
Estimation of Soil Distribution Coefficient Using 
Artificial Neural Networks Modelling for 
Chromium Contaminated Water 

 
Mostafa Abolfazlzadehdoshsnbehbazari  
Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada 
Amin Falamaki  
Department of Civil Engineering, Payam Noor University of Shiraz, Shiraz, Fars, Iran 
Ania C. Ulrich  
Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada 
 
 
 
ABSTRACT 
In this study, we determined the reliability of artificial neural networks (ANNs) in predicting soil distribution coefficients, 
Kd, in different soil types (Pacolet, Cloudland and Kenoma) and environmental conditions (pH, C and S content).  The 
effect of ANNs geometry on the performance of the models was also assessed. The ANNs tested include the Multi Layer 
Perceptron (MLP), Radial Basis Function (RBF) and Hierarchical (HIER) Networks.  In all cases, the correlation factors 
were greater than 0.984, demonstrating that ANNs are powerful tools for predicting Kd values and that MLP provided the 
best results.  
 
RÉSUMÉ 
Dans cette étude, nous avons déterminé la fiabilité des réseaux de neurones artificiels (RNA), pour prédire la variation 
du coefficient de la distribution des sols (Kd) pour les différents types des sols (Pacolet, Cloudland et Kenoma) et 
différentes conditions environnementales (pH et la teneur  de C et de S). L'effet de la géométrie du RNA sur la 
performance des modèles est également évalué. Les réseaux neuronaux artificiels qui sont testés, incluent le 
Perceptron Multi Layer (PML), la Fonction de base Radiale (FBR) et les réseaux Hierarchial (HIER). En tous les cas, les 
facteurs de la corrélation sont supérieurs à 0,9841, ce qui montre que les RNA est un moyen puissant pour prédire des 
valeurs du Kd et que le PML mène aux meilleurs résultats. 
 
 
1 INTRODUCTION 
 
1.1 Sorption and Conventional Modeling Approaches 
 
Sorption of a contaminant to soil is one of the most 
important processes in determining the fate of chemicals 
in the environment. Sorption is usually defined as the 
association of a dissolved contaminant with the surface of 
a solid material (Alley, 1993). Sorption may occur by 
adsorption to the surface of a solid, absorption within a 
solid, precipitation as a 3-dimensional molecular structure 
on the surface of the solid, or by partitioning into the 
organic matter (Sposito, 1989; Krupka et al. 1999). 

The distribution coefficient, Kd is defined as the ratio of 
contaminant concentration in soil phase to the 
concentration in aqueous phase at equilibrium. Kd values 
depend on the type of contaminant and chemistry of 
aqueous and soil phases (Kaplan and Serne, 1995; EPA 
2004). The most common adsorption models used in 
predicting Kd values are constant distribution coefficient, 
parametric sorption and isotherm adsorption models, 
including linear, Langmuir and Freundlich (Appelo and 
Postma, 1996; Rongbo Guo et al. 2002).  

Contaminant properties and soil/aqueous 
environments exhibit multifaceted behaviour due to 
complex and imprecise geo-chemical processes 
associated with adsorption. In order to cope with the 
complexity of this process, artificial neural networks 

(ANNs) can be used and are well suited to model complex 
problems especially where the relationship between the 
variables is unknown (Hubrick, 1992). 

