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ABSTRACT 
The specific surface area (SSA) is an important characteristic of soils and other particulate media. The value of SSA 
can, for instance, be used to assess the hydraulic conductivity and moisture retention curve.  Various methods have 
been proposed to evaluate the SSA of granular materials from the grain size curves. In this paper, a new approach is 
presented to estimate SSA for S-shaped grain-size distributions that can be represented by two-parameter lognormal 
distributions, using the equivalent mean diameter DH. Calculated values from this method are compared with those 
obtained from existing analytical equations that rely on grain size curve parameters. The introduction of the proposed 
relationship in the modified Kovács (MK) model developed to predict the water retention curve is also discussed in a 
preliminary manner. 
 
RÉSUMÉ 
La surface spécifique (SS) est une caractéristique importante des sols et autres matériaux particulaires.  La valeur de 
SS peut par exemple être utilisée pour estimer la conductivité hydraulique et la courbe de rétention d’eau. Diverses 
méthodes ont été proposées pour évaluaer la SS des matériaux granulaires  à partir des courbes granulométriques. 
Dans cet article, une nouvelle approche est présentée pour estimer la SS de matériaux dont les courbes 
granulométriques en forme de S peuvent être représentées par des distributions log-normales à deux paramètres, en 
utilisant le concept du diamètre moyen équivalent DH . Les valeurs calculées ici sont comparées à celles obtenues avec 
d’autres équations analytiques existantes basées sur les paramètres de la courbe granulométrique. L’introduction  de la 
relation proposée dans le modèle de Kovács modifié (MK) développé pour prédire la courbe de rétention d’eau est 
analysée de façon préliminaire. 
 
 
 
1 INTRODUCTION 
 
Many physical, mechanical, and chemical properties of 
soils and other particulate materials are related to surface 
phenomena that occur at the interface between a fluid 
(liquid or gas) and the solid grains. Some of these 
properties have been correlated to the specific surface 
area (SSA) of the solid phase, which is assumed to 
correspond to the interstitial surface area of the voids in 
the porous media. In hydrogeology and geotechnique for 
instance, the SSA is sometimes used to predict the 
hydraulic conductivity and moisture retention curve of 
soils and similar materials such as tailings (e.g. Chapuis 
and Montour, 1992; Aubertin et al. 1996, 1998; Mbonimpa 
et al. 2002; Chapuis et Aubertin, 2003). 

The value of the specific surface area can be related 
to parameters As, Ms, Vs, and Vt which represent the total 
surface area of particles, and their mass, volume of solids 
and total volume, respectively. Three distinct specific 
surface areas can be defined: a solid mass-based value 

Sm=As/Ms [L2/M], a solid particle volume-based value 
Ss=As/Vs [L

2/L3], and a total volume-based value Sv=As/Vt 
[L2/L3]. These three SSA expressions are interrelated in 
the following manner: 
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where ρs [M/L3] is the density of solid grain and n is total 
porosity of the medium. In this paper, the SSA value will 
be defined from the mass-based (Sm) expression. 

The value of Sm can be directly measured, using 
various methods having different ranges of applicability 
(e.g., Lowell and Shields 1984; Igwe 1991; Arnepalli et al. 
2008). Methods based on physisorption isotherms, such 
as the well known BET method, are particularly useful but 
these results must be interpreted with great care. In fact, 
none of the existing methods provide absolute values of 
the SSA. As these measurement techniques require the 

1607

GeoHalifax2009/GéoHalifax2009 



 

use of fairly expensive equipment with time-consuming 
procedures, it is often useful to evaluate the value of SSA 
(Sm) indirectly, from basic material parameters.  For fine-
grained plastic soils, correlations between Sm and 
Atterberg limits are believed to be  appropriate, as they 
appear to give more reliable estimates  than those based 
on grain-size distribution (GSD) or clay fraction (e.g., 
Locat et al. 1984; Mbonimpa et al. 2002; Chapuis and 
Aubertin 2003; Aubertin et al. 2005; Dolinar et al. 2007). 
For coarse-grained materials, many options exist to 
estimate Sm. For instance, the GSD can be used with a 
particle shape parameter, leading the following equation 
(Kovács 1981): 
 

Dρ

α
S

Hs
m =  [2] 

 
where α [-] is a shape factor (6 ≤ α ≤ 18; α = 6 for 
spherical particles) and DH [L] is an equivalent mean 
particle diameter. In the following, the influence of particle 
shape is not explicitly considered (see Discussion below). 
The value of DH is defined as the diameter of a spherical 
particle for an homogeneous mix (single size) with the 
same specific surface as that of the full grain size 
distribution. 

