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ABSTRACT 
A fully coupled constitutive model is presented for stress-strain behaviour of unsaturated soils. The elastic-plastic 
behaviour due to loading and unloading is captured using the bounding surface plasticity. The hydraulic hysteresis is 
accounted for through the soil water characteristic curve.  Attention is also given to the interrelations between the 
effective stress and wetting and drying paths, and the shift in the soil water characteristic curve with the matrix 
deformation.  A single set of material parameters is introduced for the characterization of the coupled constitutive 
model. Comparisons are made between the simulation results and experimental data from the literature highlighting 
capabilities of the model. 
 
RÉSUMÉ 
Un modèle constitutif et entièrement couplé est présenté pour le comportement contrainte-déformation des sols non-
saturés. Le comportement élastique-plastique à cause de chargement et de déchargement est capturé à l'aide de la 
plasticité de limitant surface.  L'hystérésis hydraulique est représentée par la courbe de caractéristique de l'eau du sol. 
L'attention est également accordée à l'interaction entre la contrainte efficace et l'humidification et des chemins de 
séchage, et le changement de la courbe de caractéristique d'eau de sol avec la matrice de déformation. Un ensemble 
de paramètres de matériel est introduit pour la caractérisation du couplage modèle constitutif. Les comparaisons sont 
faites entre les résultats de la simulation et les données expérimentales de la littérature mettant en évidence les 
capacités du modèle. 
 
 
1 INTRODUCTION 
 
Interrelation of hydraulic and mechanical behaviour in 
unsaturated soils is a subject of great interest in 
geotechnical engineering practice. The plastic volumetric 
strain affects the soil water characteristics curve and 
causes a change in the degree of saturation.    Wetting 
and drying cycle, on the other hand, increases the 
stiffness (Gallipoli et al. 2003 and Wheeler et al. 2003) 
and causes irreversible volumetric strain (Alonso et al., 
1995).  Indeed, the description of the hydro-mechanical 
behaviour of unsaturated soils in a multiphase setting, 
and the identification of the influencing internal and 
external mechanisms has been a key area of research in 
modern geomechanics.    

Several constitutive models have been proposed over 
the past few years. Among the notable contributions have 
included the work of Vaunat et al (2000), Jommi (2000), 
Buisson and Wheeler (2000), Wheeler et al (2003), 
Gallipoli et al (2003), as well as Tamagnini R (2004).  
Vaunat et al (2000) were perhaps first to incorporate the 
effect of hydraulic hysteresis into mechanical modelling 
of unsaturated soils. They used the Basic Barcelona 
Model as the plasticity platform and included two yield 
surfaces to capture irreversible changes in water content 
during drying and wetting. Wheeler and his colleagues 
adopted an effective stress approach and presented a 
coupled hysteretic hydro-mechanical model for isotropic 
loading. Later Wheeler’s model was extended to 
deviatoric loading and casting into a classical theory of 
elasto-plasticity, a more general model of hydraulic 

hysteresis was also proposed, which resulted in 
variations to this model (Sun et al (2007a, b)).   

The focus in the above contributions has however 
been the constitutive modelling of the solid skeleton and 
the hysteresis arising from the soil water characteristic 
curve.  However, there are no models of unsaturated 
soils that take into account both the hydraulic and the 
mechanical hystereses in the constitutive modelling of 
unsaturated soils.   

The objective in this paper is to present a more 
complete treatment of stress-strain modelling in variably 
saturated soils.  The work is an extension of the 
theoretical developments of Habte and Khalili (2006) to 
include mechanical as well as hydraulic hysteresis. The 
essential aspects presented include: the effective stress 
principle and determination of effective stress 
parameters; the effective stress along wetting and drying 
paths; bounding surface elastic-plastic constitutive model 
to describe the deformation behaviour and mechanical 
hysteresis. All model parameters are identified in terms 
of measurable physical entities. Simulation results and 
comparisons with experimental data are presented to 
demonstrate the application of the model.   

