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ABSTRACT 
This study compares two methods for landslide hazard zonation. The first method uses an Artificial Neural Network 
(ANN) and consists of replicating an existing subjective geomorphic mapping produced by terrain specialists. The 
second method employs a physically-based method and is implemented as a software model. The mappings produced 
by the two methods are compared and the advantages, disadvantages, and practical applicability of each method are 
discussed. 
 
 
RÉSUMÉ 
 
Cette étude compare deux méthodes pour la zonation de risque des glissements de terrain. La première méthode 
emploie un réseau neurologique artificiel et reproduit une carte géomorphique existant produite par des spécialistes en 
terrain. La deuxième méthode utilise une méthode physique-basée et est mise en application comme un logiciel. Les 
résultats produits par les deux méthodes sont comparés et les avantages, les inconvénients, et l'applicabilité pratique 
de chaque méthode sont discutés. 
 
 
 
1 INTRODUCTION 
 
Landslide hazard assessment is a complex activity for 
which numerous methods of analysis have been 
developed, among which subjective geomorphic mapping 
is probably the most commonly used  (Keaton and 
DeGraff 1996; Soeters and van Westen 1996; Carrara et 
al. 2003). Subjective geomorphic mapping consists of 
delineating terrain polygons that are relatively uniform 
with respect to surficial materials, landforms, and 
geomorphic processes. The method relies heavily on the 
skills and experience of the mapper, and therefore, its 
major drawbacks are the high costs and a potential for 
lack of consistency between products generated by 
different terrain mappers. To address these shortcomings 
Pavel et al. (2008) developed an approach for cost-
effective and consistent replication of subjective 
geomorphic mappings by using a type of Artificial Neural 
Network (ANN) named Learning Vector Quantization 
(LVQ). 

An alternate method for landslide hazard assessment 
utilizes physically-based models. These models use 
principles of soil mechanics and groundwater hydrology 
combined with digital elevation models (DEM) of the 
terrain to assess landslide hazard. Various assumptions 
about groundwater flow and distribution of soil 
parameters over the area analyzed are usually employed. 
One of the more sophisticated physically-based models 

for landslide hazard zonation is SINMAP (Pack et al. 
2005) which was used in this study.  

The main objective of this study is to conduct a 
comparison between the LVQ-based method and the 
SINMAP method in the specific context of forest 
development planning in British Columbia (BC). As with 
other models developed for natural resources 
management, these models are not meant to replace the 
analyst but to assist in the terrain stability mapping. 
These models are assessed with respect to their ability to 
delineate areas of potential instability, and identify zones 
that require detailed ground checks, thereby limiting 
expensive ground checks to only the most landslide-
prone  areas.  

 
 

2 STUDY SITE 
 
This study was conducted using data from the Lower 
Seymour watershed within the Metro Vancouver 
(formerly, Greater Vancouver Regional District), situated 
in southwestern BC. The Seymour watershed lies within 
the Pacific Ranges of the Coast Mountains, and has a 
total area of  56.7 km2. The watershed was included in a 
comprehensive ecological and geomorphologic study 
Anon. (1999) which constitutes the main data source for 
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this analysis. The terrain is characterized by rugged 
topography, with elevation ranging from 40 m to about     
1 500 m.  Fig. 1 displays a Digital Elevation Model (DEM) 
of the study area, based on a 20-m cell raster using the 
ArcViewTM Geographic Information System (GIS). The 
locations of 212 existing landslides were identified from 
aerial photographs and ground-truthing. 

 
 

 
 
Figure 1. Seymour - DEM, roads, streams, and location of 
existing landslides. 
 
 

Most common surficial deposits in Seymour consist of 
silt and coarse gravel. More recent deposits, mostly 
coarse-textured, have been deposited on gentle slopes 
by streams and debris flows, and on steeper slopes by 
rock fall. The valley floors represent a particular challenge 
with respect to stability, because the surficial materials 
overlie glaciolacustrine deposits. Although these areas 
are characterized by low slopes, a high clay content 
makes them prone to instability, as confirmed by the 
relatively large number of landslides in this lower part of 
the watershed.  

