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ABSTRACT 
A new elastic-viscoplastic model is proposed in this paper to describe the rate sensitive behaviour of soft clay soils. The 
model is based on Bjerrum’s (1967) concept of delayed compression and Perzyna’s (1963, 1966) formulation of visco-
plasticity and adopting Modified Cam-Clay (Roscoe and Burland, 1968) framework. The proposed model is similar to 
that proposed by Kutter and Sathialingham (1992) but with a modified shape for the flow surface and critical state cone 
in the octahedral plane. The validity of the model was varified by simulating some laboratory undrained tests and the 
predictions were found to be in good agreement with the laboratory (undrained triaxial) test results as discussed in the 
paper.  
 
RÉSUMÉ 
Une nouvelle élastique-viscoplastique modèle est proposé dans le présent document pour décrire le comportement 
sensibles aux taux de sols d'argile molle. Le modèle est fondé sur la Bjerrum (1967) notion de retard de compression et 
de Perzyna's (1963, 1966) formulation de visco-plasticité et l'adoption Mis à jour le Cam-Clay (Roscoe et Burland, 1968) 
cadre. Le modèle proposé est similaire à celui proposé par Kutter et Sathialingham (1992) mais avec une modification 
de forme pour le flux de surface et état critique dans le cône octaédral plan. La validité du modèle a été varified en 
simulant certains undrained tests de laboratoire et les prévisions ont été jugées en bon accord avec le laboratoire 
(undrained triaxial) les résultats des tests comme indiqué dans le document.  
 
 
 
1 INTRODUCTION 
 
The stress-strain behaviour of clayey soils is non-linear, 
irreversible and time dependent. The design of structures 
directly and indirectly on or in the clayey soils need good 
understanding and modeling of the time-dependent 
stress-strain behaviour of the soils (Yin 2001).  

The time dependency of clayey soils is too significant 
to be ignored. Bjerrum (1967) suggested a conceptual 
time line model for modeling the delayed compression in 
1-D straining condition. He suggested that the volumetric 
strain in soil is of two types: delayed and instant. The 
proposed model is based on the hypothesis that there is 
no instant inelastic strain and consequently all inelastic 
strains require time to occur.  

It is observed that in the traditional consolidation tests, 
the time dependent deformation becomes obvious only 
after the completion of primary consolidation at which 
point the creep becomes noticeable. This does not mean 
that delayed compression does not occur during primary 
consolidation. A number of studies have revealed that 
creep occurs at higher rate initially and becomes slower 
with time (Kutter and Sathialingham 1992; Yin et al. 2002) 
that is, it becomes evident only after the pore water 
pressure is dissipated that is, when the hydrodynamic lag 
does not control the process anymore. Based on these 
concepts and Perzyna’s (1963, 1966) formulation of 
viscoplasticity, Kutter and Sathialingham (1992) proposed 
an elastic-viscoplastic model to describe the time 
dependent behaviour of soils. However the formulation 
had the following limitations: (a) the formulation was for 
triaxial stress conditions only and (b) the shape of the 
critical state surface (failure surface) and the flow surface 

in the octahedral-plane (the plane in principal stress 
space orthogonal to the mean normal stress axis, also 
known as π-plane) was considered as a circle. The 
critical state line forms a conical shape (Drucker-Prager 
(1952) yield surface) in 3D stress space. The shape 
appears in Cam-clay or Modified Cam-clay (Schofield and 
Wroth 1968), not as a yield surface but as a critical state 
cone (Britto and Gunn 1987). However Drucker-Prager 
(1952) yield surface (i.e. the critical state cone here) gives 
a worse fit to the data of soil failure (Britto and Gunn 
1987). It is noted that the failure of geo-materials follows 
better to the shape of Mohr-Coulomb’s failure criterion 
(Britto and Gunn 1987; Yin 2001)  In the model proposed 
in this paper, the shape of the failure surface and flow 
surface in the π-plane is modified with an approximation 
of hexagon (ABAQUS theory Manual version 6.6; Yin 
2001) which incorporates the third invariant of deviatoric 
stress in the formulation. The model has been 
generalized in 3D stress space as well.  