S-shaped grain size curves of soils may be described 
with various types of functions. A lognormal distribution 
seems more suitable than other functions, such as the 
normal distribution (Kézdi 1964; Wagner and Ding 1994). 
This holds true also for grinding materials, such as mine 
tailings (Bethea et al. 1995). Not surprisingly, several 
studies have relied on the use of a lognormal distribution 
to describe the GSD and pore-size distribution of granular 
soils (Kosugi 1994, Shirazi and Boersma 1984; Buchan et 
al. 1993, Chan and Govindaraju 2004). It should be 
recalled however that this distribution is only appropriate 
for S-shaped GSD, and that it is unsuitable for multimodal 
or gap-graded GSD (e.g., Fredlund et al. 2000). 

This paper presents a theoretical approach to 
estimate the SSA of coarse-grained materials having a 
grain size curve represented by a two-parameter 
lognormal distribution (2PLND). The proposed 
relationship is based on the use of an equivalent mean 
diameter DH. A relationship is developed to express DH 
from commonly used parameters, i.e., the effective 
diameter D10 and the coefficient of uniformity CU, using 
the ratio β = DH / D10. The proposed equation for β is 
compared with existing analytical equations. A preliminary 
evaluation is made to assess the impact of using the 
proposed β relationship in the modified Kovács (MK) 
model that has been developed to predict the water 
retention curve of soils with a GSD described with a 
2PLND. 
 
 
2 EXISTING METHODS TO ESTIMATE DH FROM 

GRAIN-SIZE DISTRIBUTION 
 
For coarse-grained (granular) materials, the value of DH 
can be estimated from the grain-size curve by 
segmenting it into different sizes with average diameters 
Di and mass percentages pm,i (%), and applying a 

relationship of the following type (Chapuis and Légaré, 
1992): 
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Various options exist for segmenting the curve, and there 
is no consensus on whether the average diameter Di for 
segment i represents the arithmetic (Di-a), geometric (Di-g) 
or harmonic (Di-h) mean diameter of the corresponding 
grain size. These mean diameters are defined below.  
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In all cases, it can be shown that Di-h < Di-g < Di-a. 

Several authors (Hazen (in Beyer 1964); Huissman 
and Wood 1974; Moll 1980; Kovács 1981; Aubertin et al. 
1998) have attempted to correlate DH with the so-called 
effective diameter D10, commonly used in geotechnique 
and hydrogeology. The general form of this relationship 
can be expressed as follows: 
 

10H DβD =  [7] 

 
where β [−] is a proportionality coefficient. In many 
applications, it was found that β depends on the 
coefficient of uniformity CU (= D60/D10 where D10 and D60 
are the diameters corresponding to 10% and 60% 
passing on the cumulative grain-size distribution curve, 
respectively). Some existing expressions for β = f(CU), 
most of them empirically derived, are given below. 

According to Hazen (in Beyer 1964), the coefficient β 
takes the values given in Table 1, with respect to CU. In 
this table, parameter β is not well defined for CU >10. 
 
Table 1. Proportionality factor β between DH and D10 after 
Hazen (in Beyer 1964). 
CU 1.0 – 1.9 2.0 – 2.9 3.0 – 4.9 5.0 – 9.9 > 10 
β=DH/D10 1.0 – 1.6 1.6 – 1.9 1.9 – 2.2 2.2 – 2.5 > 2.5 
Mean β  1.4 1.8 2.1 2.3 >2.5 

 
 
For relatively uniform materials with CU < 2, Huisman 

and Wood (1974) proposed the following empirical 
equation for β: 
 

)Clog(21β U+=   [8] 

 
A theoretical investigation conducted by Moll (1980) 

on soils with grain size curves that can be represented by 
a normal distribution have led to: 
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48.0C54.075.0β U −+=   [9] 

 
Kovács (1981) presented the relationship between the 

ratio DH/D10 and CU graphically for CU up to about 50. The 
data obtained by digitizing the published results show a 
well defined trend for CU less than about 10, but show 
relative scattering for CU higher than about 10. These 
data are not presented here, but are used later for 
comparison purposes with the relationship developed in 
this paper (see Figure 5).  

