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ABSTRACT 
Several authors have used the finite element method (FEM) to evaluate the shape factors used in the interpretation of 
in situ permeability test data. Apart from elements and grid sizes, authors rarely discuss the numerical aspect of shape 
factor calculations. This paper presents shape factor values obtained with the authors’ FEM model programmed with 
MATLAB and two commercial FEM packages: SEEP and COMSOL.  Proper grid and element sizes are discussed. The 
influence of the method used for flux integration, a usually hidden aspect of FEM calculations, is reviewed. Thiem’s 
equation, an analytical solution to a problem similar to the one involved in shape factor calculations, is used to validate 
some of our conclusions. Our results indicate that Hvorslev’s ellipsoid equation underestimates shape factor values by 
approximately 9 %. 
 
RÉSUMÉ 
Plusieurs auteurs ont utilisé la méthode des éléments finis (MEF) pour le calcul des coefficients de forme nécessaires à 
l’interprétation des résultats d’essais de perméabilité in situ. Mis à part la taille des éléments et les dimensions de la 
grille, ces auteurs présentent peu de détails quant à l’aspect numérique de leurs calculs. Cet article présente des 
valeurs de coefficients de forme obtenues avec un modèle d’éléments finis programmé par les auteurs avec MATLAB, 
et avec deux logiciels commerciaux : SEEP et COMSOL. Le choix de dimensions appropriées pour les éléments et le 
domaine de calcul est discuté. L’influence de la méthode utilisée pour intégrer le flux, un aspect peu étudié des 
éléments finis, est passée en revue. L’équation de Thiem, la solution analytique d’un problème similaire à celui du 
calcul des coefficients de forme, est utilisée pour valider certaines conclusions de l’article. Nos résultats indiquent que 
la formule de l’ellipsoïde de Hvorslev sous-estime les coefficients de forme d’environ 9 %.  
 
 
 
1 INTRODUCTION 
 
This paper deals with constant- and variable-head field 
permeability tests conducted in hydraulic piezometers or 
field permeameters. Various test configurations can be 
used. Figure 1 shows one example. For a constant-head 
test, we apply a constant hydraulic head and measure the 
flow rate in or out of the soil. For the variable-head test, 
water is either added or removed from the riser pipe and 
the water level movement toward its original position is 
recorded. The flow rate can then be computed with the 
water level change and the riser pipe section.  

For permeability tests conducted in relatively stiff soils 
(e.g. dense sands and gravels), we can usually assume 
that the granular soil skeleton is perfectly rigid (Chapuis 
1998). Darcy’s law and the principle of mass conservation 
imply that the hydraulic head (h) field around the intake 
zone is a solution to Laplace’s equation (Equation 1).  

 
[1] 

 
Harmonic functions, the family of solutions which 

satisfy Laplace’s equation, have several interesting 
properties. The superposition property of harmonic 
functions implies that the rate of flow in or out of the 
cavity is directly proportional to the soil hydraulic 
conductivity (K), the difference between the water level in 

the riser pipe and the initial hydraulic head in the soil (H) 
and the shape factor (c) (Equation 2).   

  
[2] 

 
The shape factor is a function of the intake zone 

geometry, of its L/D ratio (intake zone length / diameter) 
and of the recharge and impermeable boundaries 
surrounding the intake. Several methods have been used 
to define c throughout the years. In this paper, we present 
shape factor values obtained with the finite element 
method (FEM) for two common intake zone geometries. 
Our results cover a 2≤L/D≤20 aspect ratio range.  

 The finite element method has been used in the past 
to obtain shape factor values. The main contribution of 
this paper is to dig deeper into the numerical aspects of 
shape factor calculations. Previous publications dealt with 
the influence of element and grid sizes on shape factor 
values (Chapuis 1989; Ratnam et al. 2001; Tavenas et al. 
1990). In this paper, we show that the method used to 
integrate the flux in or out of the intake zone can also 
have its bearing on shape factor values. Results from a 
custom finite element program (MATLAB) are compared 
with those of two commercial finite element packages: 
COMSOL (COMSOL AB 2007) and SEEP (Geo-Slope 
International Ltd. 2008). Our shape factor values are 
generally in agreement with those that have been 
suggested in previous publications. We show that using 
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Hvorslev’s (1951) ellipsoid formula for intake zones with 
L/D>2 results in a slight (generally < 13 %) 
underestimation of shape factor values and that this 
discrepancy can be corrected by changing Hvorslev’s 
ellipsoid dimensions.  