It is generally believed that Mohr-Coulomb failure 
criterion can better describe the failure of soil (Yin et al. 
2002). However the trace of the failure surface on the π-
plane in the principle stress space is an irregular 
hexagon. The surface exhibits singularities in corners. To 
remove this singularity the Mohr-coulomb hexagon is 
approximated by a convex surface as shown in figure 2 
and is discussed later. 

This model is then used to describe some laboratory 
test results - undrained monotonic triaxial tests at different 
strain rates and at different over-consolidation ratios.  
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2 MATHEMETICAL FORMULATION  
 
A similar approach as Kutter and Sathialingham (1992) 
has been followed while deriving the constitutive 
equations. The strain rate is additively decomposed into 
elastic and viscoplastic parts.  
                       

vpe
 =  ε  + ε

ij ij ij
ε & &&                                                                 [1] 

 

Here εij& is the total strain rate, eεij&  is the elastic strain rate 

and vpεij&  is the viscoplastic strain rate. The elastic strain 

rate is given by, 
 

e
= E  σ

ij ijkl kl
ε &&                                                                  [2] 

 
Here Eijkl  is the fourth order compliance tensor with 

sub-indices k = 1, 2, 3 and l = 1, 2, 3. Summation is 
implied if two sub-indices of two items are the same. The 
elastic deformation of the soil is assumed to be isotropic 
and there are only two constants (for example a shear 
modulus Ge and a bulk modulus Ke).  σkl  is the effective 

stress tensor. The superimposed dots indicates time 
derivative. Note that all the quantities in the formulation 
are in terms of effective stress and the prime symbol is 
omitted. 

 The formulation of vpεij&  is based on Perzyna’s (1963) 

formulation of viscoplasticity. He assumed the existence 
of the so called excess stress function F which is 
represented by the difference between the dynamic 

loading function   fd ( σ
ij

, vpεij& ) = kd and static yield 

function given by fs( σij
,

p
ε
ij
& ) = ks.  

The excess stress function F was defined as follows  
  

f dF  = - 1
f s

                                                              [3]                                         

 
and the viscoplastic strain rate tensor for the simple case 
of an infinitesimal strain field was given by, 
 

fvp dε = <Φ(F)>ij
σij

∂

∂
&                                                           [4]                                

 
It is noted that in the original formulation of Perzyna 
(1963) < Φ(F) > = 0  for F 0≤  and < Φ(F) > = Φ(F) for F >0  

In the present formulation of stress strain relation of 
the viscoplastic strain rate, <Φ(F)>  is replaced by excess 
stress functionφ and the equations takes the form as,  

 
fvp

ε = 
ij σij

φ
∂

∂
&                                                                     [5] 

 

The functional form of φ  can be determined 

theoretically or experimentally. Here f represents the 
reference surface (to be discussed in the next section) 

and 
ij
σ is the image stress on the reference surface.  

Figure 1 shows the two yield surfaces considered in 
the present formulation namely the loading surface and 
the reference surface. Dependency of strain or strain rate 
on q (deviatoric stress) is replaced by another stress 
function y . Here y is defined as,  

 
3

1 1 1 r
y = q 1+ - 1-

2 k k q

 
         

                                            [6a] 

 
where 
 

1

9 3r =  s  s sij jk ki
2

 
 
 

                                                       [6b] 

 
k is considered to be the ratio of the slope of Critical 
State Line (CSL) in extension (ME)  to the slope of CSL in 
compression (MC) (Yin 2001) and can be expressed as 
k = (3-sin )/(3+sin )ϕ ϕ′ ′ . 

