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ABSTRACT 
In this paper, using distinct element method, a comparison is made between 2 dimensional and 3 dimensional analyses 
of convex slopes in jointed rock mass. It is shown that 2D modeling of convex slopes may lead to unsafe design. The 
influence of the coefficient of lateral pressure as well as joint spacing and joint stiffness on the stability of convex slopes 
is also investigated. 
 
RÉSUMÉ 
Dans ce papier, utilisant la méthode d'élément distincte, une comparaison est faite entre 2 à dimensions et 3 à 
dimensions analyse de pentes convexes dans la masse de rocher démontable. Il est montré que 2D modelage de 
pentes convexes peut mener à la conception dangereuse. L'influence du coefficient de pression latérale de même que 
l'espace de joint et la raideur commune sur la stabilité de pentes convexes est aussi examinée. 
 
 
 
1 INTRODUCTION 
 
The curvature of rock slopes can affect its stability and its 
displacements. In this article, the behaviour of concave 
jointed rock slopes which mainly exist in the bends of 
roads and highways is investigated. 
Some studies on the effect of the curvature of slopes on 
their stability have been made. Jenike and Yen (1961) 
presented the results of a limit theory analysis performed 
on the slopes of rigid-perfectly plastic material. They 
determined S-shaped critical profiles that describe the 
theoretical failure shape for different radii of curvature. 
They showed that, as the radius of the slope increases, 
the profile of the stable slope in axial symmetry 
approaches the profile of the slope in plane strain. Hoek 
and Brown (1997) concluded that the analysis 
assumptions were not applicable to rock-slope design. 
Piteau and Jennings (1970) studied the influence of plan 
curvature on the stability of slopes in four diamond mines 
in South Africa. Hoek and Bray (1981) summarized their 
experience with the stabilizing effects of concave slope 
curvature.� Yoon et al. (2002) presented a kinematic 
analysis method for the slip failure of multi-faced rock 
slopes.  

The review of the previous studies indicate that most 
of the studies are related to the concave slopes 
especially in the open pit mines and the issue of convex 
rock slopes have not been dealt with sufficiently.  

In this article, the use of discrete element modeling 
technique is presented for the stability analyses of convex 
rock slopes. Universal Distinct Element Code (UDEC) is 
used for the analyses in two dimensions and 3DEC 
(Itasca, 2004) is used for the three dimensional analyses. 
 
 
2 FUNDAMENTALS OF 3D DISTINCT ELEMENT 

METHOD 
 
The 3DEC software is the three dimensional version of 
Distinct Element Method (Cundall, 1971, 1988). The 
3DEC model consists of several discrete blocks which 

represent the discontinuum medium and discontinues act 
as the boundaries between the blocks.  
Large displacement such as a slip or separation can be 
simulated on discontinues.  

Relative displacement along discontinues is 
determined by linear displacement- force relationship for 
both shear and normal stresses. The program uses an 
explicit solution scheme which results in a stable solution 
for the unstable physical processes (Itasca, 1998). 
The aim of distinct element method is calculation of 
stress and strain in discontinuum media such as jointed 
rock masses. Basic equations which are used in distinct 
element method are a force-displacement law in the form 
of constitutive law and motion equations according to the 
Newton's Second Law. For deformable blocks, 
constitutive laws are used for the block material to 
calculate stresses in blocks together with the nodal forces 
in the nodal points. These constitutive laws use the finite 
difference technique to calculate stresses in blocks and 
relative displacements between blocks. In addition to the 
relative displacements between blocks, the blocks have 
interaction with each other on their contact surfaces. 

Block displacements are computed using unbalanced 
moments and forces which act at the center of gravity of 
the blocks. The resultant forces include boundary forces 
and are applied to the edge of the blocks. Blocks 
acceleration, (t)u

ρ
&&  are related to the resultant forces by 

Newton's Second Law: 
 
 

g
m

(t)F
u

ρ
ρρ

&& +=  [1]�

 
Where m is the block mass, t is time, and g is 

gravitational acceleration.� 
The new arrangement of the blocks generates new 

conditions and thus new contact forces at the block 
boundaries.  Applied constitutive laws for the contacts 
are: 
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��n=Kn �un, 
 
 

[2]  

��=Ks �us [3]  
 
 

Where Kn and Ks are normal and shear stiffness per 
unit area, respectively,���n ��� �� ��� �un�and �us�are 
normal and shear stress variations and normal and shear 
displacement variations, respectively. Stresses are 
calculated using the selected yield criterion (e.g., Mohr-
Coulomb criterion) in the nodes along the contacts.  
 