Throughout this paper, sign convention of continuum 
mechanics is adopted; Compressive stresses and strains 
are taken as negative.  However, the mean normal stress 

and the volumetric strain ( p and vε ) are defined as    

σδ
T

3
1−=p  and εδ 

T
−=vε  so that they are positive 

in compression following the soil mechanics convention.  
Similarly, pore water pressure (pw) and pore air pressure 
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(pa) are taken as positive in compression. Compact 
matrix-vector notation is used throughout. Bold face 
letters indicate matrices and vectors. ∇(⋅) = ∂(⋅)/∂x is the 
spatial gradient and div(⋅) = ∇⋅(⋅) is the divergence 
operator and the identity vector is defined as 

{ }T
0,0,0,1,1,1=δ .    

 
 
2 BASIC CONCEPT 
 
2.1 Effective stress 
 
The effective stress concept is undoubtedly a powerful 
tool for quantitative assessment of response in saturated 
and unsaturated soils, and plays a central role in the 
present formulation.  It is used to cast the elastic and the 
elasto-plastic constitutive equations of the solid skeleton 
linking a change in stress to straining or any other 
relevant quantity of the solid skeleton (Khalili et al, 2005).  
It is also used as a platform for coupling the deformation 
of the solid skeleton to the volume change of the water 
and air constituents.    

The effective stress for unsaturated soils was first 
expressed as (Bishop, 1959; Bishop and Blight, 1963) 

  
   

δσσ snet χ−=′     [1] 

  
   

where δσσ apnet +=  is the net stress and 

wpaps −≡  is the matric suction.  Since elasto-plastic 

constitutive relations are highly non-linear, they are 
generally expressed using incremental equations. 
Accordingly, such equations require an equivalent form 
of the effective stress equation in an incremental format. 
The incremental form of the effective stress equation is 
obtained through a simple differentiation of [1] as  
 
 

δσσ snet &&& ψ−=′     [2] 

 
 
where a superimposed dot indicates the rate of change, 

δσσ apnet &&& +=  is the incremental net stress, 

wpaps &&& −=  is the incremental suction, ( ) dssd χψ =  

is the incremental effective stress parameter. 
 
2.2 Effective stress parameter 
 
The effective stress parameter, χ , describes the 
contribution of suction to effective stress. It may also be 
regarded as the scaling factor averaging matric suction 
from the pore-scale level to a macroscopic level over the 
representative elementary volume. This parameter is 
strongly dependent on the soil structure and its 
determination is crucial for a successful application of 

effective stress based constitutive models to soil 
engineering problems. Earlier definitions of the effective 
stress parameter assumed direct correlation with the 

degree of saturation, rS  (Bishop, 1959; Bishop and 

Blight, 1963). They provided a geometrical interpretation 
of the effective stress parameter; however no unique 
relationship could be find between the degree of 
saturation and the effective stress parameter (Bishop and 
Donald, 1961).  From thermodynamic considerations, 
Laloui et al (2003) stated that χ  should be expressed in 
terms of the aerial fractions of the constituents rather 
than the volumetric fractions. They further added that χ  
is related to, but not equal to, the degree of saturation 
and is a function of porosity and the pore air and pore 
water pressures. Similarly, Hassanizadeh and Gray 
(1990), Houlsby (1997), Muraleerharan and Wei (1999) 
showed that ignoring the work of air-water interface the 
effective stress parameter may be taken as the degree of 
saturation.  In recent years, several investigators have 
advocated the use of the degree of saturation as the 
effective stress parameter.  However, the overwhelming 
experimental evidence, gathered since 1960’s, is against 
the use of degree of saturation as the effective stress 
parameter (Zerhouni, 1991).   In this formulation, the 
approach proposed by Khalili and Khabbaz (1998) and 
Khalili et al (2004) is adopted. In this approach, the 
effective stress parameter is linked to the soil structure 
through an experimentally obtained correlation between 
soil suction and the effective stress parameter. After 
analysing shear strength data using a range of soil types, 
Khalili and Khabbaz (1998) obtained a unique 
relationship for the effective stress parameter χ  in terms 
of the suction ratio s/se that was later extended by Khalili 
et al. (2004). They established the following correlation 
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where es  is the suction value marking the transition 

between saturated and unsaturated states.  For the main 

wetting path exses = , and for the main drying path 

aeses = , in which exs  is the air expulsion value and aes  

is the air entry value.  For suction reversals, Khalili and 
Zargarbashi (2009), by conducting detailed drying and 
wetting tests on several soil samples, showed that 
upon suction reversal from drying to wetting, χ  
decreases with decreasing suction until it reaches the 
main wetting path, from where it increases with 
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further reductions in suction. Based on their 
observation, they proposed a simple model for 
hysteresis of the effective stress parameter in drying-
wetting cycle with specific attention to variation of this 
parameter in transition from drying to wetting and vice 
versa (Figure 1). 