 The hardening and softening is assumed to be 
dependent only on the volumetric strain. The material is 

assumed to fail when y = pM
C

 (ABAQUS theory manual, 

version 6.6) 
 The loading surface ( f = 0 ) is analogues to the 

dynamic yield surface of Perzyna (1963) and is a surface 

of constantφ . The reference surface ( f = 0 ) which is 

also a surface of constantφ , is similar to the static yield 

surface of Perzyna (1963). In the original formulation of 
 

 
Figure1. Reference surface and Loading surfaces 
adopted in the present formulation 
 
Kutter and Sathialingham (1992), another surface of 
constant φ  namely potential surface was considered. As 

associative flow rule will be adopted, the plastic flow is 
considered to be normal to the reference surface and the 
potential surface is not necessary in this formulation. 

A radial mapping rule as used by Dafalias and 
Herrman (1982) have been used to map the current 
stress state σij  to the reference surface. The image 

stress on the reference surface is denoted by σij . As 

p 
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proposed by Kutter and Sathialingham (1992) the stress 
difference function φ  represents the difference between 

the current stress state σij on the loading surface and the 

corresponding stress state σij  on the reference surface.  

Similar to Kutter and Sathialingham (1992), the 
current stress could be larger or smaller than the 
corresponding stress state on the reference surface 
depending on the rate of loading. It is different from 
Perzyna’s (1963) overstress function which is only 
defined for cases where f  > fd s . φ  is defined for all 

values of f  and f  in the present formulation.     
The reference surface is smooth and consists of two 

ellipse with the following equations, 
 

 00

2
yR-2 2f  = (p - p ) p + p + (R-1) = 0

R M

              

                  [7a] 

 

0
2p y

f = p - 2 + = 0
R M

   
       

                                           [7b] 

 
The loading surface has the same functional form and the 
equation of loading surface can be obtained by replacing 
the symbols f , p, y  and p0 in the equation 7a and 7b by 

f, p, y and px . Incorporation of y  instead of q  in the 

equation of yield surfaces changes the shape of the flow 
surface and critical state surface in the π-plane. The 
circular shape critical state cone and flow surface on the 
π-plane turns into an approximation of Mohr-Coulomb 
hexagon. Though the value of k  has been considered as 
the ratio of slope of CSL in extension to the slope of CSL 
the value of k  should be remain within the range of  
0.778  k  1≤ ≤  to avoid numerical difficulties evolved 
because of the surface being concave (ABAQUS theory 
manual version 6.6). When k is unity the hexagon turns 
into a circle and at that point y becomes equal to q. Any 
value beyond the lower limit may cause the approximated 
hexagon to be concave in shape which will cause 
numerical difficulties. The effect of k on the shape of 
critical state surface and flow surface on π–plane is 
shown in figure 2.  

The constant R in equation 6 controls the shape of the 
yield surface in the p - y  plane especially on the wet side 

of the critical state line. In p - q plane for R = 2 the two 

yield surfaces makes an ellipse which is of the same 
shape as of Modified Cam-clay yield surface.   
 
 

 
Figure 2. Shape of critical state surface and flow surface 
on octahedral plane (from ABAQUS theory manual ver-
6.6) 
 
 
2.1 Derivation of the Mapping Parameter   
 
The equation of reference surface as in equation 7  
 

2

2

0 0

R-2 y
f  =  (p - p ) p+ p + (R-1) =0

R M
  

     
         

 

 
Using a radial mapping rule as in the bounding surface 
formulation of Dafalias and Herrmann (1982) we can write  

 
p = βp                                                                          [8a] 

 
q = βq                                                                          [8b] 

 

ij ij
σ = βσ                                                                         [8c] 

 
y = βy                                                                           [8d] 

 
Putting them in the equation of flow surface we can get  
 

0

x

p
β =

p
                                                                        [9a] 

 
where   

 
2

x 2

C

y
p = p +

pM
                                                            [9b] 

 
2.2 Derivation of  φ  function 

 
Bjerrum (1967) used his model to explain the mechanism 
and effect of quasi-preconsolidation of normally 
consolidated clays. In figure 3 below the void ratio-
effective stress relationship for normally consolidated clay 
is presented. In the present formulation Bjerrum’s (1967) 
concept is used to obtain the overstress function following 
the approach of Borja and Kavazanjian (1985) and Kutter 
and Sathialingham (1992). 