 
�=�n tan �+C [4] 

 
 

Where � is the angle of internal friction and C is 
cohesion. 

The internal deformations of the blocks are calculated 
using a mesh of tetrahedral elements. Newton's second 
Law is applied for the calculation of velocities and 
displacements at any node. Strains are determined using 
the displacement and the stresses are computed using 
the selected constitutive law by the user. 
 
 
3 NUMERICAL MODELLING 
 
3.1 2D versus 3D Analysis 
 
The first step in the creation of a model is to decide 
between performing the analyses in two dimensions or 
three dimensions. In many problems associated with 
tunnelling and mining, the specific conditions don’t allow 
the use of plane strain condition and therefore three 
dimensional analyses are required. These conditions 
include (Lorig and Varona, 2000):  

• Direction of principle geologic structures does not 
strike within 20° to 30° of the strike of the slope. 

• Axis of anisotropy does not strike within 20° to 30° 
of the slope. 

• Directions of principal stresses are thought to be 
not parallel or not perpendicular to the slope.  

• Distribution of geomechanical units varies along 
the strike of the slope.  

• Slope geometry in plan cannot be represented by 
two-dimensional (i.e., axisymmetric or plane 
strain) analysis. 

 
3.2 Creation of Model Geometry 
 
To simulate the convex slope in 3DEC, a FISH sub-
program has been used. A sample of the geometry of the 
models used in the X-Y Plane is presented in Figure 1(a). 

In Figure 1(b), the various curvatures of slopes involved 
in the analyses are shown. The curvatures have been 
obtained from the hyperbolic relationship of z=k.x2 in 
which k is the coefficient of the hyperbola and x and z are 
the coordinates as presented in Figure 1(b). As shown in 
Figure 1(a), for modeling, 3 zones of A, B and C have 
been used. In Zone B, the joint spacing is 4 times the 
joint spacing in Zone A and in Zone C; the joint spacing is 
twice the joint spacing in Zone B.  

To evaluate the effects of the coefficient of lateral 
pressure, normal stiffness and shear stiffness of the 
joints, the slope height is taken as H=50m and the slope 
curvature is taken as a circle with a radius (rc) of 50m 
(Figures 4 to 6). In order to investigate the effect of slope 
curvature (k), the slope height is taken as 50m with joint 
spacing of 6m (Zone A) (Figure 9).  

To investigate the influence of joint spacing, joint sets 
with spacing of 4, 8, 15 and 30m (Zone A) are used for 
two slopes with heights of 30m and 50m. To evaluate the 
effects of the above-mentioned parameters, one joint set 
(J1) is involved. The properties of this joint set are 
presented in Table 1.  

The effects of coefficient of lateral pressure, normal 
stiffness, and shear stiffness have also been evaluated 
for slopes with two joint sets. For this purpose, another 
joint set (J2), perpendicular to the joint set J1 has been 
considered in Zone A. The properties of this joint set are 
also presented in Table 1. 
 
 
Table 1. Characteristics of joint sets 
 

 
 
The slope face angle, (�) is 60°. 

A zero velocity has been applied in the horizontal 
direction to the vertical boundaries. The bottom boundary 
is fixed in the vertical direction and gravitational 
acceleration of 10m/s2 is applied. Computations have 
been performed with sufficient time steps until the model 
reaches equilibrium.  

To avoid slip or separation during initial loading to 
reach equilibrium, high shear and tensile strength were 
allocated to the joints. After reaching equilibrium, for the 
analyses, real values of strength were assigned to the 
joints. The stability of the blocks was evaluated with the 
gradual decrease of coefficient of internal friction and 
cohesion until displacements increase and model 
become unstable. 
 
 

Joint set 
Dip Direction 

[°] 
Dip(�) 

[°] 
Spacing 

[m] 

J1 90 40 Various 

J2 270 50 30 
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Figure 1. The model used for the convex slope; (a) two dimensional model in the x-y plane (section A-A), (b) various 
curvatures of the slope 

 
 
3.3 Material Properties 
 
The height the slope is low compared to the strength of 
the intact rock; therefore, for the intact rock, elastic, 
isotropic deformation is considered. For the joints, the 
failure criterion of Mohr-Coulomb is used. 

The mechanical properties of intact rock and joints are 
shown in Tables 2 and 3 respectively. 
 