In the modified Kozeny–Carman model developed by 
Aubertin et al. (1996) (based in part on previous work 
conducted by Pavchich, cited in Goldin and Rasskazov, 
1992), which serves to predict the saturated hydraulic 
conductivity of granular materials, the following parameter 
β is used (see also Mbonimpa et al. 2002): 
 

C 6/1
Uβ =   [10] 

 
Finally, using D10 and DH data presented by Kovács 

(1981) for materials with CU ≤ 50, Aubertin et al. (1998) 
derived the following empirical relationship: 
 

)Clog(17.11β U+=   [11] 

 
It can be observed that eq. 11 takes the same general 

form as eq. 8, although these 2 equations have been 
developed for different ranges of CU. Eq. 11 is used to 
estimate the equivalent capillary rise hco, which is a 
reference parameter in the modified Kovács (MK) model 
developed to predict the water retention curve of granular 
materials (Aubertin et al. 2003), and in other associated 
model developments (Mbonimpa et al. 2006; Maqsoud et 
al. 2006).  

The authors experience with equations 10 and 11 tend 
to indicate that these may not represent adequately the 
actual value of parameter β (and hence of SSA) for 
granular materials having a relatively large CU.  

It is therefore useful to develop a more general 
method for estimating β. For this purpose, S-shaped 
grain-size curves represented by lognormal distributions 
were used. The different approaches to estimate the 
proportionality factor β are compared below. 
 
 
3 TWO-PARAMETER LOGNORMAL DISTRIBUTION 

(2PLND) 
 
3.1 Definitions and characteristics  
 
A positive random variable D with 0 ≤ D < ∞ is 
lognormally distributed if Y = lnD is normally distributed 
with mean µ and variance σ2 (σ is the standard deviation). 
The general expressions for these (and other) distribution 
functions can be found in statistical textbooks (e.g. 
Bernhardt 1990; Krishnamoorthy 2006). When the GSD 
of a soil is represented by such a two-parameter (µ and σ) 
lognormal distribution (2PLND), it is typically assumed 
that µ = D50 (where D50 is the diameter corresponding to 
50% passing on the cumulative GSD curve) and the 

standard deviation σ = S. The probability density function 
(PDF) of grains finer than diameter D is then defined from 
these two parameters (D50 and S) as follows (DIN 66164; 
Bernhardt 1990; Wagner and Ding 1994): 
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In a double logarithmic scale, a 2PLND grain size 

curve is represented by a linear curve with slope S. In 
many applications, parameter S is approximated by the 
following relationships:  
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Parameters D16 and D84 are diameters corresponding to 
16% and 84% passing on the cumulative grain-size 
distribution curve fully described by a 2PLND, 
respectively. 

The cumulative distribution function (CDF in %) of the 
lognormal particle size distribution is given by (Wagner 
and Ding 1994): 
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where erf is the error function. Equations 14 and 15 can 
also be expressed with the complementary error function 
erfc (erfc (x) = 1 – erf(x)). Figure 1 illustrates typical GSD 
curves in a semi-log plane represented by 2PLNDs for 
D50 = 0.1 mm and different S values (S=0.5, S=1.0 and S 
=2.0). 

Based on eqs. 14 and 15, diameter Dn (corresponding 
to F(Dn)%) on the cumulative grain-size distribution curve 
can be expressed as follows: 
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where inverf is the inverse of the error function erf. 
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Figure 1. Typical 2PLND curves in a semi-log plane. 
 