 

   y 
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Creep at a constant effective stress is usually defined 
using the secondary compression index (Cα) as follows, 
 

( )α

∆e
C =

∆ logt
                                                            [10a] 

 
and 
 

α
C

α=
ln10

                                                                    [10b] 

 
 

 
Figure 3. Effect of secondarily consolidation on the 
location of the compression curve (Bjerrum 1967; Kutter 
and Sathialingham 1992) 
 
Here t  is the time and   ∆e  is the change in void ratio 
during creep compression.  This is illustrated in the 
following figure (Figure 4). 
The soil sample at point “a” sitting for and exact time 
t = t with respect to reference time t , undergoes creep 
as time passes and the reference void ratio e decreases 
from “a” to “b” whereas the apparent preconsolidation 
pressure increases from “c” to “d”. If the final void ratio 
after creep is e , then the equation 10a becomes  
 

α

e-e
C = -

log t-logt

 
 
 

                                                   [11a] 

 
or  
 

(e-e/Cα)t
=10

t
                                                               [11b] 

 

 
 

Figure 4: Relative locations of 
x

p  and 
0

p  in 

e - ln p space and p - y  space 

 
The reference time is generally taken as one day. The 
reference void ratio will be obtained if the soil is normally 
consolidated for the same stress for reference time t . 
Differentiating equation 11b with respect to time gives,  
 

( )e-e
αexp

de α
= -

dt t

 
 
                                                  [12] 

 
 
again, 
 
 

( )
vp

v

de 1
ε = -

dt 1+e
&                                                           [13] 

 

where vp
εv& is the volumetric viscoplastic strain rate. 

Comparing equation 12 and equation 13 yields 
 

( )

( )vp

v

e-eα
ε = exp

t 1+e α

 
  

&                                          [14] 

 
The following equations can be obtained from figure 4 
 

0

N 0

p
e = e - λlnp + κln

p

 
 
 

                                           [15a] 

 

0

N x

p
e = e - λlnp + κln

p

 
 
 

                                          [15b] 

 
Here eN  is the void ratio for the reference mean time at 

unit mean normal pressure on the isotropic normal 

p  

CSL y 
(p, y)

(p, y)

N
e

t = t  

e  

ln pp
x

p
0p  

κ lines 

λ  line e  

e  

a 

b 
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d 
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consolidation line and can be related to the Г parameter 
of MCC formulation (Schofield and Wroth 1968) by the 
following equation: 
 

( )
N

e = Γ+ λ-κ ln2                                                          [16] 

 
From equation 15a and equation 15b we can get 
 

( ) ( ) x

0

p
e-e = λ-κ ln

p

 
 
 

                                               [17] 

 
Substituting equation 17 in equation 14 we can write, 
 

( )

( )λ-κ

α
vp x

v

0

pα
ε = 

t 1+e p

 
 
 

&                                              [18] 

 
The volumetric viscoplastic strain can be expressed as  
 

vp

v

f
ε =

p

∂

∂
&                                                                        [19] 

 
The viscoplastic flow function φ  therefore can be 

determined by combining equation 18 and equation 19 
 

( )

( )λ-κ

α

x

0

pα 1
φ =

ft 1+e p

p

∂

∂

 
 
 

                                          [20] 

 
All the functions in the equation have been defined 
previously except the partial derivatives. The normal at 

any point on f  is given by  
 

ij ij ij

f f p f y
= +

σ p σ y σ

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
                                                [21] 

 
2.3 The time dependent hardening rule 
 
The time dependent evaluation law of the f  surface is 
dependent on the current viscoplastic increment of 

volumetric strain, vp
εv∂ , and is accounted via equation 17. 

