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ABSTRACT 
We study the effect of fracture networks on solute transport in heterogeneous porous media. This is conducted by 
combining a higher order implicit scheme for solving solute transport equations and a geomechanical finite element  
model. We investigate the effect of fracture aperture distribution on solute transport based on numerical simulations. 
Naturally fractured media exhibit anomalous transport when fracture network connectivity is well developed. Our 
results demonstrate highly disperse plumes and long-tails in breakthrough curves for fractured media. Our findings 
suggest that using average fracture aperture size is sufficient for studying the dispersive behaviour of heterogeneous 
porous rocks. 
 
RÉSUMÉ 
Cette étude porte sur l'effet du réseau de fractures présentes dans les milieux poreux sur le transport de solutés. Un 
schéma implicite au second ordre permettant la résolution des équations de transport est combiné à un modèle 
géomécanique aux éléments finis. Les simulations numériques montrent l'effet de la distribution des ouvertures de 
fractures sur le transport de solutés. Les milieux fracturés, naturellement hétérogènes, présentent des anomalies de 
transport lorsque la connectivité du réseau de fractures est bien développée. Les structures de panaches sont 
hautement dispersives, tout comme la forme des courbes d'avancée du front. Nos résultats montrent également que 
l'utilisation de l'ouverture moyenne des fractures est suffisante pour étudier le comportement dispersif dans les roches 
poreuses hétérogènes. 
 
 
1 INTRODUCTION 
 
Recent numerical studies show that fracture patterns can 
be realistically recreated by approximating mechanical 
behaviour using 2D simulations [Ingraffea and Saouma, 
1985; Belytschko and Black, 1999; Olson, 1993; 
Renshaw and Pollard, 1994b; Huang et al., 2003]. 
Interest in simulating fracture growth extends across a 
variety of application fields including: hydraulic fracturing 
[e.g. Boone and Ingraffea, 1990], structural analysis for 
civil engineering [e.g. Bazant and Verdure, 2007], 
composite material design for aeronautics [e.g. Camanho 
et al., 2006], nuclear waste disposal risk assessment 
[e.g. Shen et al., 2004], and analysis of flow and 
mechanical properties of fractured reservoirs [cf. Zoback, 
2007]. Fractures not only damage rocks making them 
weaker and causing fragmentation, they also influence 
their flow properties changing the speed at which they 
conduct liquids, gases, transport contaminants, among 
others.  

Describing solute transport in terms of average 
equations is a challenge [Berkowitz, 2002]. It is known 
that velocity field variation arising from the permeability 
field is responsible for the dispersive movement of 
contaminants or tracers in heterogeneous porous media. 
This yields an anomalous solute transport in porous 
media which is also referred to as non-Fickian.  

It is shown that the dispersive behaviour of solute 
transport is a function of scale, correlation length and 
heterogeneity [Berkowitz et. al., 2006; Berkowitz, 2002; 
Berkowitz and Scher, 1995]. Moreover, if the viscosity or 
density of a tracer and the background fluid is different, 
both porous media and fluid properties control the 
dispersion, e.g. [Nick et. al., 2009]. Therefore, inconstant 
dispersivity, early breakthrough times, and long tail of 
breakthrough curves are characteristic of such solute 
transport.  

In this work we demonstrate how heterogeneity 
caused by geomechanically grown fractures can alter the 
solute transport in fractured media, and, how 
macroscopic behaviour emerges from small-scale 
structure. This paper continues with a description of 
governing equation used in this study. Then the 
numerical set-up is presented which is used to study the 
effect of fracture networks on solute transport in porous 
media. This section is followed by the results and 
conclusions.  
 
2 MATHEMATICAL MODEL 
 
In this study we combined two numerical models: 
deformation and fracture grown model and second order 
implicit flow and transport  model. 
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2.1 Flow and transport in porous media 
 
The specific discharge u  [LT-1], in Darcy's law,   
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is a function of k  the intrinsic permeability tensor [L2], 
µ the dynamic viscosity [ML-1T-1],  P the pressure 
gradient [ML-1T-2] and ρ the fluid density [ML-3]. Variable 
g is the gravity vector pointing in the negative Z-direction 
[LT-2]. 
Conservation of mass is explained by the continuity 
equation, 
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Assuming a slightly compressible fluid and porous 
material for tracer experiments, Equations (1) and (2) 
yield, 

 

 .( ) 0,
t

p k
c p

t µ

∂
+ ∇ ∇ =

∂
             [3] 

 
Where ct [LT2M-1] can be written as, ct  = φβw  + (1- φ) βs 
by assuming density is a function of pressure. 
Parameters βw and βs denote the compressibility of fluid 
phase and solid phase respectively. 

The mass balance for a non-reactive and non-
adsorbing solute in a non-deformable porous medium is 
given by, 
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where c denotes the concentration [ML-3], t represents 
time and φ is porosity. In this study we neglect the local 
dispersion J which is the dispersive mass flux [ML-2T-1] 
as we are only interested to examine the effect of fracture 
network on advection dominated flow. 
 