Diameters D10 and D60 can be calculated using F(Dn) 
=10% in eqs. 17 and F(Dn) = 60% in eq. 16; the 
arguments x of the inverf function then become 0.8 and 
0.2, respectively. The coefficient of uniformity CU 
(=D60/D10) with respect to S can thus be expressed as 
follows: 
 

[ ]
[ ]

)S535.1exp(
)8.0(inverf2Sexp

)2.0(inverf2Sexp
CU ==  [18] 

 
This equation shows that GSDs with the same S value 
but with different D50 values will have the same CU. Figure 
2 shows the relationship between S and CU in an 
arithmetic scale. When a logarithmic scale is used for CU, 
the relationship is represented by a straight line in the 
semi-log plot (see embedded object in Figure 2). 
 

0

100

200

300

400

500

0 1 2 3 4

S (-)

C
U
 (

-)

1

10

100

1000

0 1 2 3 4
S (-)

C
U
 (

-)

 
Figure 2. Relationship between CU and S in arithmetic 
scale and semi-log scale (embedded view). 
 
 
3.2 Estimation of DH and β for a 2PLND 
 
Considering a continuous distribution function F(D), the 
effective diameter DH can be defined by the following 
equation (Sedran and de Larrard 1994): 
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For a GSD represented by a 2PLND, the theoretically 

derived equivalent mean diameter DH is given by eq. 20 
(DIN 66164; Bernhardt 1990): 
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Results from eq. 20 have been compared with those of 
eq. 19, using the MAPLE Code (Maplesoft 2004), and 
also from the segments method defined by eq. 3. For this 
purpose, various GSDs represented by 2PLND were 
created by fixing their mean diameters D50 and standard 
deviations S. It was observed that using eq. 3 with the 
geometric mean Di-g for each segment i produced values 
DH closer to those calculated with eq. 20, i.e. DH(Di-g) ≈ 
DH-2PLND. 

Using D50 =D16 exp(S), (see eq. 13), eq. 20 can also 
be expressed in terms of D16, as follows: 
 

)
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S
-exp(SDD
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The exponential function (eq. 21) for the ratio DH/D16 is 

represented graphically in Fig. 3. This figure indicates that 
DH = D16 for S = 2, DH < D16 for S > 2 and DH > D16 for S < 
2. The maximum DH/D16 value is about 1.65 and 
corresponds to S = 1. According to eq. 18, S = 2 
corresponds to a CU value of about 22. In other words, it 
can be stated that DH < D16 for CU > 22, and DH > D16 
when CU < 22. 
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Figure 3. Relationship between the ratio DH/D16 the value 
of S (based on eq. 21) and between β and S (based on 
eq. (22) for GSDs represented by a 2PLND 
 
Diameters D10 and D15 are more commonly used than 
D16. As D16 is close to D15, it can be assumed that the 
ratio DH/D15 and DH/D16 may also be very close. Based on 
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eq. 17, which can be used to calculate a selected small 
size diameter (such as D10), and on eq. 20, one can 
express the proportionality factor β (= DH/D10; see eq. 7) 
as follow:  
 

)
2

S
S28.1exp(β

2

−=  [22] 

 
This new relationship is also represented graphically 

in Fig. 3; it is seen that the shape is similar to that of the  
DH/D16 ratio (eq. 21). It can also be seen that β = 1 (or DH 
= D10) for S = 2.56 (and also for S =1, corresponding to a 
single size distribution); β < 1 (or DH < D10) for S > 2.56; 
and β > 1 (or DH > D10) when S < 2.56. According to eq. 
18, a value S = 2.56 corresponds to a CU value of about 
50. In other words, DH < D10 for CU > 50, and DH > D10 
when CU < 50. The maximum DH/D10 value is about 2.3, 
and it corresponds to S =1.28 (or to a CU of about 7).  
 

Combining equations 18 and 22 leads to the following 
function:  
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Figure 4 illustrates this variation of β with respect to 

CU (in a semi-log plot). It can be seen that β increases 
with CU up to β = 2.3 (for a CU of about 7), and then 
decreases as CU is increased; its value is equal to 1 for a 
CU of about 50. This type of variation is not taken into 
account in existing equations applied to estimate the 
value of β. 
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Figure 4. Relationship between β and CU (semi-
logarithmic plot). 
 
