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ABSTRACT 
The main types of fractures in rock masses will be discussed. The geometric superposition formula and the energy 
equivalence formula of damage tensor for rock masses are also introduced. Based on a simple engineering case, these 
two formulas are analyzed comparatively. It is proposed that the geometric superposition formula of damage tensor is 
preferable in general engineering practices. 
 
RÉSUMÉ 
On a discuté les types principaux de la fracture dans le rocher. On a également introduit la formule de superposition 
géométrique et la formule d’équivalence d’énergie sur la tension de la destruction du rocher. Par une comparaison, on 
peut bien connaître ces deux formules. On propose la formule de superposition géométrique de la tension de la 
destruction dans l’exécution du projet. 
 
 
 
1 INTRODUCTION 
 
Geological body is a kind of natural damaged material 
with self-organizing structure and characteristic of stress 
memory. Material damage is the existence, emergence 
and expansion of microscopic defects. In macroscopic 
damage theory, materials or objects containing 
deficiencies of all kinds are generally regarded as a 
continuum with micro-damage field; accordingly the 
formation, growth, transmission and gathering of this 
micro-damage field are treated as damage evolution 
processes. At the same time, appropriate damage 
variables are introduced to characterize the physical 
nature of this damage continuum. From an engineering 
point of view, it is feasible to treat the fractured rock 
masses containing widespread joints as damaged 
materials (Tao Zhenyu et al, 1993). 
 
 
2 TYPES OF CRACKS IN ROCK MASSES 
 
First look into the main types of cracks in rock masses 
(Figure 1). Figure 1(a) shows rock structure is dense with 
minor damage. With a higher degree of damage, figure 
1(b) is evolved from figure 1(a) when geo-stress changes. 
Figure 1(c) is formed under a single load, such as simple 
compression, with a comparatively larger main value of 
damage. Figure 1(d) is formed under multiple loads, such 
as double press shear loads, which could be regarded as 
the equivalent superposition of damages in different 
directions from figure 1(c). 
 
 

 
        (a)                   (b)                    (c)                   (d) 
Figure 1. Main types of cracks in rock masses 

 
 
3 DAMAGE TENSOR FORMULAS FOR ROCK 

MASSES 
 
3.1 The Geometric Superposition Formula 
 
T. Kawamoto, Y. Ichikawa and T. Kyoya (1988) applied 
the damage theory early in the research of jointed rock 
masses. They developed a total damage tensor to 
describe jointed rocks, which can be derived from the 
damage tensors for different joint sets by simple 
superposition. The equation can be written as 
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where Ωtotal is the total damage tensor for all joint sets; Ωi 
is the damage tensor for the joint set i; M is the number of 
joint sets; V is the volume of rock masses for the study; 

ib  is the average aperture width of joint set i; ni is the 

unit vertical vector for the surface of joint set i; ⊗ is the 
dyadic symbol for vectors; N is the total number of joints 
in set i; Sk,i is the area of joint k in set i. 

If there is no dominant direction in the distribution of 
rock joints, it can be viewed as similar to random, and 
rock damage can be considered as isotropic. Thus, we 
obtain the following equation: 
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where T is the total number of joints in volume V; S is the 

total average surface area of joints in volume V; b  is the 
average aperture of all joints in volume V. 
 
3.2 The Energy Equivalence Formula 
 
Considering the anisotropic property of rock masses and 
interaction among different joint sets, G. Swoboda, M. 
Stumvoll & Han Beichuan (1990) proposed that it was not 
accurate to calculate the global damage tensor by direct 
superposition of the single damage tensors. Based on the 
energy principle, they deduced the expression for global 
equivalent damage tensor which reflected the inter-
influence of all cracks. The equation could be written as: 
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where I is a unit matrix; M is the number of joint sets. At 
the same time they came to an important conclusion: If 
sets of cracks exist in a damaged body, the additional 
damage strain caused by the cracks under the applied 
load condition is equal to the sum of additional damage 
strains from every single set of cracks under the same 
applied load condition (Figure 2). 
 