 
2.2 Dispersion 
 
Advection, diffusion and dispersion are the main 
processes facilitating solute transport. The spreading of 
solutes may be resolved in the direction of fluid flow and 
perpendicular to it [De Josselin De Jong, 1958]. 
Molecular diffusion and spatial variability of the transport 
velocity on the sub-REV scale leads to pore-scale 
dispersion. When considering the instantaneous injection 
of a solute into a uniform flow in porous media, the 
spreading of solute particles around the center of mass is 
a function of both mechanical dispersion and diffusion, 

but is dominated by mechanical dispersion when 
advection is dominating. 

Longitudinal and transverse dispersion have been 
shown to vary with scale and, therefore, the spatial 
variability of dispersion is generally assumed to be scale-
dependent and in particular due to porous media 
heterogeneity [Gelhar, 1986]. It is a function of both local 
and macro-scale velocities. 
 
2.3 2D Fracture growth 
 
Fractures are propagated in a quasi-static manner by 
deforming a model initially containing a set of randomly 
distributed and randomly sized flaws. We assume the 
matrix to be linear elastic, homogeneous, and isotropic. 
Finite element-based simulations are carried out to 
deform the 2D model. As the simulation progresses, the 
diamond shaped flaws grow into fractures represented by 
2D polygons. At each loading step the mesh is adapted 
to capture the emerging fracture geometry. For a fixed 
set of tensional boundary conditions, the model is 
progressively deformed until there is no more growth 
ceases. This is equivalent to a high-level Picard iteration 
which allows fractures to advance while energy at the tips 
induces propagation. Mesh nodes remain stagnant as 
long as the equilibrium state is not reached. Every time 
the geometry evolves, the previous stress state is 
invalidated and new updated stresses are recomputed. 
Once fracture growth stops, nodes are moved to capture 
deformation. The simulation of fracture propagation is 
summarized as [Paluszny and Matthai, 2009]:  
 

• Generate random flaws. 
• Automatically create mesh. 
• Apply boundary conditions.  
• Solve deformation using FEM.  
• Compute stress intensity factors, propagation 

lengths, and directions for all tips.  
• Extend shapes of all propagating fractures.  
• Remesh and mapping of variables.  
• Re-compute stresses and accumulate as the 

stress state determined by the previous 
deformation step.  

• Repeat all steps until no growth is recorded for a 
fixed boundary condition. 

 
We use the resulting fracture network (Figure 1) to 

simulate solute transport.  Details and validation of this 
method can be found in Paluszny [2009] and Paluszny & 
Matthai [2009]. 
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Figure 1. Two mechanically grown fracture networks after 
80 iterations with maximum aperture size of 0.0001 m. 
 

The computations presented below were conducted 
using the CSMP++ multi-physics simulator [Matthai et. 
al., 2004, Matthai et. al., 2007]. Its kernel relies on the 
systems algebraic multigrid method (SAMG) to solve  
ensuing FEM linear algebraic equations [Stuben, 2001; 
Stuben et. al., 2003]. 
 
2.4 Model set-up 
 
We perform the flow and transport simulation on a 2 x 1 
m subregion of the grown model. We uniformly distribute 
a tracer, c=1 kg/m3, initially in a 1 cm thick slit along the 
left side of the model. Elsewhere, concentration is set to 
zero. A fluid with zero concentration is injected from the 
left boundary ensuing from 1 MPa pressure difference 
between the left and right boundaries. Note that there is 
no density or viscosity variation in this study. These 
initial conditions apply to all our numerical experiments. 
Matrix porosity is 30%. We assume fractures to be open 
and calculate fracture permeability from local aperture 

using the parallel plate law such that 
2

/ 12
f f

k a= . This 

assumes that the flow is laminar and the fracture has 
smooth, stepwise parallel walls with a local separation of 
af [Kranz et al., 1979; Witherspoon et al., 1980]. We use 
a mixed-dimensional FV discretization method where 
fractures are represented by lower dimensional line 
discretization elements. This resolves the problem of 
having fracture elements with large aspect ratios. 
Fracture permeability, kf, is defined as a piecewise 
constant value along the line elements [Geiger et. al., 
2004].   
 
3 RESULTS 
 
A series of careful simulations is conducted on several 
realizations of fracture networks to study the effect of 
strong heterogeneity on transport.   
 
3.1 Fracture matrix flux ratio 
 
Bodin et al. [2003] present an extensive review of mass 
transport in fracture-only models. In the frequent case 
that fracture networks are assumed to be well-
interconnected, flow is often modeled only through 
fractures. However, in poorly interconnected fracture 
networks, flow in the rock matrix is as important as that 
in the fracture network. The  fracture-matrix flux ratio, 

/
f m

q q  is calculated from the block-scale Darcy velocity, 

v
q , so that, 

 

.
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q q q
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−
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The matrix flux,
m

q , computed from the applied far-

field fluid pressure gradient, P∇ , in the direction of flow 
such that, 
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where 
m

v and 
f

v  are the matrix and fracture pore 

volumes, A is the cross sectional area of the model 
perpendicular to the direction of flow.  
 