The observed reduction in the value of χ  upon 
suction reversal is thought to be due to the change in 
contact angle between the air-water interface and the 
solid grains which changes from receding to that of 
advancing during the suction reversal process (Khalili 

and Zargarbashi, 2009).  Both exs  and aes  are a priori a 

function of the specific volume (density), e+= 1υ , where 
e  is the void ratio.  This leads to a shift to the right of the 
effective stress parameter curve with increasing density, 
(Figure 1). 

 
 

 
Figure 1. Evolution of  effective stress parameter with 
hydraulic hystresis and with change in density 
 
 
3 UNIFIED BOUNDING SURFACE PLASTICITY 

MODEL 
 
The elastic-plastic deformation behaviour is captured 
through the bounding surface plasticity framework. In this 
approach, plastic deformation occurs when the stress 
state lies on or within the bounding surface. This is 
achieved by defining the hardening modulus h as a 
decreasing function of the distance between the stress 
point, σ′ , and an “image point” on the bounding surface.  
The image point is selected using a mapping rule such 
that the normals to the loading surface at σ′ , and to the 
bounding surface at the image point, σ , are the same. 
The essential elements of the bounding surface plasticity 
are (Dafalias and Herrmann, 1980):  a bounding surface 
separating admissible from inadmissible states of stress;  
a loading surface on which the current stress state lies; a 
plastic potential describing the mode and component 
magnitudes of plastic deformation; and the hardening 
rule, controlling the movement of the current stress state 

towards the image point on the bounding surface as well 
as the size and locations of the loading and bounding 
surfaces. In the model presented, the material behaviour 
is assumed isotropic and rate independent in both elastic 
and elastic-plastic responses. The plasticity model is 
formulated using effective stress in the p′ − q plane, 

( )σδ ′−=′
T

3
1p  is the mean normal effective stress and 

23Jq =  is the deviatoric stress.  ( )ss
T

2
1

2 =J  is the 

second invariant of the deviator stress vector, 
δσs p′+′= . The corresponding work conjugates strains 

are volumetric strain εδ
T

−=vε  and deviatoric strain 

( ) ( )







++= δεδε

vvq
εεε

3
1

T

3
1

3
2 .   

 
3.1 Bounding surface 
 
Similar to the yield surface in the conventional plasticity, 
the bounding surface is selected experimentally.  Various 
stress paths may be chosen for this purpose.  For 
materials where the contribution of elasticity to volume 
change is negligible, the undrained response in the 
effective stress plane follows closely the bounding 
surface.  Within this context, the function (F) below was 
found to best fit the experimental data (Khalili et al., 
2005)  
 

 

 
( )

0

1

ln

ln
),,( =

′′
′−=′′ 








N

R

pcp
pcsMqcpqpF  [4] 

 
 
where the superimposed bar denotes stress conditions 
on the bounding surface, Mcs is the slope of the critical 

state line (CSL) in the q ~ p′ plane. The parameter cp′  

controls the size of F and is a function of suction and 
plastic volumetric strain.  The material constant R 

represents the ratio between cp′  and the value of p′  at 

the intercept of F with the critical state line in the q ~ p′ 
plane.  The material constant N controls the curvature. 

csM  is defined as 

 
 

 
cst

cs

csp

q

csM
φ

φ

′−

′
=

′
= 









sin
~

3

sin6
       [5]  

 
  
where φ′cs is the constant volume, effective friction angle, 

1
~

+=t  for compressive loading (q > 0), 1
~

−=t  for 
extensive loading (q < 0) and the subscript cs denotes 
conditions at the critical state. In the three dimensional 
general stress space, the slope of the critical state line 
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(Mcs) is expressed as a function of the Lode angle θ.   
The Lode angle is defined by 

