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ABSTRACT 
This paper examines the sensitivity of slope stability with respect to anisotropy and spatial variability of soil strength 
parameters. Following a description of the treatment of anisotropy, the kinematic element method is extended to take 
into account the directional dependency of soil strength. Using the fast Largrangian analysis of continua, the influence 
of the spatial variability of soil strength on slope stability is performed by Monte-Carlo simulations and the subsequent 
finite difference analyses using FLAC. Numerical examples show that both the strength anisotropy and the spatial 
variability have significant impact on slope stability, with the factor of safety being more sensitive to anisotropy.  
 
RÉSUMÉ 
Cet article examine la sensibilité de la stabilité d'une pente en fonction de l’anisotropie et de la variabilité spatiale des 
paramètres de résistance des sols. Après une description du traitement de l'anisotropie, la méthode a base de 
cinématique des éléments est developée pour prendre en compte la dépendance directionnelle de la résistance du sol. 
Utilisant la methode dite "FLAC" (pour Fast Lagrangian Analysis of Continua), l'influence de la variabilité spatiale de la 
résistance du sol sur la stabilité d'une pente de talus est estimée par simulations Monte-Carlo, et ensuite a l'aide de 
l'analyse par la méthode des différences finies en utilisant la technique FLAC. Les exemples numériques montrent que 
l'anisotropie de la résistance et la variabilité spatiale ont un impact significatif sur la stabilité de la pente, le facteur de 
sécurité étant le plus sensible à l'anisotropie.. 
 
 
 
 
1 INTRODUCTION 
 
Considerable research has been carried out on slope 
stability analysis, given its practical importance, for 
example for the design and construction of highway 
embankments, excavations and earth dams. For several 
decades, the limit equilibrium method based on simplified 
failure mechanisms such as slip circles has dominated 
the geotechnical engineering practice. The method, 
originating from a basically empirical background 
(Fellenius, 1936), has been significantly improved by, 
e.g., Morgenstern and Price (1965), Spencer (1967), 
Janbu (1973), Fredlund and Krahn (1977) and Duncan 
(1992). In spite of the popularity, both the kinematic and 
static admissibility may be violated potentially leading to 
significant errors in factor of safety estimates (Yu et al., 
1998).  

A more rigorous approach for analyzing stability 
makes use of the limit theorems of plasticity to provide 
lower and upper bound solutions that take into account 
equilibrium and collapse mechanisms, respectively, as 
described by Yu et al. (1998) and Kim et al. (2002). A 
compromise between limit equilibrium and limit analysis 
procedures is the kinematic element method (KEM). 
Developed by Gussmann (1982, 2000), the KEM 
considers rigid elements and failure conditions rigorously 
taking into account both the kinematics and static 
equilibrium.  

Unfortunately, the analysis of actual geotechnical 
problems is difficult due to complex soil properties 
including history-dependent behaviour and anisotropy of 

the materials involved. Moreover, the uncertainty of 
measured material properties and their in-situ spatial 
variability make the analysis more complicated. As a 
result, improvements due to more realistic modelling may 
be undermined by complex soil properties and the 
uncertainties associated with the actual boundary-valued 
problems. Furthermore, improvements in the numerical 
and analytical tools for slope stability analysis do not 
necessarily improve the confidence in the estimation of 
factor of safety.  

The effect of soil anisotropy and the spatial variability 
of soil strength on slope stability has been studied in the 
past. A probabilistic approach for slope stability analysis 
using finite element method can be used to 
accommodate the randomly spatial variability of soil 
properties; see, e.g., Griffiths and Fenton (2000, 2004). 
However, this method does not appear to have received 
acceptance in practice and hence may still be considered 
as a research tool. Using the conventional limit 
equilibrium method, Lo (1965) and Ohta et al. (1975) 
investigated the effect of cohesion anisotropy on the 
stability of slopes in cohesive soils .  Using the upper 
bound method of limit analysis, Chen et al. (1975) studied 
the influence of cohesion anisotropy on the stability of 
slopes in c φ−  soils. It should be noted that either the 
kinematic or the static admissibility is violated potentially 
in the work of Lo (1965) and Chen et al. (1985) due to the 
assumptions about failure mechanisms.  

