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ABSTRACT 
Geotechnical problems such as landslides, mud flows and ice flows are often modeled assuming incompressibility and 
nonlinear visco-elastic/plastic material behavior.  This paper examines low order finite element solution techniques for 
incompressible problems within the context of explicit matrix free algorithms.  It is shown that it is necessary to introduce 
volumetric strain enhancement, as well as the conditioning of creep/plastic strains by allowing a small amount of 
compressibility to avoid predicting unrealistic pressures. The emphasis in this paper is on the creep of large ice masses. 
 
 
RÉSUMÉ 
Les problèmes géotechniques tels que les glissements des terres et les coulées de boue et de glace sont souvent 
modélisés en supposant un comportement incompressible,  no linéaire et  visqueux-élastique/plastique des matériaux.  
Ce papier examine les solutions techniques en éléments finis d’ordre réduit pour les problèmes incompressibles dans le 
cadre de la matrice explicite algorithmes libres.  Il est démontré qu'il est nécessaire d'introduire une amélioration de la 
déformation volumétrique, ainsi que le conditionnement des déformations dues au  fluage / plastique en permettant une 
petite compressibilité pour éviter une prévision irréaliste des pressions.  L'accent mis dans ce document est sur le fluage 
de grandes masses de glace. 
 
 
 
1 INTRODUCTION 
 
Considerable progress has been made since the 1970’s in 
developing finite element models for geomechanics 
applications.  The methodology lends itself well to stress 
and groundwater flow analyses, including the coupling of 
soil-water interaction.  Up until the late 1980’s, attention 
focused on introducing high order elements, as well as 
providing better constitutive relations.  More recent 
developments of the methodology have however moved 
away from high order to low order finite element 
implementations to take advantage of more versatility 
offered by adaptive mesh formulations and material point 
method applications. 

While the practicing engineer need not be concerned 
with computational details, he (or she) should be familiar 
with the limitations embedded in the low order models.  
The objective of this paper is to examine two solution 
procedures for tackling incompressible problems within 
the context of explicit matrix free algorithms.  The 
emphasis in this paper is on slope creep, where 
incompressibility of the creep strains create problems with 
regard to locking and steady-state pressure predictions.  
  
 
2 INCENTIVE FOR LOW ORDER ELEMENTS 
 
In recent years, matrix-free finite element techniques have 
received considerable attention for the solution of three 
dimensional problems involving non-structured meshes 
and large deformations or impact problems (Zienkiewicz 
et al.1998). Among the evolving techniques is the material 
point method where the focus is on material points, which 

carry information regarding material state through a 
stationary mesh (Wieckowski et al. 1999).  An important 
task with this procedure is the mapping of information 
between the computational mesh and material points.  For 
problems involving dynamics, this can be best 
accomplished with low order interpolation functions. 

  
2.1 Drawbacks with high order elements 
 
For many standard applications, high order elements have 
proven to perform better than low order elements.  There 
are, however, situations such as shown in Figure 1, where 
higher order elements have problems.  This figure shows 
the predicted horizontal surface velocity variation along 
the length of Barnes Ice Cap on Baffin Island Canada, 
along with the high order finite element mesh.  To 
maintain the same number of degrees of freedom, four 
low order elements were used for each high order 
element.  To achieve reasonable surface velocities it was 
necessary to model sufficient basal sliding between the 11 
and 34 km section.  A reduction in sliding resistance 
(normalized but same scale as velocity) is also shown.  

For this series of simulations, the linear displacement 
element provided more realistic velocities.  One clearly 
observes that predictions when using the high order 
mixed elements (quadratic velocity and linear pressure) 
are very different around the 17 km point.  The high 
velocities are attributed to the inability of the high order 
interpolation functions to properly accommodate the 
variation in sliding resistance, as well as the severe 
conditions imposed by incompressibility of flow.  
Improvements in the high order element solution are 
possible by reducing the rate of resistance reduction at 
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the base, as well as incorporating some compressibility 
into the flow field.  

 
 

 
 

Figure 1.  Prediction of surface velocities (Stolle 1982) 
 
 

2.2 Challenges with low order elements  
 
If we do a dimensional analysis, we quickly come to the 
conclusion that pressure (implying mean normal stress) 
should be interpolated one order less than the 
displacement or velocity field.  For various reasons, 
researchers prefer having equal order approximations, 
which however require special algorithms.   