 

( ) 












−

−
=

3

2

3

2

331
sin

3

1

J

J
θ       [6]

    
 

where 2J  and 3J  are the second and third invariants of 

the deviator stress vector. The Lode angle ranges from 

6πθ −=  for triaxial extension to 6πθ +=  for triaxial 

compression.  Lode angle dependency of Mcs determines 
the shape of the yield and failure surfaces in the 
deviatoric (π) plane of the principal stress space. A 
convenient expression for the variation of  Mcs with θ  is  
 

 ( )
( )

4

1

3sin
4

1
4

1

4
2

max 










−−+
=

θαα

α
θ McsM           [7] 

 
 
where α is given by  

 
 

 
cs

cs

M

M

φ

φ
α

′+

′−
==

sin3

sin3

max

min        [8] 

 
 
Mmax is the value of Mcs for triaxial compression and Mmin 
is the value of Mcs for triaxial extension. 

 
3.2 Loading surface  
 
The conventional definition that σ′  is always located on a 
loading surface is applied here. The loading surface 
adopted is of the same shape and is homologous to the 
bounding surfaces about the centre of homology.  For 
first time loading, the centre of homology is at the origin 
of stresses in q ~ p′ plane. For cyclic loading, the centre 
of homology moves to the last point of stress reversal 
and the maximum loading surface through the point of 
stress reversal serves as a local bounding surface for the 
loading surfaces within the maximum loading surface 
(Figure 2). To maintain similarity with the bounding 
surface, the loading surfaces undergo kinematic 
hardening during loading and unloading such that they 
are tangent to the maximum loading surface at the centre 
of homology.  The image point for cyclic loading is 
located sequentially by projecting the stress point onto a 
series of intermediate image points on successive local 
bounding surfaces passing through each point of stress 
reversal.   

 

Bounding 

Surface  

n 

Loading 
Surface 

Centre of homology +
csM  

σσσσ ′′′′  

σσσσ ′′′′  

cp ′  

α  

−
csM  

n 

n 

p ′  

q  

Maximum 
Loading Surface 

 
 
Figure 2. Illustration of mapping rule and the loading 
surface for cyclic loading  
 

 
The loading history of the soil is captured through the 

stress reversal points and the corresponding maximum 
loading surfaces.  In general, the loading surface (f) 
takes the form 

 

( )
0

ln

ˆˆln

ˆ

ˆ
)ˆ,ˆ,ˆ( =

′′
−

′
=′′ 









R

pcp
N

pcsM

q

cpqpf  [10] 

 

where ppp α−′=′ˆ ,  qqq α−=ˆ ,   pcpcp α−′=′ˆ , 

[ ]T, qp αα=α  is the kinematic hardening vector 

controlling the position of the loading surface, and cp̂′  is 

the isotropic hardening parameter controlling the size of 
the loading surface. α  is determined by enforcing the 
constraint that the loading surface must be tangent to the 
local bounding surface at the centre of homology and 
pass through the current stress state σ′ . The unit normal 
vector at the image point defining the direction of loading 
is given using the general equation 
 
 

 
σ

σ

σ

σ

n
′∂∂

′∂∂
=

′∂∂

′∂∂
=

F

F

f

f
   [11] 

 
 
3.3 Critical state and isotropic compression lines 

 
The critical state (CS) is an ultimate condition towards 
which all states approach with increasing deviatoric 
shear strain. The critical state line (CSL) for unsaturated 
soils is expressed using  
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 ( ) ( ) ( )cspssΓcs ′−= lnλυ    [12] 

 
 
where Γ(s)  is specific volume at a reference mean 
effective stress of p′ = 1kPa, λ(s) is slope of  the CSL on 

p′ln~υ  plane, csυ  and csp′  are  the specific volume 

and mean effective stress at the  critical state, 
respectively.  

Implicit in the present investigation is the existence of 
a limiting isotropic compression line (LICL) located at a 
constant shift along the κ line from the CSL in the 
υ ~ lnp′ plane.   The equation for the isotropic 
compression line is given by 

 
 

( ) ( ) ( )cpssΝLICL
′−= lnλυ    [13] 

 
 

in which  LICLυ  is the specific volumes on the LICL and 

( )sΝ  is intercept of the LICL at the reference mean 

effective stress of kPap  1=′ .  
 