 
1.2 Artificial Neural Networks Models 

 
Artificial neural networks mimic the complicated behaviour 
of the central nervous system, based on how the human 
brain copes with problems as compared to conventional 
mathematical models and digital computers. Processing 
Elements (PE) which carry out the role of nodes in the 
human brain are arranged in three layers: an input layer, 
output layer and hidden layer. Complex and highly non-
linear real world problems cannot be solved by traditional 
regression analysis, but ANNs can overcome these 
limitations by changing the function of transfer and in the 
case of highly non-linear phenomena by changing the 
number of hidden layers and nodes (Gardner and Dorling, 
1998). ANN without any knowledge between the nature of 
input and output variables, tries to adjust their weights by 
using a training data set to find the input-output mapping 
with the smallest error. In fact, after summation of the 
input variables (X0, X1 … Xn) multiplied with the 
coefficients Wki (weights), the result is passed through a 
transfer function. This function may be either a threshold 
logic, hard limiting function, sigmoid nonlinearity, or 
hyperbolic tangent. This process is summarized in 
Equations 1 and 2 and illustrated in Figure 1.  
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Figure 1. The ANN architecture 
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In Equations 1 and 2, I is the result of summation, 

(.)f is the transfer function and kY is the output of PE 

which provides the input of the PEs in the next layer.    
Weight adjusting of variables in order to minimize 

errors is called training. After the training phase, the 
accomplished model performance is examined by using 
different sets of input-outputs to determine the reliability of 
the model (Shahin et al. 2001; Maier and Dandy, 2000). 

Artificial neural networks have been successfully 
applied in various fields of geotechnical and 
environmental engineering such as settlement of 
foundations (Sivakugan, 1998), liquefaction (Ural and 
Saka, 1998; Najjar and Ali, 1998) and modelling of water 
treatment and quality (Baxter et al. 2001). ANN modeling 
of Pb(II) adsorption from aqueous solution by Antep 
pistachio shells showed the correlation coefficient of about 
0.936 between ANN model outputs and experimentally 
measured model variables (Yetilmezsoy and Demirel, 
2008). Fatemi (2007) investigated the ANN modeling of 
micelle-water distribution coefficient and obtained a root 
mean square error of 0.06 and 0.20 for training and test 
sets, respectively. In addition, ANN modeling of organic 
chemicals sorption on soil by Gao (1996) indicated a good 
fit between training and predicting distribution coefficient 
of organic carbon for the test set.  Although there have 
been several studies on the successful use of ANN in 
modeling of contaminants distribution in soil, application of 
ANN in modeling of chromium adsorption into soils has 

not been previously reported. Sorption of every 
contaminant in a given environment would need a 
particular approach and may pose distinct challenges in 
terms of complexity of sorption media, variation in 
environmental conditions and so on. Moreover, using 
three different ANN models to compare the results is one 
of the advantages of the present study. In this study MLP, 
RBF and Hierarchical ANN models are used to predict the 
variation in the distribution coefficient, Kd, for chromium 
under different environmental conditions, variation of pH, 
carbon and sulphur content, on Pacolet, Cloudland and 
Kenoma soil; to determine if ANNs provide a reliable 
approach for predicting Kd variation in different soil types; 
the effect of the ANNs’ geometry on the performance of 
ANN models; and if it is possible to use ANNs if 
environmental factors are varied.   
 
2 MATERIAL AND METHODS 

 
2.1 Data Base 
 
The chromium adsorption data reported by Rai et. al. 
(1988) was used in this study. A review of this data 
indicated that a variety of factors influence the adsorption 
behaviour of chromium. These factors and their effects on 
chromium adsorption on soils and sediments were used 
as the basis for this study. Chromium adsorption on 
Pacolet, Cloudland and Kenoma soil is calculated as a 
function of pH, carbon and sulphur concentration of the 
soil. For Kenoma soil, measured Kd ranged from 1 to 28 
(ml/g) for different pH, -log C (minus logarithm of carbon 
concentration) and -log S (minus logarithm of sulphur 
concentration). For this soil the number of tests is 15, nine 
of them used for training and six of them used for testing 
the ANN models. The number of reported Kd values used 
to test the Pacolet soil is 20 (14 of them used for training 
and six of them for testing ANN models). In this case 
measured Kd values range from 1 to 465 (ml/g). There are 
23 Kd test results for Cloudland soil which ranges from 1 
to 1443 (ml/g). Sixteen of these results were used for 
training and seven of them were used for testing the ANN 
models. 