The terrain stability map of Seymour developed by 
Anon. (1999) is also presented in Fig. 2. Within Seymour, 
397 polygons were delineated according to the BC terrain 
classification system (Howes and Kenk 1997) and 
stability classes from Class I (stable) to Class V (most 
unstable) were assigned to each polygon based on 
principles reported in Province of BC (1999). Terrain 
stability classes provide a relative ranking of the 

likelihood of a landslide occurring after timber harvesting 
or road construction. 
  
 
 

 
 
Figure 2. Seymour - terrain stability mapping and location 
of existing landslides. 
 
 
3 LANDSLIDE HAZARD ZONATION USING THE 

LEARNING VECTOR QUANTIZATION (LVQ) 
ALGORITHM  

 
In general, Artificial Neural Networks (ANN) are 
information-processing systems that have certain 
performance characteristics in common with biological 
neural networks, and have been developed as 
generalizations of mathematical models of human 
cognition and neural biology. In an ANN-based analysis, 
each terrain unit is assigned a series of topographic and 
geomorphic attributes relevant to stability, e.g., elevation, 
slope, aspect, type of surficial material and texture, 
existing geomorphic processes, etc. Thus, in our study, 
raster cells are represented by n-dimensional vectors and 
the terrain classification problem consists of analyzing 
these high-dimensional data sets.  

The Learning Vector Quantization (LVQ) neural 
network used in this study is a relatively simple and yet 
efficient classification algorithm which was purposely 
developed for statistical pattern recognition, especially 
when dealing with very noisy, high-dimensional stochastic 
data (Kohonen 2001). The main benefit of LVQ is good 
recognition accuracy while at the same time significantly  
reducing the number of computing operations when 
compared with more traditional statistical methods. In this 
study LVQ was used for supervised classification, based 
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on the assumption that a number of examples (spatial 
entities) already classified are available for purposes of 
learning. The task is to assign new entities to various 
classes based on how similar they are to the examples 
included in these classes. Essentially, the LVQ algorithm 
is able to ‘learn’ the patterns of instability from the first 
dataset and then use these to classify new data. 

For the purpose of this study, and also considering the 
practical applicability of the method, the LVQ algorithm 
was used to identify two groupings of terrain stability 
class. Taking into account the mapping presented in Fig. 
2, terrain identified as Class I – III was considered stable, 
and terrain Class IV – V was considered unstable. The 
terrain stability analysis in Seymour was conducted in two 
steps. In the first step the LVQ algorithm was trained 
using a portion of the data. Next, the trained network was 
used to classify the remaining data. The quality of results 
was assessed by comparing the mapping produced by 
the LVQ algorithm with the existing subjective 
geomorphic mapping. The amount of data to separate 
into training and testing sets is problem dependent. Most 
practitioners recommend randomly splitting the data into 
two thirds for training and one third for testing. For our 
study site, the total number of raster cells in the DEM was 
split in accordance with this same rule. A complete 
description of the LVQ-based analysis for Seymour is 
presented in Pavel et al. (2008). 
 
 
4 LANDSLIDE HAZARD ZONATION USING SINMAP 
 
SINMAP is designed to work as an extension for the 
ArcViewTM GIS and it is described by the following 
features: 

• It is based on an infinite slope stability model. 
• Topography is represented as a DEM.  
• Spatial distribution of groundwater is based on 

shallow subsurface flow convergence and 
topographic slope.  

• Uncertainty of parameters is incorporated through 
ranges of soil and hydrologic parameters. 

• It is interactively calibrated. 
 

