valid. Chiasson 
concluded that the direct use of equation [7] proposed by 
Hvorslev without questioning the PL value is not 
recommended. Chiasson (2007) furthermore concludes 
that Hvorslev’s equation is incomplete and proposes to 
replace this method by the corrected Hvorslev method (or 
optimized log) that is described later. 

 
2.1 Velocity method 
 
The velocity method proposed by Chapuis et al. (1981) is 
one where the unknown PL of the soil is not needed for 
hydraulic conductivity determination. Therefore, an error 
in the assumed PL has no consequence for computations. 
For this method, the following definition is first introduced: 

 
 [9] 

 
where Ho is the distance between Z(t), the elevation 
above ground of the inlet falling water level within the 
standpipe and the PL of the surrounding soil (Figure 1). If 
Z(t) is erroneously assumed as the total head loss 
between inlet and the PL of the soil, Ho can be seen as a 
systematic error, or bias. Rearranging equation [5] using 
[9] then gives: 
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By plotting y = Z as a function of x = v = dZ/dt, a straight 
line should be obtained with slope mv=-1/Ck and intercept 
Ho. Thus, the slope of this plot is related to k by: 
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2.2 Alternate velocity method 
 
The velocity method uses least square estimation to yield 
the best unbiased linear fit. Chiasson (2007) argued that 
statistical estimation by least squares is theoretically 
based on one dependant variable being a function of 
another that is independent. The independent variable is a 
controlled variable, i.e. it is the user that decides at which 
value a measurement of the dependant variable will be 
made. Thus, by definition, the independent variable has 
no measurement error.  

In the velocity method, velocity v during a time 
increment ∆t is considered as the independent variable 
and the average elevation Zm [(Zj+Zj+1)/2] during the time 
increment is the dependent variable. When data has low 
scatter in Z (or t), this has little effect on the result. When 
data has some scatter in Z (or t), Chiasson (2005, 2007) 
shows that interpretation problems arise! The act of 
choosing v as the controlled variable when it has high 
statistical scatter clearly departs from least square 
estimation theory. 
Between variables v and Zm, Zm displays the least 
measurement error. One could thus choose to consider Z 
as the control variable and time t could be measured at a 
certain value of Z. With Zm as the control variable, velocity 
v = ∆Z/∆t is the dependant variable. This makes more 
sense since by definition velocity v is a function of 
elevation Z and time t, i.e. it is dependant on Z and t. 
Rearranging equation [10] 
 

] to obtain v on the left hand side gives: 
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From equation [12], the hydraulic conductivity k and the 
bias Ho are: 
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2.3 Z-t method 
 
A third method proposed by Chiasson (2005) plots raw 
elevation data Z as a function of time t. The solution for 
equation [6] using [9] is as follows (see Chiasson, 2005 
for demonstration): 

 
 [15] 

 

where Hi is the head difference at initial time tj=t0=0 and 
“a” is a parameter where: 
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Let Zj be the measurement of Z at time tj, for j={0, ... n}, 
and let Z*(tj) be the estimated water level in the 
piezometer at time tj, using estimated parameters Hi

*, a* 
and Ho

*.  The best unbiased estimator will then be 
obtained by numerically minimising the following equation: 
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while subjected to the unbiased condition: 
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Figure 1. Setup for a falling-head test in an unconfined 
aquifer. 

 
 
2.4 Corrected Hvorslev’s method or optimised log [Z+Ho] 

method 
 
In Hvorslev’s original interpretation method, log(Hj/Hi) is 
plotted as a function of time t. In doing this, Hvorslev 
made two implicit suppositions: that Ho is a priori known 
and that the initial reading for Hi at time t0 = 0 has no 
measurement error. Clearly, this is rarely the case. 
Chapuis (1999) and Chiasson (2005) show how making 
these implicit suppositions will adversely affect the 
interpretation of the test and the value of the hydraulic 
conductivity k. Chapuis proposes to use the velocity 
method to obtain Ho and interpret the falling-head test by 
rearranging equation [7] using eq. [9] to obtain; 