 

 
Figure 1. Permeability test in a hydraulic piezometer. 
 
 
2 SHAPE FACTORS 
 
Equation 2 implies that the shape factor is equal to the 
integral of the flux out of the intake zone and into the soil 
for a hydraulic conductivity of 1 m/s and a hydraulic head 
difference of 1 m.  

For cylindrical intake zones, two axisymmetric 
geometries are of interest. Figure 2 shows the one which 
we will refer to as the impermeable bottom geometry. 
Water can only flow through the lateral surface of the 
cylinder. An impermeable borehole casing extends from 
both extremities of the intake zone. The self-boring 
permeameter of Tavenas et al. (1990) is an example of 
an apparatus where shape factor calculations would be 
based on this intake zone geometry. Figure 3 shows the 
permeable bottom geometry. Water can flow through both 
the lateral and bottom faces of the cylinder. An 
impermeable borehole casing extends upward. This 
geometry would be used to calculate shape factors for 
hydraulic piezometers like the one shown in Figure 1.  

 

 
Figure 2. Boundary conditions for a cylindrical 
permeameter with an impermeable bottom. 

 
Figure 3. Boundary conditions for a hydraulic piezometer 
with a permeable bottom. 
 

In both Figures 2 and 3, the domain in which the 
hydraulic head is a solution to Laplace’s equation is 
bounded by a set of thicker lines. The thick grey lines 
outline the soil-intake zone interface while the thick black 
lines trace the impermeable boundaries ( 0nh =•∇

r
), axis 

of symmetry and distant constant head boundaries. If we 
use the usual assumption of an infinite soil medium, the 
domain dimension parameter d must tend toward infinity. 

The boundary value problems of Figures 2 and 3 do 
not have analytical solutions. Four main approaches have 
been used to solve those problems and obtain shape 
factor values. The results obtained with the four methods 
for L/D > 2 are summarized in Figures 4 and 5. 

The first method is to replace the cylindrical intake 
zone by an equivalent sphere or spheroid. An exact 
solution to the boundary value problem can then be 
found. Equation 3 is the so-called ellipsoid equation 
(Dachler 1936; Hvorslev 1951).  
 

 
 

[3] 
 

  
 
To obtain this equation, the cylindrical intake zone is 
replaced by a prolate spheroid of focal length L and 
horizontal radius D/2. Equation 3 is usually assumed to 
be a good approximation of the boundary value problem 
of Figure 3 when L/D > 4 (Chapuis and Chenaf 2008). It is 
also often used when the geometry of Figure 2 applies, 
especially for large L/D ratio (Ratnam et al. 2001).  

Other spheroid equivalents have also been presented. 
Maasland and Kirkham (1959) gave shape factors for a 
spheroid inscribed in the cylindrical intake zone. For 
L/D>2, the difference between their shape factor values 
and those given by Equation 3 is less than 5 %. Wilkinson 
(1968) suggested using a spheroid with approximately the 
same volume as the cylindrical intake zone. Shape 
factors for equal volume spheroids can be obtained by 
multiplying by 1.5 the L/D ratio in Equation 3. Randolph 
and Brooker (1982) obtained similar shape factor values 
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by using a spheroid with the same surface area as the 
cylindrical intake zone.  

These equivalent geometries are seldom used in 
practice. Nonetheless, they can show the range of shape 
factor values resulting from a priori arbitrary equivalent 
spheroid dimensions. For L/D = 4, the shape factor 
values obtained with an equal volume spheroid and the 
inscribed spheroid differ by 28 %. Figures 4 and 5 show 
that the shape factor values obtained with the other 
methods lie between the values given by Wilkinson’s 
(1968) and Hvorslev’s (1951) spheroids. 