It has been known that various possibilities exist in 
slope stability analysis regarding geometry, material 
properties and failure modes. This paper mainly focuses 
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on the effect of anisotropy (i.e., the directional 
dependency of soil strength) relative to the significance of 
random variations of soil properties. Three approaches, 
namely, the kinematic element method, the Bishop’s 
method and continuum modelling based on fast 
Lagrangian analysis, are used to evaluate the factor of 
safety, involving different assumptions regarding 
equilibrium and failure modes. The influences of ground 
water and cyclic loading are not addressed in this study.  

Following a brief review of the mathematical 
description of strength parameters characterising 
anisotropic soil strength, the kinematic element method 
developed by Gussmann (1982, 2000) is extended to 
perform stability analysis for slopes in anisotropic soils. 
The resulting factor of safety is compared with that 
calculated using a modified Bishop’s method that takes 
into account anisotropic soil strength. A finite difference 
program FLAC, which performs fast Lagrangian analysis 
of continua, together with the Mohr-Coulomb model that 
accommodates random variation of the cohesion and the 
friction angle is then used to study the influence of the 
spatial variability of soil strength. It is shown that slope 
stability is more sensitive to the soil strength anisotropy 
than to its spatially random variation. 

2 DIRECTIONAL DEPENDENCY OF SOIL 
STRENGTH  

 
Numerous research indicates that both the cohesion c 
and the friction angle φ exhibit various levels of anisotropy 
and dependency on the loading direction; see, e.g., 
Casagrande and Carillo (1944), Duncan and Seed 
(1966), Oda (1972), Mayne (1985), Ohta et al. (1985), 
Tatsuoka et al. (1990) and Vaid and Saivathayalan 
(2000). For cohesive soils, Casagrande and Carillo 
(1944) assumed the cohesion of cohesive soil varied as a 
function of the major principal stress direction: 

 
2

( )cosh v hc c c c δ= + −     [1] 
 

where c is the cohesion when the major principal stress 

1
σ  is inclined at an angle δ  to the normal of the bedding 

plane (i.e., the vertical in Figure 1), 
hc  and 

vc  are the 

cohesion for 0
90δ =  (or 

1
σ  in the bedding plane) and 0

0  

(
1

σ  perpendicular to the bedding plane), respectively. By 

definition, 
hc  and 

vc  can be considered as the cohesion 

obtained in conventional triaxial compression and 
extension tests in laboratory, as shown in Figure 1b. 
Introducing the cohesion anisotropy ratio 

c h vK c c= / , Eq. 

[1] becomes 
 

2
(1 )cosv c cc c K K δ = + −      [2] 

 
The applicability of Eqs. [1] and [2] has been confirmed 
by many other researchers, e.g. Lo (1965) and Reddy 
and Srinivasan (1970).  
Given a friction angle φ  at failure, then according to the 
Mohr-Coulomb’s criterion, the major principal stress 
direction makes an angle 4 2α π φ= / − /  with the sliding  

 
(a) 

 
(b) 

Figure 1. Directional dependency of soil strength in slope 
stability analysis 

 
plane. This allows us to relate angle δ to the orientation of 
the sliding plane via 
 

2 4 2

π π φ
δ ξ α ξ= − − = + −     [3] 

 

where ξ  is the angle between the sliding plane and the 
bedding plane, as shown in Figure 1a. 

Both experimental and theoretical studies show that 
the friction angle of soils, particularly cohesionless soils, 
highly depends on the fabric of the material as well as the 
orientation of the failure plane or the major principal 
stress direction with respect to the bedding plane. Various 
relations have been proposed to describe the 
dependency of soil friction angle on the orientation of 
major principal stresses relative to the bedding plane. For 
example, Jamiolkowski et al. (1985) assume that φ  
increases from φc to φe according to 

 
2

( )cose c eφ φ φ φ δ= + −     [4] 
 

or 
 

2
(1 )cos

c
K Kφ φφ φ δ = + − 

    [5] 

 

with φ = φ / φe cK  with φe and φc corresponding to triaxial 

extension and compression conditions. Meyerhof (1978) 
proposed an alternative relation for the orientation 
dependency of friction angle; i.e. 
 