 
2.2 ANN Models 
 
Three types of ANN models, Multilayer Perceptron (MLP) 
network, Radial-Basis Function (RBF) network and 
Hierarchical network, were used to predict Kd values. The 
programming of these models was completed with 
MATLAB 6.5 and each network was trained for Kenoma, 
Pacolet and Cloudland soils, with nine, fourteen and 
sixteen sets of data, respectively (as described in section 
2.1), which are the minimum number of records to achieve 
high accuracy in model training.  These numbers were 
selected from trial and error runs during ANN model 
training. Each data set contained different pH, carbon and 
sulphur content values as they relate to measured Kd 
values.  

 
2.2.1 Multilayer Perceptron Network 
 

1087

GeoHalifax2009/GéoHalifax2009 



The structure of a MLP model consists of a number of 
hidden layers with several neurons in each hidden layer. 
The activation functions for hidden layer neurons are 
tangent hyperbolic and for the output layer is linear, in 
fact, linear function for transformation from the hidden 
space to the output space will increase the performance 
of the network (Vaziri et al, 2006). The MLP network 
specifications (the numbers of training samples, 
simulating samples, neurons in first hidden layer, neurons 
in second hidden layer and neurons in output layer), are 
summarized in Table 1. 
 
2.2.2 Radial Basis Function Model 
 
The basic form of the radial-basis function network 
includes three layers. Each layer has a completely 
different role. The input layer is made up of source nodes 
(sensory units) and connects the network to the 
environment. The role of the second layer is to apply a 
nonlinear transformation from the input space to the 
hidden space. This hidden layer in most cases has higher 
dimensions. The output layer is linear and supplies the 
response of the network to the activation pattern applied 
to the input layer.  Table 1 demonstrates the summary of 
RBF network specifications used in this research. 

 
2.2.3 Hierarchical Models  
 
A modular approach involving two hierarchical levels of 
network architecture were adopted. This network includes 
two clusters containing two experts in each of them. 
Experts are networks with one neuron and each cluster 
contains a gating network with two neurons. The top level 
gating network beyond these clusters consists of two 
neurons. To obtain best results, different conditions were 
used (see Table 2 for a summary). The training of data for 
this model was carried out in a highly time consuming 
manner. 
 
3 RESULTS & DISCUSSION 
 
The available experimental data for chromium adsorption 
(Rai et al, 1988) were used to configure and evaluate the 
suitability of three ANN models in predicting the Kd values 
for three different soils. Statistical parameters such as 
correlation coefficient (Corr(x,y)), standard error (SE) and 
mean relative error (MRE) were calculated using Microsoft 
Excel for predicted and measured data. In fact, these 
statistical parameters are good indicators to check the 
prediction performance of the ANN networks. Equations 3 
to 5 are the formula of these parameters and the 
calculated values are shown in Table 3. As it can be seen 
from the table, in all cases, correlation factors were no 
less than 0.984. The best correlation factor was obtained 
for Cloudland soil with a value of one which was obtained 
with the MLP model. The weakest correlation was 0.984 
for Kenoma soil with the HIER 2 model.  
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Where:  

 
n is the number of samples,  

 
Kdm and Kdp are the measured and predicted values of Kd 
respectively, 
  

dmK  and pmK  are the average value of measured and 

predicted Kd respectively, and 
 
s is the sample standard deviation.  
 

 Figures 2 to 4 show comparison of measured and 
predicted Kd values for all soils for training and testing 
data sets.  
 