 
3.4 Plastic Potential  
 
The plastic potential (g=0) defines the ratio between the 
incremental plastic volumetric strain and the incremental 
plastic shear strain.  The stress-dilatancy relationship 
adopted in the current formulation is   
 
 

 








′
−=

p

q

csMAtd
~     [14] 

 
 
where d is the dilatancy, A is a  material constant 
dependant on the mechanism and amount of energy 
dissipation.  The expression for the plastic potential (g) is 
then obtained by integrating [20] with respect to p and q 
as 
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tppcsAM
qttpopg

σ

σ  [15] 

 
 

where 
o

p  is the variable controlling the size of the 

plastic potential. A typical shape of the plastic potential is 
shown in Figure 3. Notice that two families of curves are 

identified: 
+
csM  for compressive loading ( 0>q ) and 

−
csM  for extensive loading ( 0<q ). 

The direction of plastic flow is therefore defined as 
 
 

σ

σ
m

′∂∂

′∂∂
=

g

g
            [16] 

 
 

 

p
qε&  

q 

p′, p
vε&  

η 

−m
 

+m
 

σ′
m

- 

+
csM  

−
csM  

 
Figure 3. Typical shape of the plastic potential for 
compression and extension loadings in the q ~ p  plane. 

 
 

In this case, the sign of t
~  which controls the direction 

of plastic flow in the deviatoric plane  is determined 
based on the relative positions of the stress point ( σ′ ) 

and its image point ( σ′ ).  The sign of t
~  is determined 

using 1
~ +=t  for πσθσθ 5.0>−  and 1

~ −=t  for 

πσθσθ 5.0<− , where σθ  is  the angle, measured 

clock-wise, from a given reference axis to the stress point 
in the deviatoric plane.  For example, if the z-axis is 
taken as the reference axis,  

πσσσσσ
σ

θ 2)2()(3
1

tan +′−′−′′−′
−

= 








xyzxy

 for 

0≥′
z

σ  and [ ] πσσσσσσθ +−−−
−

= )2()(3
1

tan xyzxy  

  for 0<′zσ . σθ  is defined similar to σθ  using the 

image stress point.  
 
3.5 Hardening Modulus 
 
Following the usual approach in bounding surface 
plasticity, the hardening modulus h is divided into two 
components 
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fb hhh +=
     [17] 

 

where bh  is the plastic modulus at σ′  on the bounding 

surface, and fh  is some arbitrary modulus at σ′ , 

defined as a function of the distance between σ′  and σ′ . 

bh  is determined by imposing the consistency condition 

at the bounding surface and incorporating the hardening 
effects of plastic volumetric strain and matric suction. 
The consistency condition for unsaturated soils is written 
as  
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The plastic deformation of the solid skeleton is obtained 
from the existence of solid skeleton is obtained from the 
existence of plastic potential: 
 
 

 
σσ

ε
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ggp
&&&      [19] 

 
 

In which  Λ& is the plastic multiplier. Substituting the 
plastic flow rule [19], equation [18] is simplified to 
 
 

 0
T

=Λ−′= bhF &&& σn     [20] 

 

which implies the hardening modulus 
b

h  at the bounding 

surface for unsaturated soils is  
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The modulus fh  is defined such that it is zero on the 

bounding surface and infinity at the point of stress 
reversal.  Following Khalili et al (2005) and Russell and 

Khalili (2006), 
f

h  for unsaturated soils is taken as  
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where cp′  and cp̂′  define the sizes of the bounding 

and loading surfaces, respectively, pq ′= /η  is the 

stress ratio, pη  is the slope of the peak strength line in 

the q ~ p′ plane, and mk  is a material parameter 

controlling the steepness of the response in the q ~ εq 
plane.   
 