Implementation of linear, equal-order displacement-
pressure elements poses challenges, as low order 
elements are known to lock and pressure distributions 
display spurious spatial oscillations when material 
behaviour is near incompressible and standard Galerkin 
procedures are used to develop the matrix equations.    

Let us consider a system of equations, say for glacier 
flow, where velocities v and pressures p are interpolated: 
 
     

=    
     

T

K Q v f

Q 0 p 0
    [1] 

 
Without going into details, the first line is associated with 
equilibrium or momentum balance and the second with 
constraint equations due to volumetric strain-pressure 
relation. In order to have a non-singular matrix, we require 
fewer constraint equations than equilibrium equations; see 
for, e.g., Wan (2002).  This is best achieved by using 
lower order interpolation for pressure.  Alternatively, a 
common technique to convert the saddle point to a 
parabolic problem, artificial compressibility is often 
introduced to remove the 0.  While this is useful for higher 
order elements, it is most often not sufficient when 

adopting linear interpolation.  Stabilization can however 
be achieved by using iterative techniques involving the 
partitioning and correcting the displacement and velocity 
field thorough stepwise explicit-implicit uncoupled time-
stepping; see, e.g., Zienkiewicz and Taylor (1991), and 
Nithiarasu (2006). 
 
 
3 FIELD EQUATIONS 
 
Two approaches are investigated here for finding quasi-
static equilibrium solutions that are consistent with 
incompressible flow fields of creeping bodies. We assume 
that the flow field can be obtained by allowing the body to 
creep from an elastic state of stress to one that is 
dominated by the creep properties. We are looking for a 
large deformation solution where the influence of elastic 
deformations is negligible. The approaches that we 
propose here belong to the class procedures that are 
sometimes referred to as methods of successive 
approximation.  

In the first procedure, we use an explicit dynamic 
solver to iterate. The second procedure is based on a 
quasi-static initial strain algorithm. In order to deal with 
incompressibility, the volumetric strains are enhanced 
(imitating a mixed formulation) in both approaches. 
 
3.1 Momentum balance 
 
For the first part of the paper, indicial notation is adopted 
and it is assumed that tension is positive. The symbol p 
denotes the mean normal stress (spherical stress) and 
σ ij is the stress, which can be decomposed into deviatoric 

τ σ δ= −ij ij ij p  and spherical stress components. The 

spherical stress is the negative of pressure.  Given that ρ 
is density and the corresponding velocity = &

i iv u is the 

derivative of displacement iu with respect to time (denoted 

by a superposed dot), dynamic equilibrium for the xi 
direction is expressed in differential form as: 
 
ρ σ ρ= +& ,i ij j iv g      [2] 

 

where ig is acceleration, and ( ),i refers to differentiation 

with respect to ix .  

 
3.2 Kinematic relation 
 
The total strain ε ij  of a creeping solid is represented by 

( )ε = +
1

, ,
2ij i j j iu u      [4] 

 
It is often more convenient to use matrix notation 
with =ε Lu , in which ε is the strain, u is the displacement 
vector and L is the linear differential operator. When 
dealing with the vector form is common to use 
engineering strain where for shear we have γ ε= 2ij ij  

when ≠i j .  The strain rate is given by ε&ij . 
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3.3 Creep law  
 
Allowing for some compressibility in the flow field, the 
creep strain rate ε&c

ij may be expressed as: 

 

2 2
ijc c

ij kk ij

σν
ε σ δ

µ µ
= +&  → 2 c

ij ijτ µε= &   for →
1
2cv  [5] 

 
where µ is a stress-dependent viscosity given by 
 

σ
µ

ε
=

&

1
3

e

c

e

    with   ε σ=&
c m

e eA    [6] 

 
in which A and m are creep parameters, δij is the 
Kronecker delta and ε ε ε=& & &2 3e ij ij andσ τ τ= 3 2e ij ij are 

equivalent strain rate and equivalent stress, respectively. 
While the viscosity is analogous to shear modulus, the 
parameter νc is a ‘Poisson’s ratio’ for the creep strain 

field. It will be demonstrated that some compressibility is 
required to help stabilize the pressure field.  
 
3.4 Constitutive law  
 
Within the context of solid mechanics, we can invoke the 
Prandtl-Reuss approximation to relate changes in stress 

( )∆ = −1 0σ σ σ to changes in total strain ∆ε at time 1t  via 

 

( )∆ = ∆ − ∆ &
0

ctσ D ε ε     [7] 

 
where D is the elastic constitutive matrix, &c

ε is the creep 
strain rate given by Eq. 5 and ∆t is the actual time step.  