The complete mathematical demonstration leading to 
Equation 3 is presented by Cassan (1980, p. 47). Similar 
developments lead to the other equivalent spheroids 
proposed in the literature. A closer examination of this 
proof shows that multiplying the spheroid radii by a 
constant multiplies the resulting shape factor by the same 
constant. This property will later be used to adjust the 
equivalent spheroid dimensions so that they match the 
shape factor values obtained from our finite element 
model.  

The second of the four shape factor calculation 
methods applies to the boundary value problem of Figure 
2. For this method, the constant head (Dirichlet) boundary 
condition along the soil-intake zone interface is replaced 
by an equivalent flux (Neumann) boundary condition. By 
using Fourier and Laplace transforms, a semi-analytical 
solution taking the general form of Equation 4 can be 
obtained (Dougherty and Babu 1984). 

 
 

[4] 
 

 
[5] 

 
 
Where K0 is the zero order Bessel function of the 

second type. The Gn values depend on the chosen 
equivalent Neumann boundary. There are several ways to 
define this boundary condition. Randolph and Booker 
(1982) and Rehbinder (2005) used continuous functions 
while Mathias and Butler (2007) divided the boundary into 
segments each assigned with a constant flux value. The 
shape factors values derived using Mathias and Butler’s 
(2007) discretization are shown in Figure 4. 

3D electric analogs make up the third group of shape 
factor calculation methods. They are based on the 
analogy between the flow of water under Darcy’s law and 
the flow of electricity according to Ohm’s law (Schneebeli 
1966, p.147). Shape factors are measured in a reservoir 
filled with water of a known electrical resistivity. Water 
replaces the soil medium. Constant hydraulic head 
surfaces and impermeable boundaries are replaced with 
electrical conductors and insulators. The intake zone is 
replaced by a cylindrical electrode. By applying a voltage 
between the intake zone electrode and the electrical 
conductor lining the reservoir, an electrical current is 
generated. Using the water resistivity, the measured 
electrical current and the applied voltage, an equivalent 
water flow rate can be calculated. Brand and Premchitt 
(1980) and Smiles and Youngs (1965) used this method  
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Figure 4. Previous shape factor values for the 
impermeable bottom geometry. 
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Figure 5. Previous shape factor values for the permeable 
bottom geometry. 
 
to evaluate the shape factor of cylindrical intake zones. 
Their results are presented in Figures 4 and 5. 

The fourth group of shape factor values are obtained 
with the finite difference (Al-Dhahir and Morgenstern 
1969; Brand and Premchitt 1980) and finite element 
methods (Diène 1989; Ratnam et al. 2001; Tavenas et al. 
1990). With both methods, approximate hydraulic head 
values are obtained for each node of a grid.  

With the advent of relatively cheap and powerful 
personal computers, the use of numerical methods like 
the finite difference and finite element methods have 
become increasingly common. However, even when 
using a relatively robust commercial software package, 
users must remain prudent as numerical methods almost 
always generate an output, even if numerical errors are 
large or if the simulation input parameters are wrong. A 
direct consequence of this is that it can be difficult to 
judge if published numerical results are reliable when little 
information is presented on the methodology. Previous 
publications based on the finite difference and finite 
element methods mainly dealt with two numerical aspects 
of shape factor calculations: element and grid sizes.  
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For the impermeable bottom geometry, a linear trend 
between c and average element size at the soil-intake 
zone interface (tavg) was observed. This trend was noticed 
for both the finite element and finite difference methods. 
Al-Dhahir and Morgenstern (1969), Brand and Premchitt 
(1980), Tavenas et al. (1990) and Ratnam et al. (2001) 
used this trend to estimate shape factor values for 
infinitely small tavg values. Both Tavenas et al. (1990) and 
Al-Dhahir and Morgenstern (1969) used elements with a 
minimum tavg/D ratio of approximately 0.1. They then used 
shape factor values obtained with coarser meshes to find 
a linear relation between c and tavg and to extrapolate this 
relation to tavg=0. For the permeable bottom geometry, 
Ratnam et al. (2001) noticed that the linear trend between 
c and tavg was not always observed, especially for small 
L/D ratios. In these cases, they noticed that c was 
proportional to tavg

1/4. They corrected their results based 
on this observation. 