3.6 Suction Hardening 
 
The general effect of suction is to increase the effective 
stress and hardens the soil response.   The increase in 
the soil stiffness leads to an increase in both the intercept 

( )sΝ  and slope ( )sλ  of the isotropic compression line, 

which will have a net effect of increasing the size of the 

bounding surface ( cp′ ).  There are two approaches for 

incorporating the hardening effect of suction; a coupled 
influence where suction has a multiplicative effect to the 
plastic volumetric hardening; or a decoupled influence 
where suction has an additive effect on the hardening 
parameter (Loret and Khalili, 2000; Russell and Khalili, 
2006). In the formulation presented here, the approach 
proposed by Loret and Khalili (2002) which considers a 
coupled effect of suction hardening is adopted. For the 
coupled approach, the general expression for the 
hardening rule is given by 
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  [23] 

 

where iυ  is the initial specific volume, icp ,′  is the initial 

value of the hardening parameter, 
p
vε∆  is the increment 

of plastic volumetric strain, ( )sγ  is a function 

representing the coupled effect of suction hardening and 
can be determined considering the shift in the limiting 
isotropic compression line (LICL) due to suction change.  
Loret and Khalili (2002) derived the following expression 

for  ( )sγ   
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in which ( )isΝ  and  ( )isλ  are intercept and slope of the 

LICL at the initial suction is , while ( )sΝ  and  ( )sλ   are 

intercept and slope of the LICL at  the final suction s . 
 

3.7 Elasto-Plastic Stress-Strain Relations 
 

Solving for the plastic multiplier Λ&  from the consistency 
condition [18]  
 

 σn ′=Λ &&
T1

bh
     [25] 

 
 

where n  is the unit vector normal to the bounding 

surface at the image stress point and bh  is the plastic 

modulus at the image point  σ′  on the bounding surface.  
Recalling the basic assumption of bounding surface 
theory, the equivalent form of the plastic multiplier at the 
current stress state σ′&   can be written as  
 
 

 σnσn ′=′=Λ &&&
T1T1

hbh
    [26] 

 
 
where h  is the plastic modulus at the current stress 
point. Expressing elastic stress-strain relationship 
 
 

 )(
e

)
p

(
eee

mεDεεDεDσ Λ−=−==′ &&&&&&   [27] 
 
 

Where 
e

D  is the elastic stiffness matrix of the solid 
skeleton. Combining [27] with [26] and  the consistency 
condition yields  
 
 

  
eT

eT

mDn

εDn

+
=Λ

h

&
&     [28] 

 
 
where  m  is the unit direction of plastic flow at  σ& ′ .  
Therefore, the elasto-plastic stress-strain relation for 
unsaturated soils is expressed as 
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  [29] 

 
 

where 
ep

D  is the standard elasto-plastic stress-strain 
matrix of the of the soil. 

 
 

4 MODEL VALIDATION  
 
To demonstrate the application of the fully coupled 
model, several loading conditions involving mechanical 
and hydraulic hysteresis should be analysed. Due to 
space limitation, the model simulations are compared 
with only one of the experimental data available in the 
literature among the others. The following case is chosen 
to examine one of the main contributions of this work 
which is the incorporation of hydraulic hysteresis into 
mechanical modelling of unsaturated soil mechanics.   
 
4.1 Drying-Wetting Cycle Tests on White Clay 

 
Fleureau et al (1993) carried out experimental research 
to investigate the response of unsaturated clayey soils 
subjected to drying-wetting paths at constant net stress. 
The tests were conducted on initially saturated slurries 
that were preconsolidated in an oedometer. The applied 
load path involved first increasing suction to a specified 
value followed by decrease in suction to its initial value 
while the net stress was kept constant. Suction was 
controlled by keeping the pore air pressure zero (at 
atmospheric pressure) and varying the pore water 
pressure. The stress paths along with some of the 
numerical simulations obtained using the proposed 
model in comparison with the experimental data are 
shown in Figures 4 and 5.  
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Figure 4. Stress path for the drying- wetting cycle test on 
white clay. 
 