Taking derivatives with respect to time of equation 17 and 
substituting vp

vde = - d ε (1+ e)  and 

vp
de / dt =  - (1+ e) e v

& , the time dependent hardening rule 

can be obtained as follows: 
 

vp vp

0 v v

0 0

d p (1+e) ε (1+e) ε
p =  =  p  exp

d t (κ-λ) (λ-κ)

∂ ∂  
  
  

&                     [22] 

 
 

All the terms in the equation is defined previously and it is 

to be noted that from this equation 
0

p changes with time 

dependent viscoplastic deformation and time is implicitly 

represented by vp
εv∂ . 

 
 
3 DETERMINATION OF MODEL PARAMETERS 
 
The way of determining the parameters are as described 
by Kutter and Sathialingham (1992). For the sake of 
completeness a brief description is added here.  
The constitutive equations need seven material 
parameters for the full description of soil behaviour. 
Material constants includes traditional critical state 
parameters λ, κ, Mc and Poisons ratio µ and the void ratio 
at unit mean normal pressure after t   days of normal 
consolidation, eN which is related to MCC (Schofield and 
Wroth 1968) Г parameter. λ, κ and eN can be determined 
in conventional way from 1D compression or isotropic 
compression tests. The reference time is an arbitrary 
quantity and can be chosen from convenience to match 
the load increment duration used in the laboratory testing. 
The coefficient of secondary compression Cα or α can be 
determined from long term 1D compression test on a 
normally consolidated soil in conventional way.  
The shape parameter is R adopted from Dafalias and 
Herrmann (1986) and represents the ratio of mean 
normal stresses for the surface at y = 0 and at q = pMC. A 
good estimation of R can be found form undrained stress 
paths (Yin and Zhu 1999). In MCC formulation Roscoe 
and Burland (1968) adopted R to be equal to 2 
irrespective of the clay type. R can take any value from 1 
to infinity (Kutter and Sathialingham 1992) although 
values in the range of 2 to 3 have been used in the 
bounding surface formulation (Kaliakin 1985). R was 
taken as 2.5 by Hermann et al. (1981) and 2.8 by Adachi 
et al. (1985). The values were kept the same in this paper 
while simulating their tests.  
 
 
4 VERIFICATION OF THE MODEL 
 
To verify the predicting capability of the model some 
experimental published laboratory test results have been 
predicted and compared. The tests include undrained 
triaxial compression with different strain rate and 
undrained stressing with the same strain rate with 
different OCR. Figures below present the test results of 
(after Yin et al. 2002, Herrmann et al. 1981) and 
simulated results (along with the Kutter and 
Sathialingham (1992) model prediction) for CIU tests on 
the mixture of Kaolin and bentonite with different degree 
of over consolidation. The bold lines are the prediction of 
the current model and the thinner lines are the prediction 
of the original Kutter and Sathialingham (1992) model.   

The specimens (mixture of Kaolin and Bentonite) were 
overconsolidated and had the OCRs of 1, 1.3, 2 and 6. 
The preconsolidation pressure of each specimen was 392 
kpa and the axial strain rate used for the simulation was 
during shear was 0.6% per hour. The parameters used 
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are listed in table 1. The predicted  
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Figure 5: Comparison between measured and predicted 
axial strain vs. deviatoric stress response of CIU tests 
on mixture of   Kaolin and bentonite (data from Dafalias 
and Herrmann 1986) 
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Figure 6: Comparison between measured and predicted 
axial strain vs. pore water pressure response in CIU tests 
on mixture of   Kaolin and bentonite (experimental data 
from Dafalias and Herrmann, 1986) 
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Figure 7. Comparison between measured and predicted 
mean normal stress verses deviatoric stress response in 
CIU tests on mixture of   Kaolin and bentonite (data from 
Dafalias and Herrmann, 1986) 
 