 
( ) ( )ojoj HZtkCHZ ++−=+ 0lnln  [17] 

 
and to plot y = ln(Zj+Ho) in function of x = t. Unfortunately, 
this approach is incomplete since it needs to implicitly 
make the supposition that the initial reading at time t0 = 0 

Z(t) 

H(t) 

Ho 
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has no measurement error. Since the error on the first 
reading Z0 is usually small, the initial solution Hi of eq. [15] 
is practically equal to Z0+Ho. Thus, the hydraulic 
conductivity will generally not be adversely affected. The 
hydraulic conductivity found this way is always close to 
being equal to the value obtained by the velocity method. 
From this, Chapuis (1999) concludes that this confirms 
the validity of the hydraulic conductivity value. Chiasson 
(2005) shows that if Ho and Hi are obtained by another 
interpretation method, i.e. the Z-t method, interpretation of 
a falling-head test using eq. [17] will give values equal to 
those obtained by the Z-t method! This brings Chiasson to 
conclude that eq. [17] (Hvorslev’s method) with Ho 
estimated from another method (velocity or Z-t) cannot be 
used to confirm the validity of the k value obtained by the 
same other method (velocity or Z-t), since the value of k 
that is obtained is dependant of the method used to 
estimate Ho.  

A remedy to this is to estimate Ho, Hi and k by a least 
square optimisation technique similar to the one used in 
the Z-t method. Rewriting eq. [17] with Hi = Z0 + Ho, 
mln = -kC and bln = ln(Hi) gives: 
 

( ) lnjlnoj btmHZln +=+  [18] 

 
Let then y* = ln(Z*(tj) + Ho) be the estimated natural 
logarithm of the total head in the piezometer at time tj, 
with estimated parameters b*

ln = ln(Hi
*), m*

ln = -k*C and 
Ho

*. The best unbiased estimator will then be obtained by 
numerically minimising the following equation: 
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while subjected to the unbiased condition 
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This variant of Hvorslev’s log method independently 
estimates all unknown parameters. Theoretically, it can be 
used to separately evaluate k and confirm values 
estimated by both velocity and Z-t methods.  

 
 

3 INTERPRETATION METHODS AND THEIR 
STATISTICAL ROBUSTNESS 

 
The solution for differential equation [6] expressed by eq. 
[15] with Hi = 701 mm, Ho = 400 mm and k = 5 x 10-7 
mm/s and a test setup giving a shape factor C = 235.3 
mm-1 was used to generate synthetic data as follows: 
 

  [19] 

 
where ε is a normal law distributed random fluctuation 
with zero mean and standard deviation σ = ∆Z/1.96. The 
random fluctuation component corresponds to a synthetic 
random measurement error. By definition, ∆Z is the 

absolute error of the synthetic dataset of measurements 
Z. Six synthetic datasets of increasing absolute error on Z 
were generated this way. Absolute errors for each 
synthetic dataset will be in increasing order ∆Z =: ±0.10 
mm, ±0.25 mm, ±0.50 mm, ±0.75 mm, ±1,0 mm and ±2.0 
mm. Each absolute error dataset is composed of 40 
synthetic tests with each test composed of 18 synthetic 
measurements spanning from t = 0 to 2040 seconds. 

Each method reviewed earlier is applied to these six 
synthetic datasets to investigate their sensitivity to data 
affected with random measurement error.  
 

3.1 Velocity method 
 
As underlined earlier, when measurement errors on Z are 
small, the velocity method will yield good results! An 
illustration of this statement is given in Figure 2. In this 
plot, the measurement error on Z is only of ± 0.10 mm. 
Using mv = -8422.3 sec-1 from Figure 2, C = 235.3 mm-1 
and eq. [11], one finds k = 5.05 x 10-7 mm/s and 
Ho = 394.5 mm. Both hydraulic conductivity k and bias Ho 
are by all practical means equal to the no-error-imposed 
solution of Ho = 400 mm and k = 5 x 10-7 mm/s. This gives 
a relative error of only 0.92% for k and 1.4% for Ho. 

 

 
Figure 2. Velocity plot of synthetic test data (∆Z = ± 0.10 
mm). 
 