( ) / 90 ( )(1 / 90)c c e e c eφ φ φ φ δ φ φ φ δ= − − = + − −  [6] 
 

which may be considered as an approximation of Eq. [4]. 
However, as shown in Figure 2, experimental results of 
Tatsuoka et al. (1990) reveal that the friction angle does 
not vary monotonically with δ as described by Eq. [4] or 
[6].  
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Figure 2. Dependency of friction angle on major principal 
stress direction: experimental evidence 

 
Based on a micromechanical analysis, Guo and Stolle 

(2004) show that the friction angle of granular materials at 
failure varies with the angle δ, the degree of anisotropy 
ϖ  as well as the angle between the sliding plane and the 
bedding plane ξ , which may be expressed as 

 
( )0

tan 1 cos2localφ µ ϖ ξ−�     [7] 

 
where 

0
µ  is a material consistent, 2 ( )ξ π α δ= / − +  with 

4 2α π φ= / − / . By definition, ϖ  is related to the spatial 
distribution of contact normal of particles. Since it is 
difficult to measure ϖ  directly, as an alternative, ϖ  may 
be calculated using the friction angle of soil specimens 
when sliding occurs along different directions. 
Specifically, when 0ξ =  and 2π / ,  which correspond to 
sliding along and cross the bedding plane respectively, 
one has 
 

( )

( )
0

0

tan 1

tan 1

µ φ µ ϖ

µ φ µ ϖ

= =

⊥ ⊥

= = −

= = +
    [8] 

 
with subscripts " "=  and " "⊥  corresponding to values 
when sliding occurs along or cross the bedding plane, 
respectively. It follows that 
 

0

1
( )

2

µ µ
ϖ µ µ µ

µ µ
⊥ =

= ⊥

⊥ =

−
= ; = +

+
   [9] 

 
Substituting Eq.(9) into (8) yields 
 

2 2
tan ( )cos (1 )sinlocal K Kφ φφ µ µ µ ξ µ ξ⊥ ⊥ = ⊥  − − = + − �  [10] 

 
with Kφ µ µ= ⊥= / . According to Guo and Stolle (2004), the 

following relation may also be used for medium 
anisotropic granular soils with large friction angles 
 

0
sin 1 (cos2 cos2 )

2
m

ϖ
φ ξ δ

 
− +  

�    [11] 

 
where 
 

 

 
Figure 3. Dependency of friction angle on the orientation 

of sliding planes 
 

0

1
2 ( )

2 ( ) 2 2

m m m m
m m m

m m m m
ϖ

ϖ
⊥ = = ⊥

= ⊥

⊥ = = ⊥

− +
= ; = +

+ + + /
�

 [12] 

 
in which sinm φ= ==  and sinm φ⊥ ⊥= .  Eqs. [7] and [11] 

agree with the experimental results of Miura et al. (1986), 
and Haruyama and Kitamura (1984), as illustrated in 
Figure 3. It has also been found that Eq. [12] provides 
better description on the orientation dependency of φ  
with respect to angle δ  (Guo and Stolle, 2004).  

It should be noted that Eqs. [5], [10] and [11] yield 
different trends in the variation of friction angle with 
respect to major principal stress directions, which may in 
turn have an impact on the results of slope stability 
analysis. Consequently, care must be exercised when 
selecting the most appropriate mathematical description 
for the orientation dependency of soil strength. 
 
 
3 KEM FOR SLOPES IN ANISOTROPIC SOILS 
 
3.1 Outline of KEM for isotropic soils  
 
The stability analysis of slopes based on the kinematic 
element method (KEM), first presented by Gussmann 
(1982), takes into account both kinematics and statics. 
Referring to Figure 4, the equations for both statics and 
kinematics are expressed in terms of the forces and 
velocities at the boundaries, which are identified by the 
normal, of rigid elements. More specifically, the kinematic 
analysis determines the relevant kinematical compatibility 
via the analysis of the relative movement between any 
two adjacent elements, while the equilibrium of the 
elements is achieved via the statics analysis. In this 
study, it is assumed that sliding of elements can only 
occur along the boundaries, with no dilatancy, 
penetration, separation or rotation of elements being 
allowed. As a result, the normal component of the relative 
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displacement between any two adjacent elements 
vanishes in the equations for the virtual displacements. 
The kinematics of the global system can then be 
expressed as 
 

0ˆ nv =+K v v      [13] 
 

where v  is the vector of the absolute element 
displacement, ˆ nv  is the vector of the normal components 
of the virtual displacements of the surrounding elements, 
and 

vK  denotes the non-symmetric "geometry" matrix, 

which contains the direction cosines of the outward 
normals of the element boundaries. Referring to Figure 4, 

c fl /  and c fn /  are the direction cosines of boundary i jPP  

for Element f . The sign convention of the relative 
displacement between two adjacent elements is also 
shown in Figure 4. 
 