Chapuis (1989) warns us that the grid must be 
sufficiently large for the infinite medium hypothesis to be 
verified. If the grid is too small, gradients are 
overestimated since the hydraulic head must decrease 
more rapidly away from the intake zone to connect with 
closer boundary conditions. This also leads to 
overestimating the total flux and the shape factor. It must 
be noted that the choice of a grid size is also important 
for 3D electric analogs. The grid sizes used in previous 
publications can be compared using the d/D ratio 
(Figures 2 and 3). Tavenas et al. (1990) used a d/D ratio 
varying between 62.5 and 100. For their electric analogs 
measurements, Brand and Premchitt (1980) used a d/D 
ratio of approximately 150. Unfortunately, the grid size 
and the d/D ratio were not always stated explicitly in 
previous publications. 

There are several ways to evaluate the influence of 
the chosen d/D ratio on shape factor values. 
Chapuis (1989) used image wells to obtain a corrected 
shape factor value (c’) taking into account the finite grid 
size. The correction is based on the distance between the 
center of the intake zone and the recharge boundaries. 
For the boundary value problems of Figures 2 and 3, 
considering that d is much larger than L and D, the 
correction suggested by Chapuis (1989) can be rewritten 
as Equation 6.     

 
[6] 

 
 
Al-Dhahir and Morgenstern (1969) corrected their 

numerical shape factor values by calculating the shape 
factor for a spherical intake zone with the same surface 
area as the cylindrical intake zone. Since there is an 
analytical solution for the shape factor of a sphere in an 
infinite medium, the percentage error induced by a finite 
grid could be calculated and applied to the cylinder of 
equal surface area.  

The main pitfall in using the FEM to calculate shape 
factor values is that this numerical method gives a good 
approximation of the field variable, in this case the 
hydraulic head, but not so much of its derivatives. When 
calculating c, it is those derivatives that we are 
evaluating. Unfortunately, little information on the 

methods used for flux integration was given in previous 
publications dealing with shape factor calculations.  

Perhaps one of the only references to flux integration 
technique was made by Brand and Premchitt (1980). 
They mentioned using three different surfaces to integrate 
the flux around the intake zone. If we apply the 
divergence theorem to Equation 1, we notice that the 
volume of water entering or leaving a closed volume must 
cancel out. This is consistent with the principle of mass 
conservation from which Equation 1 originates. It implies 
that the flux can be integrated on an infinite number of 
surfaces surrounding the cylindrical intake zone. For 
example, if we apply the divergence theorem to the whole 
domain, the total fluxes at the soil-intake zone interface 
and at the distant boundaries must cancel out. Equation 7 
then gives two different surfaces for which c can be 
calculated.  
 

 
[7] 

 
 
Where n

v
 is a unit vector perpendicular to the boundary 

and pointing toward the outside and dΓ is an infinitesimal 
surface element. As it will be shown in the next section, 
even on a given surface, there are more than one way to 
integrate the flux.    
 
 
3 FINITE ELEMENT METHOD 
 
Are presented in this section the equations for the finite 
element method and the two flux integration procedures 
that have been programmed for our MATLAB model. 
 
3.1 Finite element equations 
 
The mathematical development leading to the finite 
element equations can be found in any finite element 
textbook (e.g. Zienkiewicz et al. 2005). It is worthwhile to 
reproduce it here as it is the basis for the distinction 
between the two flux integration methods that have been 
programmed for the MATLAB model.  

We start with Equation 1, multiply it by a test function 
w and integrate it over the domains bounded by thicker 
lines in Figures 2 and 3 (Ω). We get Equation 8.  

 
[8] 

 
 

We then apply the divergence theorem to Equation 8 
(Equation 9). 