The field equations that have been listed correspond 
to those encountered in small deformation theory.  If one 
compares these equations to those for thick viscous 
fluids, one can exploit the similarities. The equations for 
solids are usually Lagrangian in nature with those for 
fluids being Eulerian. Nevertheless, the flow and stress 
fields corresponding to a creeping body can be obtained 
by not updating geometry and the location of particles, 
and successively determining changes in stress.  The flow 
solution is attained when the changes in stress vanish. 
 
 
4 DYNAMIC TIME MARCHING ALGORITHM 
 
We now turn to the matrix notation and begin by writing 
the weak form for the momentum equation of a solid 
bound by surface S and occupying volume V, 
 

0T T T T

V V V S
dV dV dV dSδ ρ δ δ ρ δ+ − − =∫ ∫ ∫ ∫u v ε σ u g u t&  [8] 

 
The tensor variables t, b, ε and σ take on the familiar 
meanings of surface traction, body force, strain and 
stress, respectively, with the δ implying a virtual quantity  
Given that the displacement field is approximated as 

=u Na  where N represents interpolation matrix and a 

nodal displacements, we can define the strain as =ε Ba , 
with =B LN being the kinematic matrix.  If we denote the 
nodal velocity by = &v a , Eq. 8 can written as 
 

ρ ρ= + −∫ ∫ ∫ ∫&T T T T

V V S V
dV dV dS dVN N v N g N t B σ  [9] 

 

or =&Mv R  where ( )= −e iR F F is the out-of-balance force 

with eF representing the external loading and iF the 
internal forces due to stresses.  The consistent mass 
matrix M is usually converted to a lumped mass matrix to 
eliminate computationally intensive matrix inversions. For 
details the reader is referred to Zienkiewicz and Taylor 
(1989).  
 
We now take Eq. 9 and express it in difference form as 
 

−
= +

∆
1 0

0 0
t

v v
M R C     [10] 

 
in which 0C represents the creep loading given by 

 

( )0 0

T c

V
t dV= ∆∫C Β D ε&     [11] 

  
Subscripts 0 and 1 for denote quantities such as nodal 
velocity v at the beginning and end of the interval, 
respectively.  The displacement corresponding to the end 
of time step ∆t is determined by = + ∆1 0 1ta a v . This 

implies that the changes in stress ∆σ  depend on the 
stain increment ∆ε that is determined from ∆ = ∆ 1ta v , and 

the stress and strain at time = + ∆1 0t t t  are given 

by = + ∆1 0σ σ σ and = + ∆1 0ε ε ε .   

Owing to the explicit time stepping operations, the 
maximum permissible time step is limited by the creep 
requirement  
 

( )ν σ

ε

+
∆ < ∆ =

&

4 1

3
e

cr c

e

t t
Em

      [12] 

 
with E being the elastic modulus and ν the Poisson’s 
ratio.  To properly capture the initial transient behaviour, 
we often specify α∆ = ∆ crt t with α << 1. The reduction 

factor α = 0.01 was selected in this study.   The factor can 
be increased as the creep proceeds.  To ensure that the 
algorithm remains stable due to the wave propagation and 
that the dynamic response is properly captured, the time 
step is also limited by the requirement 
 

2

minimum
2
h

t
K

ρ 
∆ <  

 
    [13] 

 
with h being a characteristic element dimension, which in 
this study was taken as twice the area of an element 
divide by the longest side.  Minimum implies that the 
element that provides the smallest time step controls.  
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At this point it is prudent to examine what the algorithm 
is doing.  Strictly speaking, the inertial forces play a minor 
role and are present only to detect changes in the residual 
load vector resulting from creep. These creep forces 
result in changes in velocity, which in turn lead to 
displacements that cause further changes in stress. 
Eventually, the velocities do not change and ∆ → ∆ & ctε ε , 
which in turn implies that the stresses remain constant.  
 