 
 

Figure 4. An element used for the KEM and the sign 
conventions 

 

The static analysis, which takes into account all forces 
applied on the elements, provides a set of force 
equilibrium equations in terms of the effective normal 
forces on element boundaries, expressed as 
       

′ +KN F = 0      [14] 
 

where ′N  is the yet unknown effective normal forces on 
element boundaries, F  refers to the known resultant 
force of cohesion c and pore pressure force (when 
applicable), and K  is the "direction" or "friction" matrix 
that depends on friction angle φ  for the normal force ′N . 
The reader is referred to Gussmann (1982) for details. 
 
3.2 Extended KEM for Anisotropic Soils 
 
As discussed in the previous sections, the anisotropy of c 
and φ  may be expressed as a function of angle δ  or the 
orientation of the sliding plane with respect to the bedding 
plane. According to the Mohr-Coulomb failure criterion, 
the major principal stress 

1
σ  makes an angle 

4 2α π φ= / − /  with the sliding plane. Referring to Figure 
5, it can be shown that angle δ ,  which describes the 
major principal stress direction, is related to the direction 

 
 

Figure 5: Failure mechanism in the KEM 
 

of the relative displacement on the boundary of an 
element via 
 

( )2 2
cos cos

4 2

π φ
δ ξ α α= − ; = −v    [15] 

with 1=v  for 0>v  and 1= −v  for 0< .v  

 
 
4 BISHOP’S METHOD FOR SLOPES IN 

ANISOTROPIC SOILS  
 
When the soil strength parameters are made direction 
dependent, the method of slices can be easily extended 
to include orientation dependent soil properties; see, e.g., 
Lo (1965). Without considering ground water, the factor of 
safety for Bishop’s method is determined by 
 

1

( )

( ) tan1

sin

j j j j j j

s

j j j

c b W X X
F

W mα

φ

ξ

+ + − − = ∑   [16] 

 
with 
 

( )

tan sin
cos

j j

j j

s

m
F

α

φ ξ
ξ= +     [17] 

 
where jW  is the total weight of the j th slice, which has 

width of jb , 
1jX +  and jX  are the horizontal interaction 

forces on the inter-slice boundaries of slice j , while jc  

and jφ  are the cohesion and friction angle on the slice 

base that makes an angle jξ  with the horizontal. For 

slopes in anisotropic soils, the variation of jc  and jφ  with 

the orientation of the sliding plane may be described by 
the relations discussed in the previous sections. 
 
 
5 EFFECTS OF SOIL ANISOTROPY ON FACTOR OF 

SAFETY  
 
In order to demonstrate the effect of soil anisotropy, Eqs. 
[2] and [5] are used to describe the directional 
dependency of soil strength parameters, together with the 
assumption cK Kφ= , in the following numerical 

examples. In all simulations, the strength parameters 
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corresponding to horizontal bedding planes are kept 
unchanged (i.e. 

vc  and 
vφ  are constant), while the 

influence of soil anisotropy is investigated by assuming 
different values of 

hc  and 
hφ  via changing the anisotropic 

ratios 
cK  and Kφ .  

We begin by comparing the solutions obtained via the 
Bishop’s method, the KEM, and a fast Lagrangian 
procedure FLAC, assuming isotropic response of the 
slope shown in Figure 6a, but varying c  and φ.  As shown 
in Figure 6a, the failure patterns predicted by the three 
procedures are similar. Figure 6b further confirms that 
fairly good agreement between the computed factors of 
safety exist for varying strength parameters. From an 
engineering practice point of view, the failure patterns and 
factors of safety may be considered to be the same. One 
may then conclude that for the particular slope shown in 
Figure 6a, all three methods can be used to determine 
the factor of safety with the same level of confidence. It is, 
however, important to recognize here that similarity exists 
even though the assumptions in terms of the kinematics 
are not the same; i.e., the Bishop’s method considers 
only the rotational slip; the KEM assumes rigid 
translational slip and the fast Lagrangian procedure 
allows for the compatible deformation field of a 
continuum.  