 
When measurement errors on Z are relatively high (in 

the order of 0.3 to 0.6%), the velocity plot displays 
considerable scatter (Figure 3). Such a plot will also 
suggest that data from such a test is of questionable 
quality. Using the same shape factor and equation, one 
finds k = 1.61 x 10-6 mm/s  and Ho = -28.8 mm, giving a 
222% relative error for k and -107% relative error for Ho. 
Hence, relatively small measurement errors in elevation Z 
(i.e. 0.3 to 0.6%) yield very high estimation error in k and 
Ho. 

Chiasson (2007) observes that the velocity method 
systematically gives higher k values than the methods 
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earlier presented. The six synthetic datasets, generated 
by eq. [19] with ∆Z: ±0.10 mm, ±0.25 mm, ±0.50 mm, 
±0.75 mm, ±1,0 mm and ±2.0 mm, confirm this systematic 
bias (Figure 4). Also, as measurement errors increase on 
elevation of falling-head, the velocity method yields on 
average a higher hydraulic conductivity.  

 

 
Figure 3. Velocity plot of synthetic test data (δZ = 1.0 mm). 
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Figure 4. Scatter of hydraulic conductivity computed from 
velocity method as a function of absolute error of synthetic 
dataset formed of data couples of falling water column 
elevations Z and times t. 

 
 
There is a clear correlation between measurement 

error on Z and hydraulic conductivity obtained from the 
velocity method (Figure 4). Furthermore, a good 
correlation is observed between the absolute error on k 
obtained by the velocity method and the coefficient of 
determination of the plot (Figure 5). This further 

demonstrates that the velocity method is not statistically 
robust. This method should not be used when data scatter 
is observed in the velocity plot, i.e. when R2 is less than 
0.92. Thus, when coefficients of determination will be 
higher than this threshold, relative error on k will be below 
10% (Figure 5). 
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Figure 5. Relative error on hydraulic conductivity k in 
function of coefficient of determination R2 obtained from 
velocity method plots. 
 

 
Figure 6. Alternate velocity plot for data of Figure 3 
(synthetic test data with δZ = 1.0 mm). 
 
 
3.2 Alternate velocity method 
 
The alternate velocity method, being developed on a 
sounder theoretical basis, should be more statistically 
robust, i.e. less sensitive to data scatter. The same data 
that was plotted in Figure 3 is used to illustrate this 
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hypothesis. The alternate plot of velocity v in function of 
average elevation of falling-head Zm does not yield a 
better correlation coefficient, the scatter being the same 
(Figure 6). The hydraulic conductivity computed from this 
plot is on the other hand quite different. Using eq. [13], the 
same shape factor C and slope mZ from Figure 6 yields 
k = 4.42 x 10-7 mm/s and Ho = 484 mm. With the alternate 
plot, relative error for k has decreased to -11.6% and to 
21.0% for relative error on Ho. This is a considerable 
improvement in relation to the 222% relative error for k 
and -107% relative error for Ho that was obtained earlier 
with the velocity method. Computed hydraulic conductivity 
values from alternate velocity method show no correlation 
with test data scatter as characterised by the coefficient of 
determination (Figure 7).  
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Figure 7. Relative error on hydraulic conductivity k in 
function of coefficient of determination R2 obtained from 
alternate velocity method plots. 

 
 
On average, the alternate velocity method will yield 

good hydraulic conductivity values but data scatter, 
although less problematic than for the velocity method, 
still yields rather high relative errors for k. The alternate 
velocity method can thus be qualified as being relatively 
unbiased, thus on average accurate but not precise. 
Results from this study indicate that the alternate method 
should be used with caution when data scatter for the 
alternate velocity plot yields R2 less than 0.87. Otherwise, 
the relative error for k may be greater than ±10% (Figure 
7). 

 
3.3 Z-t method 
 
Chiasson (2005) introduced this method after observing 
that scatter in the velocity plot (likewise with the alternate 
velocity plot) is inherent to the computation of the velocity. 
Chiasson thus proposes to use raw data, i.e. [tj, Zj] data 
couples, and directly plot them on a Z-t graph. Difference 
in scatter is evident when comparing scatter in the velocity 

plot (or alternate velocity) with scatter in the Z-t plot 
(compare Figure 3 and Figure 6 with Figure 8). 