3.3 Comparison of the various equations for β. 
 
Figure 5 compares the values of  β obtained from the 
equations presented in section 2 and from the newly 
proposed equation 23 (for CU up to 50); in this 

representation, all the equations are assumed valid for 
the entire range shown in the figure (1≤ CU ≤50). It is 
seen that the β function obtained for 2PLND (eq. 23) 
agrees well with the values obtained by Hazen (given in 
Table 1) for CU ≤ 8, with the values given by Kovacs for 
CU ≤ 5 as well as with the functions of Huisman and 
Wood (eq. 8) and Moll (eq. 9) Eq. 10 tends to 
underestimate the β value for CU <20 and to overestimate 
it for CU >20. The relationship proposed by Aubertin et al. 
(1998) (eq. 11) somewhat underestimates the β value for 
CU < 11 and overestimates it for CU >11. None of the 
existing β functions follows the tendency of eq. 23, as 
these all steadily increase with CU. For a given GSD, 
underestimating β leads to an underestimation of DH (see 
eq. 7), and to an overestimation of Sm (see eq. 2). 
Overestimating β leads to inverse results. 
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Figure 5. Comparison between the various functions to 
calculate the value of β. 
 
 
4 PRELIMINARY USE OF THE PROPOSED 

EQUATION WITH THE MK MODEL 
 
The modified Kovács (MK) model can be used to 
describe, and in some instances predict, the water 
retention curve (WRC) for coarse- and fine-grained 
materials (Aubertin et al. 2003). The MK model considers 
that water is retained in porous media by capillary forces 
responsible for capillary saturation Sc and by adhesive 
forces that cause saturation by adhesion Sa. The 
volumetric water content θw can be obtained from the MK 
model as follows: 
 

[ ])S1(S11nθ caw −−−=  [24] 

 
where 〈 〉 are the Macauley brackets (〈y〉=0.5(y+|y|)). The 
relationship between degrees of saturation Sa and Sc and 
the matric suction head ψ (cm of water) can be calculated 
using the equivalent capillary rise hco (cm of water) with 
the following equations: 
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where m (–) is the pore size distribution parameter, ac (–) 
is the adhesion coefficient, ψn (cm) is a normalization 
parameter introduced for unit consistency (ψn =1 cm of 
water) and ψ0 (cm of water) is the suction head 
corresponding to complete dryness (ψ0 = 107 cm of 
water). The parameter ψr (cm of water) is the suction at 
residual water content θr. Its value has also been related 
to the equivalent capillary rise hco: 
 

2.1
cor h86.0ψ =  [27] 

 
The parameter hco is defined as the water rise 
corresponding to an idealized system of regular channels 
having a diameter expressed as the equivalent hydraulic 
pore diameter of the media. For granular materials, hco is 
defined using the equivalent mean diameter DH (cm) as 
follows: 
 

H
G,co eD

75.0
h =  [28] 

 
With the MK model (Aubertin et al. 2003), DH (cm) is 
defined using eq. 11. Measured WRC were fitted using 
the MK model to obtain optimal parameter fit for m (in eq. 
25) and ac (in eq. 26), which were then used to develop 
general relationships for predictive purposes. For coarse-
grained materials, the observed trends indicated that m ≈ 
1/CU and ac ≈ 0.01. These parameters were, in most 
cases, derived for materials with 1.3 ≤ CU ≤ 15. 

For GSD curves represented by 2PLND, the results 
presented above tend to indicate that eq. 11 may not be 
accurately representing the value of β (and hence DH and 
hco). 

A preliminary investigation was conducted on the 
effect of using eq. 23 (instead of eq. 11) on the value of 
parameters m and ac. For this purpose, 11 soils taken 
from the GRIZZLY database (Haverkamp et al. 1997) and 
8 soils taken from the UNSODA database (Leij et al. 
1996; Nemes et al. 2001) were analysed. The coefficient 
of uniformity ranges between 1.5 and 10 for these soils. 
The GSD curves of the selected soils are deemed to be 
S-shaped. Each curve was fitted using the 2PLND 
equation by adjusting parameter S, with D50 obtained 
from measured data (on the experimental curves). Figure 
6 illustrates typical results for 3 soils, with the measured 
data and GSD curve fitting. It can be mentioned that the 
fitting exercise may be performed using S calculated from 
eqs. 13a to 13c. These equations however lead to 
different values when the GSD is not fully described by a 
2PLD. As the fine fraction of a GSD has more impact on 
the SSA than the coarse, the fitting parameter may be 
controlled by the fine branch of the GSD, i.e. parameter S 
may be calculated from eq. 13c using D16 and D50. This 
aspect is not investigated in this paper. 
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Figure 6. Measured GSD curves fitted with the 2PLND (by 
adjusting parameter S, and using D50 obtained from 
measured data)  
 