 
[9] 

 
 
h can then be replaced by its finite element 
approximation. For any element, this approximation can 
be written as Equation 10. 
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Where Ψj is the interpolation function of node j and hj 
is the FEM approximate value of h at node j. Locally, on 
each element, Ψj is the Lagrange polynomial equal to 1 at 
the jth node and 0 at the other nodes. Globally, over Ω, Ψj 
is the piecewise combination of the local Lagrange 
polynomials of node j. Outside the elements which 
include node j, Ψj is equal to 0. Equation 10 is written 
assuming that quadratic triangular elements (6 nodes) 
are used. This is the type of elements we are using in our 
MATLAB model and for our simulations with SEEP and 
COMSOL.  

For the Galerkin method, we also use the Ψj 
interpolation functions as test functions. By substituting 
Equation 10 and the test functions in Equation 9, we get 
Equation 11. 

 
 

[11] 
 

 
Where NDDL is the total number of nodes over Ω. Since 
we have one test function per node, Equation 11 can be 
rewritten as a system of NDDL equations, one for each 
test function (Equation 12).  

 
[12] 

 
Where H and S are vectors containing the hj values 

and the right-hand side members of each equation. We 
will later refer to the S vector entries as the secondary 
variables. The entries of matrix A are calculated with 
Equation 13. 

 
[13] 

 
 
For the nodes on Γ, we either know hj (constant-head 

boundaries) or the secondary variable (no-flow 
boundaries). For nodes on no-flow boundaries, the 
secondary variables are equal to 0. The entries of S are 
also equal to 0 for the inside nodes. We therefore have 
as many unknowns as we have equations. The system of 
Equation 12 can be solved. Both the unknown secondary 
variables and unknown approximate head values can be 
calculated. 

Implementation of the finite element method requires 
a few more steps, the most important being the 
coordinates transformation (Zienkiewicz et al. 2005, 
p.145). This step facilitates the numerical integration of 
Equation 12 for each element. Coordinates 
transformation will not be reproduced here as Equation 
12 is sufficient to explain the difference between our two 
flux integration methods. 
 
3.2 Flux integration 
 
The first flux integration method will be referred to as the 
field variable method. It is based on the substitution of the 
finite element approximation (Equation 10) in the flux 
integral (Equation 7). For example, at the soil-intake zone 
interface, we get Equation 14. 
 
 

 
[14] 

 
 
The only interpolation functions which will contribute to 
this integral are those of the triangular elements with a 
side matching the part of Γ on the soil-intake zone 
interface.  

The second method utilizes the secondary variables. If 
we assume that the flux is locally constant around each 
node of the soil-intake zone interface, the right-hand side 
of Equation 11 can be rewritten as follows (Equation 15). 

  
 

[15] 
 

 
For each node on the interface, the assumed constant 
flux value can be calculated by dividing the secondary 
variable by the integral of the corresponding interpolation 
function. 
 

 
[16] 

 
 
To integrate the flux, we must assign a tributary surface 
area to each node on the interface. The constant flux 
value of each node can then be applied to these surface 
areas. 

Based on the two shape factor definitions proposed in 
Equation 7, we have chosen to integrate the flux both on 
the soil-intake zone interface and at the distant 
boundaries. Applying the two methods at both boundaries 
gives 4 shape factor values per numerical simulation. 
 
3.3 Mesh 
 
Previous shape factor calculations with the finite element 
and finite difference methods were conducted using 
smaller node spacings in the neighbourhood of the soil-
intake zone interface, especially around the transition 
from constant-head to impermeable boundary conditions 
(Al-Dhahir and Morgenstern 1969; Ratnam et al. 2001; 
Tavenas et al. 1990). However, exact element size 
distributions as a function of radial distance and elevation 
and the rationale behind these size distribution choices 
were not always presented. 