 
5 QUASI STATIC APPROACH 
   
For materials that creep rapidly, steady state flow fields 
can also be achieved by using initial strain procedures.  In 
this section, we immediately go to the discretized 
equivalent for equilibrium, dropping the inertial term 
appearing in Eq.’s 9 an 10. The quasi-static equilibrium for 
time 1t  is written as:  

 

( )0
T

V
dV− + ∆ =∫F Β σ σ 0     [14] 

 
which together with Eq. 7 yields: 
 

( ) ( )
00

T T T c

V V V
dV dV t dV∆ = − + ∆∫ ∫ ∫Β DΒ a F Β σ Β D ε&  [15] 

 
or given the initial stiffness matrix K, ∆ = +0 0K a R C .  An 

examination of Eq. 15 indicates that creep continuously 
introduces an initial load to the system, but as steady-
state is reached ∆ →σ 0 due to ∆ → ∆ & ctε ε as we observed 
previously.  Equation 15 requires matrix operations.  
These can be avoided by using the relaxation.  Following 
Nithiarasu (2008), who made use of algorithms for fluid 
mechanics, we write 
 

( )
( )( )

1
0 0

0
0

n n

T c T n

V V
e

t dV dV
t

+ −
= + ∆ − ∆

∆ ∫ ∫
a a

M F Β D ε Β D ε&  [16] 

 
where M is a ‘lumped mass matrix’ consistent with 
 

T

V
dVρ= ∫M N N       [17] 

 
It is important to realize that the term on the left hand side 
is introduced only to iterate and does NOT represent 
inertia.  The objective is to have + − →1

0 0
n na a 0    Since the 

inertia is not important and ρ is an ‘apparent density’ 
determined for each element to ensure the same critical 
time step according to ρ = ∆ 22 crK t h  where K is the bulk 

modulus and ∆ crt represents a critical time step with h 

being the characteristic element dimension. The time step 
∆ et  takes the role of a counter with the superscript n+1 

referring to the value of a variable at ‘iteration time’ 
+ = + ∆1n n

et t t .  It should be noted that all the physics is 

contained on the right hand side of the Eq. 16, with the 
permissible changes in displacement depending on the 

left hand side.  Given that we can select optimum 
densities, we can specify ∆ = 1et .  A critical time step of 

∆ crt = 1.05 was found to work well.  The approach 

suggested here for determining an optimum left hand side 
is slightly different from that recommended by Nithiarasu 
(2008). 

Once again it is prudent to examine what is 
happening. According to Eq. 16, for a given load F and 
creep force 0C , which is kept constant during a sequence 

of iterations corresponding to keeping time constant as 
denoted by the subscript, we calculate a correction to the 
displacement ∆a , which in turn leads to a change in the 
strain increment; i.e., the update strain increment is 

( )+ +∆ = ∆ +1 1
0 0 0 0
n n n n
ε ε B a - a .  We keep on updating ∆ 0ε  until 

the changes in displacement are sufficiently small; i.e., the 

tolerance 1 1
0 0 0 0n n nη + +> →a - a a . At this point, the 

stresses are updated using Eq. 7 and the process is 
repeated with a new creep loading.  The initial value 
∆ 0

0ε is 0 for each time step. 

 
 
6 MITIGATING LOCKING 
 
If one examines the changes in mean stress for mixed 
formulations, one has weighted residual for change in 
mean stress ∆p: 
 

, 0i iV

p
p u dV

K
δ

∆ 
∆ − = 
 

∫     [18] 

 
with the δ implying a weighting function. The significance 
of this equation is that incremental pressure as a result of 
incremental volumetric strain is NOT satisfied point wise, 
but rather in a weighted residual sense.  For the 
procedures described in this paper, it is necessary to 
enhance the incremental volumetric strain ε∆ v or strain 

rate in a similar manner.  This can be accomplished if we 
write 
 

( ), 0v i i vV
u dVδε ε∆ −∆ =∫     [19] 

 
where ε∆ v is discretized. 

From a practical point of view the approach proposed 
by Detournay and Dzik (2006), can be easily 
implemented. This technique involves first determining the 
strain rates for each element in the usual manner and 
partitioning them into volumetric ε ε=& &

v kk   and deviatoric 

ε ε δ ε= −& & & 3d

ij ij ij v  components.  The nodal volumetric strain 

rate for a node is determined by volume averaging the 
strain rates of elements attached to the node via 
    

( )

( )

ε

ε =
∑

∑

&

&
v k

k
v

k
k

V

V
     [20] 
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where the sum  is over all elements k attached to the 
node.  Once the average volumetric strain rate is 
determine for each node, the average volumetric strain 

rate ε&v  for an element is determined by averaging the 

values of those nodes attached to the element.  
 