The measure of stability established by SINMAP (its 
main output) is the so-called Stability Index (SI).  
Essentially, a Stability Index is computed for each cell in 
the DEM. The formula for the SI is derived starting from 
the infinite slope formulation (Hammond et al. 1992), 
through a series of successive transformations and by 
using a probabilistic representation of some parameters. 
SINMAP uses terrain slope derived from the DEM and a 
series of user inputs consisting of a unique value for soil 
density (kg/m3), and three soil parameters (given as 
ranges): (i) dimensionless cohesion defined in SINMAP 
as a function of root cohesion, soil cohesion, soil 
thickness and soil density; (ii) angle of internal friction for 
the soil (deg.); and (iii) the ratio transmissivity / recharge. 
Transmissivity is a function of hydraulic conductivity and 
soil thickness, and recharge is a measure of water input 
at a certain point (this ratio has units of m). If available, 
the location of existing landslides is also used to improve 

the accuracy of the prediction. A complete description of 
the method is provided in Pack et al. (2005).  

Essentially, SINMAP delineates potential landslide 
initiation zones. The model applies only to shallow 
translational landslides controlled by shallow groundwater 
flow convergence. Apart from SI, SINMAP also outputs a 
calibration graph which reflects the distribution of the 
mapped area by stability classes. If available, existing 
slides are represented in the graph as well, and based on 
their distribution by (predicted) stability classes the input 
parameters are adjusted. The analysis is repeated until a 
satisfactory state is reached. At the end of this process, 
the map obtained is considered the prediction obtained 
with SINMAP. 

The parameters used in SINMAP for this study were 
selected based on the field tests conducted in the 
Seymour area by Wilkinson (1996), Jaakkola (1998), and 
based on the experience of the authors. The value for soil 
density (�) was set to 1800 kg/m3. The other parameters 
are input as ranges. During the calibration process these 
ranges were adjusted, and the list of initial and final 
parameters is presented in Table 1.  
 
 
Table 1. The list of initial and final parameters used in 
SINMAP. 
 

Values Parameters 
Initial Final 

Dimensionless 
cohesion - C  0 - 2 0 - 1.2 

Angle of internal 
friction - �  (deg.) 28 - 47 35 - 47 

Transmissivity / 
Recharge -T/R (m) 

200 - 
3000 

1000 - 
3000 

 
 
5 RESULTS  
 
5.1 Results produced by the LVQ algorithm 

 
The LVQ-based landslide hazard mapping is presented in 
Fig. 3, which depicts stable and unstable terrain as 
identified by this method. In addition to the LVQ-based 
mapping, terrain polygons Class IV and V (unstable 
terrain) and the location of existing landslides are also 
illustrated. Fig. 3 shows that terrain identified as unstable 
by the LVQ algorithm includes all the existing landslides.  

The similarity to the actual mapping produced by the 
terrain specialists achieved by the LVQ-based mapping is 
90.9%. The misclassifications consist of a relatively small 
area classified as unstable in the ‘stable’ zone (as 
identified by the geomorphic mapping), and also of some 
polygons or portions of polygons Class IV and V 
classified as stable by the LVQ algorithm. Pavel et al. 
(2008) discuss in detail this result and analyze the 
intrinsic differences between the subjective geomorphic 
method and the LVQ algorithm, and propose techniques 
for accuracy improvement in future studies.  
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Figure 3. Terrain stability prediction using Learning Vector Quantization. 
 
 

 
5.2 Results produced by SINMAP 
 

The mapping produced by SINMAP is presented in 
Fig. 4 In this figure, six distinct zones are automatically 
identified corresponding to various stability indices as 
follows (in decreasing order of stability): stable, 
moderately stable, quasi-stable, lower threshold, upper 

threshold, and defended. In addition to the SINMAP 
mapping, terrain polygons Class IV and V (unstable 
terrain) and the location of existing landslides are also 
illustrated.  
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Figure 4. Terrain stability prediction using SINMAP. The entire area and detail. 
 