 

Table 1. Values of parameters used in the prediction 

Parameter Herrmann et al. 
(1982) 

Adachi et. al. 
(1985) 

λ 0.151 0.372 

k 0.018 0.054 
M 1.25 1.28 

µ 0.30 0.30 

N
e (1 day) 1.515 3.653 

Cα0 0.0139 0.341 

R 2.5 2.8 

 
deviatoric stress responses with change in axial strain are 
in good agreement with the measured values  as shown 
in figure 5. Shown in figure 6 and figure 7 are the 
predicted axial strain vs. pore water pressure response 
and mean normal stress vs. deviatoric stress curves  and 
also are in good agreement with the test results. 
Prediction of both the models are very close to each other 
except for the deviatoric strain vs. deviatoric stress plot, 
the new model shows a bit better prediction at lower 
strain level than that of the original Kutter and 
Sathialingham (1992) model.    

Adachi et al. (1985) presented undrained constant 
strain rate compression tests on undisturbed samples of 
Osaka alluvial clay at strain rates of 1.0, 2.1E-2 and 7.8E-
4 %/min. The sample was initially consolidated at 588 kpa 
before straining. The figures below show the comparison 
of the simulated behaviour and the test data. The value of 
R was taken as same as that adopted by Kutter and 
Sathialingham (1992). The other material parameters are 
as used by Adachi et al. (1985) and are listed in Table 1.  

In the following figures also the thicker lines represent 
the current model and the thinner lines represent the 
Kutter and Sathialingham (1992) model. 
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Figure 8: Predicted and experimental undrained stress 
paths for the various strain rates (Data from Adachi et al. 
1985) 
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Figure 9: Predicted and experimental stress-strain 
response for various strain rates (Data from Adachi et al. 
1985) 
 

0 4 8 12 16
Deviatoric strain (%)

0

200

400

600

800

P
or

e 
w

at
er

 p
re

ss
ur

e 
(k

pa
)

1% per min.
0.0021 % per min.

0.000078% per min

Experiment - 0.000078 % per  min.

Experiment - 0.0021% per min.
Experiment - 1% per min.

 
Figure 10: Predicted and experimental strain-pore water 
pressure relationship (Data from Adachi et al. 1985) 

 
The mean normal pressure vs. deviatoric stress 

graphs and the variation of deviatoric stress with  
deviatoric strain were in good agreement with the test 
results for both the models and in this case also 
deviatoric stress-strain response at lower strain level was 
a bit better predicted by the new model. The excess pore 
water pressure response against the deviatoric strain was 
over predicted to some extent.  

It can be concluded from the above figures that the 
effect of strain rate on soil stress-strain behaviour has 
been assessed reasonably well by the proposed theory 
with a little discrepancy in the prediction of excess pore 
water pressure response. 

 
 
5 SUMMARY AND CONCLUDING REMARKS 
 
This paper presents a new constitutive model based on 
the elastic viscoplasticity and Perzyna’s theory. The 
model assumes that all inelastic strain rates are 
viscoplastic. It requires seven material parameters for the 
full description of soil behaviour and these parameters 
can be easily determined from conventional laboratory 

tests. The model is a modified form of Kutter and 
Sathialingham (1992) model. In particular the shape of 
flow surface in octahedral plane is modified with the 
inclusion of the third invariant of deviatoric stress and the 
ratio of slope of CSL in tension and slope of CSL in 
compression. The circular shape of flow surface on 
octahedral plane has been changed into an approximate 
hexagon. The predicted results were in good agreement 
with the test results and the deviatoric stress-strain 
response was found to be better predicted by the new 
model at lower strain levels. Better predictions are 
expected while this model will be implemented 
numerically to predict the multiple behaviour 
characteristics of some real structures such as 
embankments on soft foundation soil or other structures.  
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