The element size distribution used for our MATLAB 
model is based on a distribution generated with 
COMSOL’s adaptive meshing solver (Figure 6). With 
adaptive meshing, element sizes are chosen so that the 
contribution of each element to the finite element 
approximation error is approximately equal (Zienkiewicz 
et al. 2005). Figure 6 shows that for the permeable 
bottom geometry, finer elements are generated around 
the intersection of the intake zone bottom and cylindrical 
surface (Point P1). Finer elements are also generated at 
the top of the soil-intake zone interface, where the 
boundary conditions change from constant-head to 
impermeable (Point P2). Similar element size distributions 
are obtained for the impermeable bottom geometry. 

∫∫∑ ⋅∇=∇⋅∇

= ΓΩ

ΓψΩψψ dnhdh iji

NDDL

1j
j

r

SAH =

∫ ∇⋅∇=

Ω

Ωψψ dA jiij

∫∑∫ ⋅∇−≅⋅∇−=

= akeint

j

NDDL

1j
j

akeint

dnhdnhc ΓψΓ
rv

∫⋅∇=

akeint

ii dnhS Γψ
r

∫
=⋅∇

Γ

Γψ d

S
nh

i

ir

1306

GeoHalifax2009/GéoHalifax2009 



Globally, the relationship between element size and 
distance from the intake zone is roughly linear. 

We have used the meshing algorithm of Persson and 
Strang (2004) to generate meshes for our MATLAB 
model. This algorithm allows the average element size to 
be defined as a function of radial and vertical coordinates. 
For both the permeable and impermeable bottom 
geometries, the element size distribution for intake zones 
with aspect ratios L/D≥4 is given by Equation 17. 

 
[17] 

 
Where t0 is the size (in meters) of the smallest elements 
around the intake zone and r is the minimum distance (in 
meters) between the point where element size is 
estimated and points P1 and P2 of Figure 6. Our final 
results were obtained with t0 = 0.00225 m. This minimum 
element size produced meshes with between 71 000 and 
88 000 elements. 

Smaller elements were used for intake zones with 
aspect ratios L/D<4 (Equation 18). 
 

[18] 
 
A minimum t0 value of 0.0016 m was used. Between 123 
000 and 128 000 elements were generated. 

We calculated shape factor values for increasing d 
values (Figures 2 and 3) to choose a sufficiently large grid 
for the infinite medium hypothesis to be verified. Since 
larger intake zones are more sensitive to grid size, 
L/D=20 was used (Figure 7). For L/D≥4, d=40 m was 
chosen for the final simulations. For intake zones with 
smaller aspect ratios, d=30 m was used. Equation 6 was 
used to correct the final shape factor values. Even if d is 
large with respect to the chosen intake zone diameter 
(D=11 cm, d/D≈360), the correction amounts to 3.3 % of 
the shape factor value for L/D=20.  

Figure 8 shows one of the meshes used to obtain our 
final results with the MATLAB model.  
 

 
Figure 6. Detailed view of the meshing around the intake 
zone (COMSOL’s adaptive meshing solver, L/D = 4). This 
mesh has approximately 1.7 times less elements than the 
meshes used to obtain the results of Figures 12 and 13.  
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Figure 7. The influence of grid size on shape factor 
values (impermeable bottom geometry). 
 

 
Figure 8. MATLAB mesh example (permeable bottom, 
L/D=4, D=0.110 m, d=40 m and t0=0.00225 m). 

 
 

4 RESULTS AND DISCUSSION 
 
Thiem’s (1906) equation was used to test our two flux 
integration techniques. Assuming steady state conditions 
and the applicability of Darcy’s law, Equation 19 is the 
exact solution to the problem of radial flow toward a well 
fully penetrating a confined aquifer circumscribed by a 
cylindrical constant-head boundary. 
 

 
 [19] 

 
The cylindrical constant-head boundary is located at a 
radial distance R from the center of a well of diameter D, 
b is the confined aquifer thickness and H is the head 
difference between the well and the constant-head 
boundary. Equation 19 can also be expressed as the 
product of a shape factor, K and H.  