 

 
 
Figure 2. Additional damage strain (Swoboda et al, 1990) 
 
 
4 CASE COMPARISON OF DAMAGE TENSOR 
 
4.1 Damage Tensor of the Geometric Superposition 

Formula 
 
Based on equation [1], the damage tensor of a single joint 
set can be evolved to the following expression: 
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where viJ  is the volume density of the joint set i, ia  is 

the average area of joint set i, ib  is the average aperture 

of joint set i, in  is the unit normal vector for joint set i. 

Assume each joint is disk-shaped, and the mean 
diameter of each disk is equal to its trace length, then: 
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Table 1 gives the statistical parameters, required for 

damage tensor calculation, of rock masses from a certain 
dam site located in China. 
 
 
Table 1. Parameters of joint sets for damage tensor 
calculation 
 

Set 
no. 

Jvi  

(number/m3) 

ai  

(m2) 

bi  

(mm) 

Mean occurrence 
(°) 

1 0.1353 20.5887 0.127 117.0∠27.68 
2 0.1364 9.8980 0.127 117.8∠50.17 
3-1 0.1932 2.8953 0.290 180.0∠82.78 
3-2 0.1933 2.8953 0.290 346.5∠81.84 
4 0.2663 8.2448 0.127 279.0∠63.16 
5 0.1245 5.3913 0.213 69.1∠76.39 

 
 

The damage tensor based on the geometric 
superposition formula in the dam coordinate system is: 
 
 

4
5

1

10

1841.41656.02120.2

1656.02576.35103.0
2120.25103.02286.5

−

=

×
�
�
�

�

�

�
�
�

�

�

−
−

−−
=Ω=Ω �

i
i

 [6] 
 
 
4.2 Damage Tensor of the Energy Equivalence Formula 
 
Based on the formula [3] and data in table 1, the 
corresponding damage tensor in the dam coordinate 
system is: 
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Comparing the two results of damage tensor shown in 
expressions [6] and [7], we can deduce the following two 
conclusions: 

(1) The corresponding components of � and that of �g 
are very close, and the largest relative deviation is less 
than 1‰. 

(2) The absolute value of each component of �g is 
slightly smaller than that of the corresponding component 
of �, and modulus |�g| (=8.1098×10-4) is slightly smaller 
than modulus |�| (=8.1129×10-4), the relative deviation is 
less than 1‰ as well. 

Through further calculation on the damage tensor 
result [6], the principle values and their corresponding 
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principle directions in the dam coordinate system are 
obtained as follows:  

�1=7.0461×10-4, p1=(-0.7806 0.1319 0.6109)T namely 
170.4°∠37.7°;  

�2=3.2336×10-4, p2=(0.03826 -0.9656 0.2573)T 

namely -87.7°∠14.9°;  
�3=2.3906×10-4, p3=(0.6239 0.2239 0.7488)T namely 

19.7°∠48.5°.  
The results of damage tensor for the studied case 

show that the principle direction corresponding to the 
largest principle value points to the upper reaches; the 
principle direction corresponding to the middle principle 
value points to the inner of left dam shoulder; and the 
principle direction corresponding to the minimum principle 
value points to the lower reaches, as are favourable to 
the stability of rock masses at dam foundation and left 
shoulder slope. 
 
 
5 CONCLUSION 
 
The geometric superposition formula and the energy 
equivalence formula of damage tensor for rock masses 
are not contradictory, because when i=1, formula [3] is 
equivalent to formula [1]. But these two formulas are 
substantially different, because when i�1, formula [3] 
can’t be transferred into formula [1]. 

� is the volumetric damage tensor with a pure 
geometric sense of rock fractures, yet �g is the volumetric 
damage tensor with consideration on the additional 
damage strain caused by the interaction of rock fractures.  

By example, we can see that the interaction of 
fractures will consume a very small portion of energy, so 
from the viewpoint of engineering this tiny energy can be 
ignored. In addition, the energy equivalence formula of 
damage tensor is rather complicated involving computing 
between large values and small values of which the order 
of magnitude exceeds ten as may lead to an abnormal 
computer result. 

Therefore, this paper suggests that the geometric 
superposition formula of damage tensor is preferable, of 
which the calculated results are slightly conservative, in 
general engineering practices. As well, the energy 
equivalence formula of damage tensor is available for 
further research on damage property of rock masses. 
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