 
 

In SINMAP, although reasonable effort was put into 
tuning the attributes, the system still failed to identify 21 
landslides (18 near the valley floor and 3 in the rest of the 
area). Very often, areas classified as unstable include 
isolated pixels or clusters of pixels of stable areas. 
However, in three cases, the stable pixels include existing 
landslides, as identified in the detail presented in Fig. 4.  

 Although there is no direct correspondence between 
the stability zones identified by SINMAP and the 
subjective geomorphic mapping, it seems reasonable to 

compare the area of the most unstable three classes 
(lower threshold, upper threshold, and defended) with 
terrain Classes IV and V. The similarity to the actual 
mapping produced by the terrain specialists achieved by 
the SINMAP mapping is 82%. Similarly to the LVQ-based 
prediction, the area classified as unstable in the ‘stable’ 
zone (as identified by the geomorphic mapping) is 
relatively small. The majority of the misclassified areas 
are represented by portions of polygons Class IV and V 
classified as stable by SINMAP.   
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6 DISCUSSION 
 
The results obtained in this study indicate that the LVQ-
based mapping yields better results than the physically-
based model. However, it is very likely that the quality of 
the LVQ-based mapping was influenced by the random 
selection of DEM cells included in the training and testing 
data sets. Random selection is a commonly used 
procedure which ensures that both data sets were 
representative and the analysis is unbiased. Through this 
selection/splitting of data, adjacent pixels similar in their 
attributes were assigned to the training and testing data 
sets, respectively. Hence, it seems that random selection 
of cells influenced the good quality of classification by the 
virtues of spatial autocorrelation (Legendre 1993): i.e., if 
the pattern represented by one cell was correctly learned 
in the training phase, then the adjacent cell was correctly 
classified in the testing phase. This was obviously the 
case for terrain (and existing landslides) correctly 
classified on the valley floor, on the southern end of the 
study site. On the same issue, despite the efforts for 
calibrating SINMAP, the model was not successful at 
identifying the respective area as unstable. These results 
identify a major advantage of the 'pattern recognition' 
(LVQ) approach versus the physically-based model: the 
LVQ approach was able to 'learn' the patterns of 
instability existing on the entire watershed, whereas the 
physically-based approach is restricted by its principles, 
and was not successful in predicting instability in complex 
conditions. 

Another difference between the mappings produced 
by the two methods presented in this study relates to the 
contiguity of areas identified as stable or unstable. As 
presented in Fig. 3, the LVQ-based mapping produced 
relatively large contiguous areas of similar terrain (stable 
or unstable). This increases the practical applicability of 
the method, and confirms the principle of self-
organization of surficial geomorphic deposits that was 
also identified in other studies (Werner 1999; Mann 2003; 
Pavel 2003). In contrast, the SINMAP mapping creates a 
mosaic of zones of various sizes with different stability 
indices. This may be problematic for practical applications 
as field assessments cannot be directed based only on 
the size of the unstable areas (i.e., cannot neglect small 
unstable areas).  

The last and probably most important difference 
between the two approaches compared in this study 
refers to the assumptions used. The LVQ mapping 
implicitly assumes that a mapping for a similar terrain is 
available. However, similarity between various areas is a 
subjective call and this is a weakness of the approach. 
The assumptions used by SINMAP are presented in 
Section 4 of this paper and refer to the groundwater flow 
and distribution of soil parameters over large areas. 
Experience to-date suggests the assumptions of the LVQ-
based mapping are more acceptable than those of the 
physically-based model. Also, given its main principle, the 
SINMAP analyses have an element of subjectivity (i.e., 
parameters have to be input by the user), and therefore 
predictions may vary with the experience of the analyst.  

Future investigations of these approaches will clarify their 
applicability for landslide hazard zonation.  
 
 
ACKNOWLEDGEMENTS 
 
Funding for this study was provided by the Science 
Council of British Columbia, University of British 
Columbia, Natural Sciences and Engineering Research 
Council of Canada, and Western Forest Products, Ltd. 
The authors are very grateful to the Greater Vancouver 
Regional District for providing the data used in this study.  
 