 

The material parameters used in the simulations were 
calibrated from the experimental data reported by 
Fleureau et al (1993). The air entry and air expulsion 
values of sae = 1600 kPa and sex = 1200 kPa were 
obtained from the soil water characteristic curve.  Initial 
void ratio of the sample was e = 1.96 and the initial 
preconsolidation stress of the fully saturated sample was  

cp′  = 10 kPa. Material parameters defining the isotropic 
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compression line of the saturated state were λ(0) = 0.191 
and Ν(0) = 3.214. For unsaturated states, variation of 
these parameters with suction were back calculated by 
applying the suction hardening rule proposed by Loret 
and Khalili (2000) on the values of the preconsolidation 
stress.  Other model parameters used in the analysis 
were κ =  0.014, ν =  0.3, Mcs = 0.85, N = 2.0, R = 2.0,  A 

= 1.0, 50.=ζ , 0=ξ and  km = 1.0.  

Figure 4 shows the drying-wetting path (A1-A2-A3-A4-

A5) in the mean net stress - suction ( snetp ~ ) plane.  

For instance, the resulting changes in the specific volume 
are shown in Figures 5. It can be seen form this figure 
that the model simulations match the experimental data 
very well for both drying and wetting paths.  

Notice that for the portion of the drying path below the 
air entry suction (A1-A2), the soil behaviour is saturated 
with the increase in suction resulting in an equal increase 
of the effective stress leading to compression of the 
sample. As is shown in Figures 5, initial part of this path 
corresponds to elastic deformation until the effective 
stress equals the preconsolidation (yield) stress at Ay, 
after which plastic deformation occurs until the air entry 
suction is reached. This stage (Ay-A2) is associated with 
equal increments of the mean effective and 
preconsolidation stresses. The increase in the yield 
stress is solely due to the hardening effect of plastic 
volumetric strain. 
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Figure 5. Comparison of model simulation and 
experimental data for the drying-wetting cycle test on 
white clay, s~υ  plot.   

 
 
Once the air entry suction is reached, the soil 

becomes unsaturated with the change in effective stress 
becoming less than the change in suction, while the 
increase in the preconsolidation stress becoming larger 
due to contribution of suction hardening.  At this stage, 
since the increase in the mean effective stress is less 
than the increase in the yield stress, the deformation 
after the air entry value (A2-A3) is inside the bounding 
surface.  In fact the volumetric compression of the soil in 
this region is much smaller for the unsaturated range due 
to progressively smaller rate of increase in the effective 
stress.    

The volume change behaviour during the first stage of 
the wetting path (A3-A4) is the exact reverse of the 
behaviour in the unsaturated range for the drying path 
(A2-A3). A reduction in the suction leads to a decrease in 
both the effective stress and the preconsolidation stress 
with the reduction in the preconsolidation stress being 
greater than the reduction in the effective stress. Since 
the mean effective stress is less than the 
preconsolidation stress, the reduction in suction results in 
predominantly elastic swelling of the sample. On the 
other hand, hardening effect of suction vanishes and the 
preconsolidation stress becomes constant when suction 
is below the air expulsion value (A4-A5).  This leads to 
further swelling as the effective stress continues to 
decrease within the bounding surface with reduction in 
suction.  

The proposed model is also able to capture the 
hydraulic hysteresis between the drying and wetting 
stages of the soil water characteristic curve. This was 
possible by using two different values of se in 
determination of the effective stress parameter. The air 
entry suction (se = sae) is used for the drying path, while 
the air expulsion (se = sex) suction is used for the wetting 
path. This feature was not captured in the simulations of 
Loret and Khalili (2000) since they have used the same 
air entry and air expulsion values for the drying and 
wetting paths.  In general, the above results confirm 
capability of the proposed model to describe the basic 
behaviour of unsaturated soils for drying-wetting load 
cycle. 

 
 

5 CONCLUSION 
 
A fully coupled elasto-plastic constitutive model is 
presented for unsaturated soils including hydraulic and 
mechanical hystereses. The model is formulated 
incrementally using the effective stress principle with the 
effective stress parameter defined as a function of 
suction. The elastic-plastic deformation behaviour is 
captured using bounding surface plasticity.  Effect of 
suction on plastic hardening is taken in to account 
through definition of the isotropic compression line. A 
single set of material parameters is introduced for the 
complete characterization of the coupled constitutive 
model. Model simulation is compared with experimental 
data. Good agreement is obtained between the 
simulation results and the test data in all the cases 
considered. 
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