Figure 9 compares Thiem’s solution with shape factor 
values obtained with the field variable and secondary 
variable techniques for different element sizes (tavg). For 
the secondary variable technique, the FEM solution 
converges very rapidly to the analytical solution. With a 
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tavg/D ratio of 1, it is within 0.5 % of the exact solution. On 
the other hand, convergence with field variable 
derivatives is much slower. Simulations conducted with 
COMSOL and SEEP also show variable rates of 
convergence (Figure 9). 

Figure 10 shows that the same conclusions apply to 
the shape factor of the impermeable bottom geometry. In 
this case, we used the same intake zone geometry and 
grid size as Tavenas et al. (1990) to compare the rates of 
convergence. Figure 10 shows that the flux integration 
technique of Tavenas et al. (1990) converges at the same 
rate as our field variable derivatives method.  

Figure 11 shows that at the distant boundaries, the 
field variable derivatives and secondary variable method 
converge rapidly to the same result. This was the case for 
all our simulations.  

For the permeable bottom geometry, the convergence 
of the secondary variable method was not as rapid 
(Figure 11). This could be linked to the different 
convergence rate observed for this geometry and for a 
low L/D ratio by Ratnam et al. (2001).  

In light of our tests with flux integration methods, we 
notice that different methods will give different results and 
that there is sometimes an optimal way to integrate the 
flux. To get our definitive shape factor values, we have 
used the secondary variable technique with integration at 
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Figure 9. Shape factor for Thiem’s equation (D=0.110, 
b=2 m, R=4 m). 
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Figure 10. Shape factor as a function of mean element 
size around the intake zone, impermeable bottom 
geometry. 

the distant boundary. With COMSOL, integration is 
performed at the distant boundaries. With SEEP, flux 
sections a few meters from the intake are used. 

Figures 12 and 13 present the shape factor values 
obtained with our MATLAB model, COMSOL and SEEP. 
For the calculations with SEEP and COMSOL, grids of 
40 m were used. With SEEP, a different intake diameter 
(5 cm) was used to make sure that our results were 
diameter independent. Elements of approximately 1 mm 
were used on the soil-intake zone interface. With 
COMSOL, elements of around 6 mm were generated at 
the interface. Results obtained with COMSOL and SEEP 
were also corrected with Equation 6.  

As in previous investigations (Figures 4 and 5), our 
results plot between the spheroids of Wilkinson (1968) 
and Hvorslev (1951). The maximum deviations with 
respect to the spheroid of Hvorslev (1951) are 
respectively 12.6% and 8.9% for the permeable and 
impermeable bottom geometries. In both cases, these 
maximum errors occur for intermediate L/D ratios (4-10). 

The spheroids which give the best fits on our FEM 
results are obtained by multiplying Equation 3 and the 
spheroid’s radii by 1.098 and 1.082 for the permeable and 
impermeable bottom geometries (Figures 12 and 13). For 
2≤L/D≤20, if we use an average factor of 1.09 for both 
geometries, the maximum error is 6.2% for the 
impermeable bottom geometry. This maximum error is 
observed for low L/D ratios: for L/D>4, the error is under 
2.5%. 
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Figure 11. Shape factor as a function of mean element 
size around the intake zone, permeable bottom geometry. 
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Figure 12. Shape factor values for impermeable bottom 
geometry. 
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Figure 13. Shape factor values for the permeable bottom 
geometry 
 
 
5 CONCLUSION 
 
There are several methods to integrate fluxes with the 
finite element method. Our numerical tests show that 
these methods give different results and convergence 
rates.  

Our numerical values show that Equation 3, in its 
original form or after the dilation suggested in this paper, 
gives reliable shape factor values. For 2≤L/D≤20 and for 
both the permeable and impermeable bottom geometries, 
multiplying Equation 3 by 1.09 limits the error on shape 
factor values to approximately 6.2 %. If the uncorrected 
version of Equation 3 is used, the deviation reaches 
12.6 %. These errors are deemed insignificant 
considering that field permeability tests are error prone 
and considering that the errors due to the infinite and 
infinitely rigid medium hypothesis are probably more 
important than 12.6 %.  
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