Applying the Z-t method to the same dataset earlier 
used with velocity and alternate velocity methods gives 
k = 4.68 x 10-7 mm/s, Ho = 439.5 mm and Hi = 739.9 mm. 
This corresponds to a relative error for k of -6.4% and of 
9.9% for relative error on Ho. This is an improvement 
comparatively to earlier presented methods, velocity or 
alternate velocity.  

The Z-t method is unbiased; i.e there is no significant 
correlation with scatter intensity (Figure 9). It yielded high 
coefficients of determination for the complete suite of 
studied absolute errors, meaning that equation [15] well 
explains the relationship.  
 
 

 
Figure 8. Z-t plot for data of Figure 3 (synthetic test data 
with δZ = 1.0 mm). 
 
 

The Z-t method yields good hydraulic conductivity 
values and it is less sensitive to data scatter (Figure 9 and 
Figure 10). The Z-t method is thus an accurate 
interpretation method. It is also a precise method since 
relative error on k is of only 3.6% when synthetic data has 
∆Z = 0.25 mm and increases by approximately the same 
amount for each 0.25 mm increment to ∆Z. Results from 
this study indicate that the Z-t method can be used even 
when absolute error on Z is of the order of 2.0 mm 
(∆Z/Z = 1.3%) for which relative error on k will be of 
28.4%. 

 
3.4 Corrected Hvorslev’s method or optimised log [Z+Ho] 

method 
 

Again, for the same dataset used for the other three 
methods, the corrected Hvorslev method gives k = 4.40 
x 10-7 mm/s, Ho = 482.6 mm and Hi = 783.1 mm. This 
result for k is approximately equivalent in accuracy to the 
Z-t value obtained earlier. Investigating the complete 
dataset of synthetic data, results for k show some 
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sensitivity to data scatter, more than in the case of the Z-t 
method (Figure 11). The method thus appears acceptable 
when ∆Z < 1.0 mm. Higher absolute errors in Z appear to 
destabilise the method. This may be due to numerical 
optimisation which is less stable for this method.  

 
 

4 CONCLUSION 
 
Interpretation methods for falling-head tests were 
evaluated for their sensitivity to measurement error in 
elevations measurements of the falling water column. The 
velocity method is found to be the less appropriate one for 
computing hydraulic conductivity, even when 
measurement errors are relatively small. It tends to 
systematically overestimate the true hydraulic 
conductivityThe introduction of an error on Z will always 
have a greater impact on v than on Zm,, (Chiasson 2005 
and 2007), thereby always increasing the scatter range of 
v values more than the scatter range of Zm values. As a 
consequence, the slope of the velocity graph will flatten, 
lowering the slope and thus yielding a higner estimated k.  
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Figure 9. Relative error on hydraulic conductivity k in 
function of coefficient of determination R2 obtained from 
Z-t method. 
 

 
An easy corrective measure is to plot the alternate 

velocity method. This method, which is just a permutation 
between independent and dependent variables used in 
the velocity plot, is found to be accurate (i.e., on average, 
it yields the correct k). The alternate velocity method also 
displays considerably less scatter in computed k values. It 
is thus recommended to replace the classical velocity plot 
by the more statistically robust alternate velocity method. 

The best method is found to be Z-t, with the corrected 
Hvorslev trailing not too far behind. Both these methods 
are accurate and the Z-t is particularly precise when 
compared to the other studied methods. 

By using more than one method, it is possible to better 
evaluate the accurateness and precision of computed 
hydraulic conductivity. As a rule of thumb, if the difference 
between the alternate velocity plot and the Z-t method is 
small, the Z-t value can be considered as accurate and 
precise. If absolute errors on Z are less than ±1.0 mm, 
this study shows that it may be concluded that computed 
hydraulic conductivity values are accurate and precise. 
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Figure 10. Scatter of hydraulic conductivity computed from 
Z-t method in function of absolute error of synthetic 
elevations. 
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Figure 11. Scatter of hydraulic conductivity computed from 
corrected Hvorslev method in function of absolute error of 
synthetic elevations. 
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