ε ε= ∑ &&
1

v v
kd

     [21] 

 
with d being the number of vertices.  The enhanced strain 

rate for an element now becomes ε ε δ ε= +& & & 3d

ij ij ij v . 

     
 
7 DOUBLE SLOPE EXAMPLE 
 
The example provided in this section is fairly simple but 
clearly highlights the problems that one has when 
modelling problems where the material behaviour is 
incompressible.  Referring to Figure 2, a creeping, 
isothermal slope is considered, in which symmetry exists 
at x = 0 m (roller boundary). The numerical problem arises 
due to the break in slope along the base where the ice is 
fully fixed.   While the finite element (research) code has 
been developed to handle nonlinear flow conditions, a 
linear rule is considered here with A = 0.001 (kPa-a)-1.  
The unit weight of the material is 10kN/m3, and the elastic 
modulus and Poisson’s ratio were assumed to be 1000 
MPa and 0.3, respectively.  Simulations were also 
completed for higher elastic modulus with little change in 
the predicted flow field.  The analyses were completed by 
starting from an elastic state of stress and allowing the 
body to creep to a state of stress that is consistent with 
the steady state flow field.  
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Figure 2.  Finite element mesh for double slope.  
 
 

Five cases were considered using the quasi static 
approach: Cases 1 and 2 assumed νc =0.5 and used 

quasi-static analysis without and with enhanced 
volumetric strains, respectively; Case 3 assumed 
νc =0.495 and was performed with quasi-static analysis 

and enhanced volumetric strains; and Cases 4 and 5 
adopted the relaxation technique and νc =0.495 without 

and with enhanced volumetric strains, respectively.  The 
dynamic analysis assumed the same conditions as given 
for Case 5. A constant time step of 0.0001 day was 
adopted for the dynamic scheme, whereas for the quasi 

static approach it was monitored using Eq. 12, with a 
convergence tolerance η = 0.0001. The mean stress 
history is shown for point A, bottom left, to examine 
stabilization of the spherical stress (pressure), with 
horizontal velocity history shown for point B to study the 
mitigation of locking. 

 

 
 
Figure 3. Horizontal velocity history for point B.  
 

 
 
Figure 4. Mean stress history for point A (legend above).   
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An examination of the velocity histories in Figure 3 

clearly shows that the traditional quasi static approach 
without conditioning is subject to locking.  The steady 
state solution using high order elements with quadratic 
interpolation yields a horizontal velocity of the crest 
approaching 5.9 m/a.   Conditioning by using enhanced 
volumetric strains improves the predictions, but the 
introduction of a small amount of compressibility into the 
creep strains is required to further decrease locking and 
improve the velocity. An examination of the mean 
stresses Figure 4, reveals that the traditional approach 
predicts stresses that are unrealistic, even with strain 
enhancement.  More realistic values are obtained by 
allowing for some compressibility of the flow field, 
although the mean stresses are still inaccurate.  To 
achieve reasonable values, it is necessary to use an 
iterative solver, in which the solution progressively 
develops.  This is most likely attributed to strain 
enhancement being directly incorporated into the iterative 
process as the matrix-free solution is evolving.  For 
traditional approaches involving matrix operations, the 
strain enhancement is applied less frequently.  The 
dynamic procedure provides a different history, as might 
be expected, but the steady-state predictions are similar.  

At this point we examine the pressure and maximum 
shear stress distributions shown in Figures 5 and 6, 
respectively, to see impact of using matrix-free technique.  
Red denotes high values with dark blue corresponding to 
zero. Both cases here accommodate enhanced volume 
strains and compressibility of the flow field.  A close 
scrutiny of the results reveals that smoother transitions 
are obtained when iterating. Furthermore, the variation in 
pressure and shear stress is captured better for Case 6 
than Case 3 when compared with higher order solutions. 
 
Case 3 

 
Case 5 

 
 
Figure 5. Comparative pressure variations (0 to 400 kPa). 
 
 
8 CONCLUDING REMARKS 
 
Two procedures for analyzing boundary-valued problems 
with low order finite elements, in which the material 
behaviour is incompressible, were investigated.  It is 
observed that good quality predictions are possible 
provided that the volumetric strains are enhanced, some 
compressibility is allowed in the flow field and matrix-free 

iterative solution techniques are adopted.  Of significance 
is the observation that the predictions could be achieved 
without introducing pressure as a primitive variable. 
 
Case 3 

 
Case 5 

 
 
Figure 6. Maximum shear stress variations (0 to100 kPa). 
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