 
Table 1. Summary of MLP and RBF networks 
 

No. Name NTS
1
 NSS

2
 NHN1

3
 NH2

4
 NON

5
 

1 

MLP 

Kenoma 

Network  

9 6 4 2 1 

2 

MLP 

Pacolet 

Network  

14 6 4 2 1 

3 

MLP 

Cloudland 

Network  

16 7 4 2 1 

4 

RBF 

Kenoma 

Network  

9 6 3 0 1 

5 

RBF 

Pacolet 

Network  

14 6 9 0 1 

6 

RBF 

Cloudland 

Network  

16 7 16 0 1 

 

1 NTS is number of training samples, 
2 NSS is number of simulating samples 
3 NHN1 is number of neurons in first hidden layer 
4 NHN2 is number of neurons in second hidden layer  
5 NON is number of neurons in output layer. 
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Table 2. Summary of hierarchical networks 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Comparison of measured and predicted 
Kd values for Cloudland soil. a) Training  data, b) 
Testing  data 
 
 

 
 
3.1.1 Results for Cloudland Soil: 
 
As shown in Table 3 and Figure 2, training the network 
using 16 training records was sufficient to achieve high 
accuracy. The highest coefficient of correlation (equal to 
1) was obtained for training and testing sets of data by 
RBF and MLP networks. According to Figure 2, these two 
networks led to excellent predictions of Kd when 
compared to the measured values. Although RBF resulted 
in the lowest mean relative and standard errors (MRE = 
0% and SE = 0) and the highest coefficient of correlation 
equal to 1) for the training data set, it was the MLP 
network which predicted the testing data set with the 
lowest error (SE = 0.71, MRE = 2.7) compared to the RBF 
network with  SE = 7.39, MRE = 8.95 . HIER 8 predicted 
negative values for the testing data set, which means that 
the network failed. The HIER 9 network is the same as 
HIER 8, except that the natural logarithm of Kd was used 
as targets to train this network. For HIER 9, although good 
predictions were achieved for training the data set (Figure 
2), error was much higher compared to the MLP and RBF 

networks. Better results may be obtained by increasing 
the number of epochs. It is clear that hierarchical 
networks in this case offer lower accuracy in prediction as 
is shown in Table 3. 
 
3.1.2 Results for Kenoma Soil 
 
The results shown in Table 3 and Figure 3 demonstrated 
that for Kenoma soil, training the network by nine records 
was sufficient to obtain high accuracy. As shown in Table 
3, among the networks, MLP showed the best results with 
the lowest mean relative and standard errors (MRE = 
1.42% and SE = 0.11) and highest coefficient of 
correlation (equal to 1) for the training data set. On the 
other hand, HIER 3 exhibited the lowest accuracy for the 
training data set. MLP and RBF networks resulted in the 
lowest SE (0.68 and 0.69) and the highest coefficient of 
correlation (0.997 and 0.997) for testing the data set. The 
RBF network had lower MRE values than MLP network. 
HIER 1 and HIER 2 networks achieved good predictions 
for the training data, but negative values were predicted 
for testing sets which means that the network fails. 

Type of 
No Name 

the Soil 
Description 

1 HIER 
1 

Kenoma 
Soil 

Kd was used as targets. 
Top level gating network 

2 HIER 
2 

Kenoma 
Soil 

Kd was used as targets. 
Top level gating network 
trained by output of each 

clusters. 

3 HIER 
3 

Kenoma 
Soil 

Natural logarithm of Kd was 
used as targets. Top level 
gating network trained by 

input data. 

4 HIER 
4 

Kenoma 
Soil 

The same as HIER 3 but 
the training time was 

doubled. 

5 HIER 
6 

Pacolet 
Soil 

Natural logarithm of Kd was 
used as targets. Top level 
gating network trained by 

input data. 

6 HIER 
7 

Pacolet 
Soil 

The same as network HIER 
6 but more training time. 

7 HIER 
8 

Cloudland 
Soil 

(Kd/1600) were used as 
targets. Top level gating 

network trained by output 
of each clusters. 