 
Table 2. Mechanical properties of intact rock 
 

Density 
[kg/m3] 

Bulk 
Modulus 

[GPa] 

Shear 
Modulus 

[GPa] 

Cohesion 
[kPa] 

Friction 
angle 

[°] 

2800 19 17 - - 

 
 
Table 3. Mechanical properties of joints 
 

 
 
4 CALCULATION OF SAFETY FACTOR USING 

SHEAR STRENGTH REDUCTION  
 

For the slopes, safety factor is often described as the 
ratio of shear strength to the existing shear stresses. A 
common method for the estimation of safety factor in a 
discrete element program is reduction of joint shear 
strength until failure takes place. In this method, safety 
factor is the ratio of shear strength of the joint to the 
reduced shear strength at the point of failure. This 
technique of stress reduction was first used by 
Zienkiewicz and Humphson� and� Lewis� (1975) for 
estimation of safety factor for a slope consisting of 
various materials.  

For the stability analysis using shear strength 
reduction technique, simulations are made for trial safety 
factors (F.S.) which are increased step by step. The 
shear strength parameters, cohesion (C) and internal 
friction angle (�) are decreased for each step according 
to the relation:  

 
 

[5] 
F.S.

C

F.S.

tan�
�� n +=�

 
 

5 RESULTS 
 
The displacements of the slope in 3D analysis are shown 
in Figure 2. As expected, displacements take place 
mainly due to the slip of the joints. 
 
 

 
Figure 2. Displacements of the slope after reaching 
equilibrium 
 
 

  

Normal 
Stiffness 
[GPa/m] 

Shear 
Stiffness 
[GPa/m] 

Cohesion 
[kPa] 

Friction 
angle 

[°] 
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[kPa] 
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Figure 3. Variation of safety factor with joint spacing for two slopes with different heights (2D and 3D Modelling) 
 
 

The safety factors corresponding to the slopes with 
heights of 30m and 50m for K0=1 condition are presented 
in Figure 3. It can be noted that the value of safety factor 
in 3D analyses are lower than the value of safety factor in 
2D analyses. This is due to the fact that in the convex 
slopes confinement by the adjacent materials is lower. 

In order to investigate the effects of normal stiffness 
and shear stiffness on the analyses, sensitivity analyses 
were performed for the various values of these 
parameters. The values of normal stiffness were varied 
between 0.05GPa/m to 40GPa/m and the values of shear 
stiffness were taken as one tenth of the values of normal 
stiffness. As expected, lower values of stiffness resulted 
in higher displacements. However the whole behavior and 
type of failure remained unchanged. Corresponding 
results are presented in Figures 4 and 5. 

Figure 6 shows the results pertained to the various 
values of coefficient of lateral pressure. It can be noted 
that the increase in the value of this parameter results in 
a decrease in the value of safety factor. 
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Figure 4. Variation of safety factor with joint stiffness (3D 
Modelling & rc=50m) 
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Figure 5. Variation of displacements in X Direction with 
joint stiffness (3D Modelling & rc=50m) 
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Figure 6. Variation of safety factor with the coefficient of 
lateral pressure (3D Modelling & rc=50m) 
 
 

Variations of safety factor and displacements with 
various values of joint stiffness are compared for one joint 
set and two joint sets in Figures 7 and 8.  
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Figure 7. Comparison of analyses results using one and two joint sets. (a) Variation of safety factor, (b) Variation of 
displacements (3D Modelling & rc=50m) 
 
 

By comparison of these two cases, it can be noted 
that the safety factor varies with a similar trend; while the 
displacements reach a constant and almost equal value. 
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Figure 8. Factor of safety vs. coefficient of lateral 
pressure and number of joint sets (3D Modelling & 
rc=50m) 
 
 

To investigate the effect of curvature of the stability of 
the slope, analyses are made using different values of 
curvatures. In these analyses one joint set (J1) is 
involved. The results are presented in Figure 9. 

According to these results, with the increase of the 
slope curvature, due to the reduction in the lateral 
confinement, the safety factor decreases; especially in 
the lower end of curvature values. 
 
 
6 CONCLUSIONS 
 
In this paper, using distinct element method, a 
comparison was made between 2 dimensional and 3 
dimensional analyses of convex slopes in jointed rock 
mass. It was shown that 2D modeling of convex slopes 
may lead to unsafe design. 
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 Figure 9. Safety factor vs. curvature of the slope (3D 
Modelling) 
 
 

The influence of the coefficient of lateral pressure as 
well as joint spacing and joint stiffness on the stability of 
convex slopes was also evaluated. 
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