 

 

 
 

Figure 6. The stability analysis of a slope in isotropic soils 
 

Figure 7 presents the effect of strength anisotropy on 
slope stability when the anisotropic ratio K  varies in the 
range of 1.0 to 0.5 for 20vc kPa=  and 0

40vφ = .  One 

observes that the sliding surface gradually moves into the 
slope and the volume of sliding soil mass increases with 
a decrease of K  (i.e., the decrease in 

hc  and 
hφ ). When 

0 75K ≥ . , which corresponds to a mediumly anisotropic 
soil, one finds that the locations of the sliding surface are 

similar for both the KEM and Bishop’s method 
predictions. On the other hand, for a highly anisotropic 
soil with 0 5K = . , the Bishop’s method predicts a larger 
volume of sliding soil mass; see Figure 7a. For this 
particular example, the factor of safety calculated from 
the KEM is slightly smaller than that from the Bishop’s 
method. As shown in Figure 7b, when K  varies from 1.0 
to 0.5, the factor of safety 

sF  decreases from 

approximately 2.2 to 1.2 and 1.4 according to the KEM 
and Bishop’s method, respectively. The results presented 
in Figure 7b show that using 

vc  and 
vφ , which correspond 

to triaxial compression, and neglecting the potential 
anisotropy of soil strength tends to overestimate the 

sF  of 

a slope. On the other hand, if the soil is assumed to be 
isotropic and 

hc  and 
hφ  obtained from triaxial extension 

are used for a stability analysis, the 
sF  will then be under 

estimated. The comparison of the 
sF  calculated by the 

KEM and Bishop’s method using different soil strength 
parameters are shown Figure 8. 

 

 

 
 

Figure 7. Stability analyses of a slope in anisotropic soils 
 

 
Figure 8. Factor of safety for slopes in anisotropic soils 

using different strength parameters 
 

 

GeoEdmonton'08/GéoEdmonton2008

525



6 PROBABILISTIC ANALYSIS OF SLOPE STABILITY  
 

6.1 Brief Description of the Method Used  
 
In order to provide a deeper insight into the relative 
sensitivity of the factor of safety with respect to strength 
anisotropy and the random variability of soil properties in 
slope stability analyses, the slope shown in Figure 6 is re-
analyzed taking into account the spatially random 
variability of soil properties. The variability of c and φ  is 
assumed to be characterized by a normal distribution with 
the respective means being c φµ µ,  and the standard 

deviation c φσ σ, .  The corresponding coefficients of 

variation for c and φ  are defined as 
 

c

c

c

C O V C O V
φ

φ

φ

σσ

µ µ
. . = , . . =     [18] 

 
Moreover, c and φ  are assumed to be independent 
random variables. The spatial correlation lengths for both 
c and φ  are considered as large enough so that the 
single random variable (SRV) approach (e.g. Harr, 1987) 
can be used. It should be noted that the lognormal 
distribution may be more appropriate to represent non-
negative soil properties.  

The analyses in this section were carried out using 
FLAC, incorporating an elastic-perfectly plastic stress-
strain law with the Mohr-Coulomb failure criterion. 
Material parameters for the soil are presented in Table 1. 

 
Table 1: Soil parameters used in probabilistic analysis of 
slope stability 

 Mean Standard 
deviation C.O.V 

Unit weight γ  3
20kN m/  0 0 

Cohesion c 20c kPaµ =  5c kPaσ =  0.25 

Friction angle φ  0
40φµ =  10kPaφσ =  0.25 

 
 

6.2 Dependency of c and φ  on Spatial Variability of Soil 
Strength  

 
For the assumed statistical properties, Monto-Carlo 
simulations were performed, involving 100 repetitions of 
the shear strength random field. The patterns of the 
spatial distribution of c and φ  within the slope are varied 
for each repetition according to the normal probability 
density function. The mean and the standard deviation of 
the factor of safety from Monto-Carlo simulations were 
found to be 2 05Fsµ = . ,  0 10Fsσ = . ,  which correspond to a 

coefficient of variation of 0 05FsC O V. . = . .  As one might 

expect, the mean of the factor of safety 
Fsµ  is close to 

that of a homogeneous slope with c and φ  being 
represented by 

cµ  and φµ ,  respectively. The variation of 

c and φ  induced by the spatially random variation of soil 
strength, however, is much smaller than 