The coefficients of uniformity CU obtained from the 
measured grain-size distribution curves were used in eqs. 
11 and 23 to calculate β and hence DH (using D10). Figure 
7 compares the β values obtained using the two 
equations. As all CU values considered here are lower 
than 11, it is seen that equation 23 overestimates β when 
compared with eq. 11 (see also Figure 5). For each of the 
19 soils, measured WRC was then fitted to the MK model 
equations by adjusting parameters m and ac using the β 
values obtained from eqs. 11 and 23. Figures 8 and 9 
compare the adjusted MK model parameters m and ac, 
respectively, for  β  obtained from eqs. 11 and 23.  

The results indicate that applying eq. 11 leads to 
smaller m values than those obtained using eq. 23; 
parameter ac values appear to be less sensitive to this 
difference. A more extensive analysis on this aspect is 
underway, and will be presented elsewhere; it can be 
expected that modifying the definition of β and DH will 
affect the predictive capabilities of the MK model, 
particularly for materials having a grain-size distribution 
with a large CU value. 
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Figure 7. Comparison between β values obtained from 
eqs. 11 and 23 using CU values from the measured GSD 
curves. 
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Figure 8. Comparison between the adjusted MK model 
parameter m when β is obtained from eqs. 11 and 23, 
using CU values from the measured GSD curves. 
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Figure 9. Comparison between the adjusted MK model 
parameter ac when β is obtained from eqs. 11 and 23 
using CU values from the measured GSD curves. 
 
 
5 DISCUSSION AND CONCLUSION 
 
A new analytical relationship is proposed here to estimate 
the specific surface area, SSA, for materials having a 
grain-size curve represented by a two-parameter 
lognormal distribution, 2PLND. The latter function is 
defined from the mean diameter D50 and standard 
deviation S of the grain size curve. The new equation is 
expressed in terms of the equivalent mean diameter DH 
and ratio β = DH/D10, with parameter β expressed with 
respect to the coefficient of uniformity CU. Calculated β 
values are compared with values obtained from other 
existing analytical equations involving D10 and CU. The 
effect of using the proposed equation for  β with the MK 
model, developed to predict the water retention curve, is 
also investigated in a preliminary manner; results indicate 
that significant differences may be induced by changing 
the way the SSA is obtained. Further investigations are 
planned on these and related aspects.  

The analysis presented above is based on the 
assumption that the two-parameter lognormal distribution 
(2PLND) is theoretically appropriate for S-shaped grain 

size curves with grain diameters D ranging from 0 to ∞ (0 
≤ D < ∞). In reality, particle size distributions have a lower 
limit D0 larger than 0 and an upper limit D∞ << infinity. 
Such grain size distribution may be better described using 
a four-parameter lognormal distribution (4PLND) with a 
cumulative density function, CDF, that involves not only 
the mean diameter D50 and standard deviation S, but also 
the particle size limits themselves (D0 and D∞). Such a 
4PLND can then be transformed into a 2PLND using a 
variable transformation; this aspect is also being 
investigated. As the bigger solid particles have little 
influence on the value of SSA, three-parameter lognormal 
distributions (3PLND) with parameters (D0, D50 and S) are 
also being investigated. Additional work will also be 
performed to assess the possible application of the 
approach presented here to bi-modal (or possibly multi-
modal) grain size distribution curves. Other corrections for 
particular CDF are also being considered to take into 
account complementary effects such as the shape of the 
grains and the influence of the fraction smaller that the 
D10. These results will be presented elsewhere.   
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