 
 

 
 

 
 

 
Figure 2. Concentration fronts at different time steps for 
one realization with km=8mD. 
 

t=6 hours  

t=3  hours 

t=9  hours 

t=12  hours 
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Matthai and Belayneh (2004) show the controlling role of 
fracture-matrix flux ratio on fluid flow in fractured media. 
This ratio is indicative of the permeability contrasts in the 
system and can be used to understand solute transport 
behaviour in rocks where there is significant interaction 

between rocks and fracture.  Four different /
f m

q q ratios 

are gained by altering the rock matrix permeabilities, km= 
10, 8, 6, 4 mD. Simulations are conducted on 7 different 
realizations of fracture networks. Figure 2 illustrates 
concentration fronts for one realization at different time 
steps. Concentration profiles for one realization are 
shown in Figure 3. Results indicate that the plume 
transverses slower in the model with lower matrix 
permeability. This slow movement of the plume in the 
matrix and higher fracture matrix flux ratio leads to 
stronger anomalous behaviour. This has an explicit effect 
on the dispersive behaviour of the system. Figure 4 

reveals breakthrough curves for different /
f m

q q   ratios. 

For each matrix permeability the breakthrough curves of 
7 realizations are averaged (see Figure 5). It is clear that 
smaller matrix permeability value cause a stronger 
localization of flow in fractures. Hence, higher fracture-
matrix flux ratio yields more dispersive behaviour. Our 
simulation results indicate that the standard advection-
diffusion equation, ADE, is inadequate to represent flow 
and transport in fractured media for large scale as it 
results a Gaussian behaviour. This is in accordance with 
the findings of  Berkowitz [2002] and Berkowitz et. al.,  
[2006]. 
 

 
Figure 3. Concentration profiles for one realization with 
different permeabilities at two different times. The bold 
lines are the profiles after 1 hour and the dash lines are 
the concentration profiles after 5 hours. 
 
 

 

Figure 4.  Breakthrough curves for three realization with 
different fracture matrix flux ratios. 
 

 
Figure 5. Average breakthrough curves for different 
fracture matrix flux ratios. 
3.2 Average fracture aperture size 
 
We calculate fracture aperture size distribution based on 
the accurate geomechanical model. This detailed data 
captures permeability variations which have a strong 
influence on the effective permeability of the system 
[Paluszny et al., 2009].  Here, we calculate average 
permeability using the mechanical simulation results, i.e. 
considering fractures with inconstant aperture sizes. 
Then by using an iterative method we determine a 
constant average aperture size which results the same 
average permeability.   

 

 

 
Figure 6. Two realizations are used to compare the 
breakthrough curves of the models with actual aperture 
distribution and the ones with the average aperture sizes.  
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Now, we can use the calculated average aperture size 
value to conduct the same flow and transport simulation 
to study the discrepancy of this simplified model result 
with the result of simulation using detail information of 
aperture distribution. This comparison is shown in Figure 
6 for two different realizations. The main difference is the 
time to breakthrough which is slightly smaller for the 
model with detailed aperture size information.  For the 
simplified model, later arrival of solute to the output 
boundary is due to uniform distribution of fracture 
aperture size in comparison to the simulation with the 
inconstant aperture size. In the latter, the aperture size 
variation provides more channelling in the flow. 
Surprisingly, the slopes of the breakthrough curves are 
very similar which can be used to evaluate dispersive  
behaviour of such system.  In order to show the effect of 
matrix permeability this comparison is done for the 
system with two different rock matrix permeabilities, 10 
mD and 4 mD. The discrepancy between breakthrough 
curves are small, and, less pronounced for the smaller 
matrix permeability. Our results imply the efficiency of 
using average aperture size for transport simulations. 
 
4 CONCLUSIONS 
 
This paper reports numerical results of the solute 
transport in geomechanically grown fractured porous 
media.  We investigate the role of fracture aperture and 
network on solute transport. The following conclusion 
arising from this analysis can be drawn: 
 

• Long-tails in the breakthrough curves and early 
breakthrough indicate anomalous transport of 
solute in fractured media. 

 
• The standard advection-diffusion equation is 

inadequate to represent flow and transport in 
fractured media for large scale. 

 
• Large variation of permeability field induced by 

existence of open fractures yields anomalous 
transport even without incorporating diffusion at 
local scale. 

 
• The fracture matrix flux ratio can be used to 

quantify the average dispersive behaviour of 
solute transport in naturally fractured media. 

 
• The average aperture size calculated based on 

the average permeability of the media is 
sufficient for flow and transport modeling. 
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