 
REFERENCES 
 
Anon. 1999. Greater Vancouver Regional District (GVRD) 

watershed ecological inventory program. Study 
coordinated by Acres International Limited. 3 
volumes, 500 + pp. 

Carrara, A., Crosta, G., and Frattini, P., 2003. 
Geomorphological and historical data in assessing 
landslide hazard. Earth Surf. Process. Landforms 28: 
1125-1142. 

Hammond, C., Hall, D., Miller, S., and Swetik, P. 1992. 
Level I Stability Analysis (LISA). Documentation for 
Version 2.0. USDA, Intermountain Research Station. 
General Technical Report INT-285. 128 pp.  

Howes, D.E., and Kenk, E. (contributing eds.) 1997. 
Terrain classification system for British Columbia 
(version 2). Ministry of Environment and Surveys, and 
Ministry of Crown Lands. Victoria, BC. 101 pp. 

 http://ilmbwww.gov.bc.ca/risc/pubs/teecolo/terclass/co
ntent.htm  (accessed April, 2008) 

Jaakkola, J. 1998. Forest Groundwater Hydrology: 
Implications for Terrain Stability in Coastal British 
Columbia. MASc Thesis. UBC.  

Keaton, J.R., and DeGraff, J.V., 1996. Surface 
observation and geologic mapping. In: Turner, A.K, 
Schuster, R.L. (Eds.), Landslides - Investigation and 
Mitigation. National Acad. Press, Transp. Res. Board 
Special Rep. 247, Washington, DC, pp. 178-230. 

Kohonen, T., 2001. Self-organizing Maps. Third edition. 
Springer-Verlag, Berlin. 

Legendre, P. 1993. Spatial autocorrelation: Trouble or 
New Paradigm ? Ecology, 74 (6): 1659 - 1673. 

Mann, D. 2003. On patterned ground. Science 299: 354 – 
355. 

Pack, R.T., Tarboton, D.G., Goodwin, C.N., and Prasad, 
A. 2005. SINMAP 2: A Stability Index Approach to 
Terrain Stability Hazard Mapping. User’s Manual. 73 
pp. 

 http://hydrology.neng.usu.edu/sinmap2/ 
 (accessed April, 2008) 

Pavel, M. 2003. Application of Artificial Neural Networks 
for terrain stability mapping. Ph.D. thesis, University of 
British Columbia, Vancouver. 

Pavel, M., Fannin, R.J., and Nelson, J.D. 2008. 
Replication of a terrain stability mapping using an 
artificial neural network. Geomorphology 97 (3 – 4): 
356 – 373. 

GeoEdmonton'08/GéoEdmonton2008

452



Province of BC (British Columbia), 1999. Mapping and 
assessing terrain stability guidebook. Second Edition. 
Forest Practices Code of British Columbia. Ministry of 
Forests and Range, Victoria, BC, 36 pp.  

 http://www.for.gov.bc.ca/TASB/LEGSREGS/FPC/FPC
GUIDE/terrain/index.htm 

 (accessed April, 2008)  
Soeters, R., and van Westen, C.J., 1996. Slope instability 

recognition, analysis, and zonation. In: Turner, A.K, 
Schuster, R.L. (Eds.), Landslides - Investigation and 
Mitigation. National Academy Press, Transp. Res. 
Board Special Rep. 247, Washington DC, pp. 129-
177. 

Werner, B.T. 1999. Complexity in natural landform 
patterns. Science 284: 102 - 104. 

Wilkinson, J.M.T. 1996. Landslide initiation: a unified 
geostatistical and probabilistic modeling technique for 
terrain stability assessment. M.A.Sc. Thesis, UBC.  

 
 
 
 

GeoEdmonton'08/GéoEdmonton2008

453