8 HIER  
9 

Cloudland 
Soil 

Natural logarithm of Kd was 
used as targets. Top level 

 
For all networks: 
Number of clusters = 2 
Number of experts in cluster = 2  
Number of neurons in expert network = 1 
Number of neurons in gating networks = 2 
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Table 3. Statistical parameters for training and testing data 
 

Training Set of Data Testing Set of Data 

Soil Type 
Network 
Type Correlation 

Factor 
Standard 
Error 

Mean 
Relative 
Error (%) 

Correlation 
Factor 

Standard 
Error 

Mean 
Relative 
Error (%) 

MLP 1 0.11 1.4 0.997 0.68 32.12 

RBF 0.997 0.83 6.31 0.997 0.69 22.7 

HIER 1 0.997 0.72 11.59 0.987 1.66 65.43 

HIER 2 0.997 0.78 13.74 0.984 1.88 71.6 

HIER 3 0.986 2.25 17.35 0.994 1.03 40.38 

Kenoma 

HIER 4 0.995 1.21 8.94 0.997 0.74 22.9 

MLP 1 1.22 16.55 1 0.76 2.03 

RBF 1 0.86 2.72 0.999 4.65 9.94 

HIER 6 0.939 96.1 37.16 0.984 39.89 17.5 
Pacolet 

HIER 7 0.939 82.14 25.47 0.984 33.67 24.57 

MLP 1 0.66 4.52 1 0.71 2.7 

RBF 1 0 0 0.999 7.39 8.95 

HIER 8 0.973 144.36 3765.6 0.987 115.62 419.93 
Cloudland 

HIER 9 0.997 45.87 9.87 0.998 32.14 9.02 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Comparison of Measured and Predicted 
Kd values for Kenoma Soil. a) Training set of data, 
b) Testing set of data 

 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparison of Measured and Predicted Kd 
values for Pacolet Soil. a) Training set of data, b) 
Testing set of data 
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3.1.3 Results for Pacolet Soil 
 
To obtain sufficiently accurate results (Table 1), 14 
training records were used for training the networks for 
the Pacolet soil samples. Among the networks, MLP and 
RBF exhibited the best results with lower standard error 
(SE = 1.22 and 0.86) and a coefficient of correlation equal 
to 1 for the training data set. For the testing data these 
two methods showed coefficient of correlation values 
equal to 1 and 0.999 which indicated the accuracy of 
these methods in predicting Kd. It should be noted that 
although the MLP network has a high mean relative error 
(16.5%), the prediction results for training and testing sets 
of data is acceptable. This high mean relative error 
resulted from Kd=1 and 2 (ml/g) which have the highest 
relative difference between actual and training data. For 
HIER 6 and HIER 7 networks, good predictions were 
achieved for the training and testing data set, but were 
less precise relative to the results of MLP and RBF 
network models.  
 
 
4 CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 
 
In this study we illustrated the use of artificial neural 
networks in predicting Kd values for chromium sorption in 
three different soils.  The following conclusions can be 
drawn based on the results of this investigation:  
1. As per statistical analysis, in all ANN models, 
correlation factors were not less than 0.984. This is an 
indicator that ANNs are powerful tools for predicting 
appropriate Kd values. 
2. Among the networks tested in this study, MLP was 
selected as the best model with correlation factors of 
0.997, 1 and 1 obtained for Kenoma, Pacolet and 
Cloudland soils respectively. 
3. RBF Networks are very accurate for prediction of 
chromium partitioning coefficients of Kenoma, Pacolet and 
Cloudland soils. 
4. It was found that HIER networks could not correctly 
predict small values of chromium distribution coefficients 
for Kenoma, Pacolet and Cloudland soils and application 
of this module sometimes resulted in negative values. 
Better results may be obtained by increasing the number 
of epochs, but it would require much longer training times 
(>10000 sec.).  
5. Results obtained by ANN models indicated a better 
performance of networks for higher Kd values (generally 
for Kd values more than 10). Prediction of smaller Kd 
values were accompanied with higher MRE. 

As this research has been conducted on just three 
kinds of soils, one specific metal and three ANN models, it 
is recommended to test more soil types, other metals in 
different environments and different ANN models, to find 
out if and how the results obtained in this study can be 
applied to those specific cases.  
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