cσ  and φσ .  This 

result should perhaps not be surprising given that the 
slope contains elements that are weaker and stronger 
than the mean, thus having the strong elements 
compensate for the weaker ones. As a result, the 
variation of 

sF  tends to be smaller than that of soil 

strength parameters.  
Since it is assumed that c and φ  are independent 

random variables characterized by normal distributions, 
one may expect that the factor of safety can also be 
described by a normal distribution. This has been 
confirmed by the results from the Monto-Carlo 
simulations, as shown in Figure 9. Given 2 04Fsµ = . ,  

0 10Fsσ = .  corresponding to 0
40 20c kPaφµ µ= , =  and 

0 25cC O V C O Vφ. . = . . = . ,  one can calculate the probability of 

1 85sF < .  and 1 95sF < .  as  

 
1 85 1 95

( 1 85) 0 023; ( 1 95) 0 159Fs Fs

s s

FS Fs

p F p F
µ µ

σ σ

   . − . −
< . = Φ = . < . = Φ = .   

   

 
where Φ  is the cumulative distribution function for a 
random variable with standard normal distribution. 
 

 
Figure 9: Cumulative distribution of the factor of safety 

 
 
7 SENSITIVITY OF FS WITH RESPECT TO 

ANISOTROPY AND SPATIAL VARIABILITY OF 
SOIL STRENGTH  

 
The sensitivity of slope stability with respect to anisotropy 
and spatial variability of soil strength has been examined 
for the specific slope shown in Figure 6a. Referring to 
Figure 7b, one observes that for a slope in anisotropic 
soil, when c and φ  of the soil in the horizontal direction is 
25% less than those in the vertical direction (i.e., the 
anisotropic ratio K=0.75, the factor of safety based on the 
KEM and the Bishop’s method are 1.66 and 1.82 
respectively, which correspond to a decrease of 15% and 
22% from the factor of safety for the slope in isotropic 
soils. On the other hand, for a slope in isotropic soil with 
random spatial variability of c and φ  characterized by 

0 25cC O V C O Vφ. . = . . = . ,  the probability of 1 85sF < .  is 

0.023. The observation suggests that one may conclude 
that the anisotropy of soil strength tends to have more 
significant effect on the stability of slopes. More 
specifically, for a slope in isotropic soils with the geometry 
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given in Figure 7a, if the spatial variability of soil strength 
parameters is neglected, the probability of 1 85sF < .  is 

small. If the slope is in anisotropic soil with 
0 75h v h vc cφ φ/ = / = . ,  neglecting the strength anisotropy 

and using 
vφ  and 

vc  to calculate 
sF  would over estimate 

the 
sF  significantly.  

Even though anisotropy of soil strength appears to 
have more significant influence of slope stability, one 
should not neglect the impact of spatial variability of soil 
properties, particularly when the factor of safety is close 
to unity. For example, when the mean of c and φ  for the 

slope shown in Figure 6a are 0
25φµ = , 15c kPaµ =  

respectively, it is found that the mean of the 
sF  is 

1 3Fsµ = . . If the standard deviation of 
sF  due to random 

variation of c  and φ  is 0 1Fsσ = . ,  the probability of failure 

is then 
 

31 00
( 1 0) 1 35 10Fs

s

FS

p F
µ

σ
− . −

< . = Φ = . × 
 

 

 

However, when the soil has a larger random variation in 
its strength parameters and yields 0 15Fsσ = . ,  the 

corresponding probability of slope failure will be increased 
to ( 1 0) 0 023sp F < . = . ,  which is obviously very high for 

most engineering structures. 
 
8 CONCLUDING REMARKS 
 
This paper examined the impact of anisotropy and spatial 
variability of soil strength parameters on slope stability. 
Both the KEM and Bishop’s method reveal that the factor 
of safety is highly influenced by the strength anisotropy of 
soil. This suggests that care should be exercised when 
evaluating the stability of slopes, in which anisotropic 
material behaviour is suspected. The spatial variation of 
soil strength also has some influence of the stability of 
slopes by increasing the probability. On the other hand, 
its influence does not appear to be as important as that of 
anisotropy.  
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