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ABSTRACT 
A theoretical model has been used to study invasion of a mud filter cake into a pre-existing or a drilling-induced crack at 
the edge of a wellbore. The presented solution allows to evaluate whether or not the mud cake could effectively plug the 
fracture, preventing fracture propagation and associated uncontrollable loss of wellbore drilling mud to it.  
 
RÉSUMÉ 
Un modèle théorique a été utilisé pour étudier l’invasion d’un cake de filtration de boue dans une fissure en angle de 
puit de forage pré-existante ou provoquée par forage. La solution présentée nous permet d’évaluer si le cake de 
filtration de boue pourrait à la fois boucher la ligne de fracture de façon effective et prévenir la propagation de la fracture 
et la perte incontrollable de boue  de forage du puit qui l’accompagne. 
 
 
 
1 INTRODUCTION 
 
Successful drilling of a hydrocarbon well relies on the 
proper selection and use of drilling muds in order to 
maintain the wellbore mud pressure (weight) low enough 
to prevent circulation loss (loss of mud to the fractured 
and/or porous formation) and high enough to support the 
uncased wellbore against the shear failure (Bourgoyne et 
al. 1986). This mud pressure “window” can be very 
narrow or non-existent for practical implementation when, 
for example, drilling through a depleted reservoir. 
Reduced mud weight in order to avoid loss of circulation 
when drilling through a depleted reservoir with lower than 
normal pore pressure, may result in the shear failure of 
the wellbore. The solution to this problem is to maintain 
high enough weight of the mud in order to prevent the 
wellbore failure while using special mud 
composition/properties in order  to minimize or control the 
imminent loss of circulation (e.g., Aston et al. 2003; Van 
Oort et al., 2003). One such approach to control drilling 
fluid loss to a natural or drilling-induced wellbore fractures 
is the use of mud filter cakes with engineered properties 
(e.g., yield stress) to “plug” fractures. In a successful 
scenario, the pressurized mud cake invades a portion of a 
pre-existing fracture and then comes to rest as the result 
of equilibrium between the shear stress generated 
between the mud cake and fracture walls and the mud 
pressure in the wellbore. Such equilibrium state, when 
exists, is the result of intricate coupling of various 
competing mechanisms. On one hand, larger mud-
invaded region in the fracture 

   
(l

f
)  is expected to 

generate larger shear resistance (proportional to 
   
l

f
)  to 

mud flow into the fracture driven by pressure at the 
wellbore, and, therefore, would favour the cessation of 
the flow. On the other hand, larger 

  
l

f
 can also imply 

higher net-loading on the fracture, which would result in 
widening of the fracture and, possibly, in initiating fracture 
propagation. The latter mechanism would serve to 
promote the flow and further mud-invasion. Yet another 

mechanism involved is related to the presence of the 
reservoir fluid in the fracture, which is displaced by the 
invading mud and is potentially pressurized by it to further 
increase the net-loading on the fracture and, possibly, 
initiate fracture propagation. The latter effect is expected 
to be particularly important in tight, low-permeability 
formations such as shales, where pressurization of the 
reservoir fluid in the fracture can not be effectively off-set 
by the leak-off.  

This paper presents a mathematical model to study 
invasion of mud cake into a drilling-induced planar 
fracture at the edge of a wellbore perpendicular to the 
minimum in situ principal stress. The model assumes a 
planar edge-crack geometry loaded by the wellbore hoop 
stress, variable mud pressure along the invaded region 
adjacent to the wellbore, and uniform pore-fluid pressure 
along the rest of the crack (Figure 1). It is assumed that 
the invading mud freely displaces the pore-fluid in the 
crack without mixing with it. The case corresponding to 
sufficiently permeable formation (the pore-fluid pressure 
in the crack tip region ahead of the mud front is equal to a 
given ambient reservoir pressure, 

  
p

tip
= p

amb
)  will be 

considered. The case of an impermeable formation (the 
pore-fluid pressure in the non-invaded part of the crack is 
one of the problem unknowns) and the case with transient 
leak-off of the pore-fluid from the crack into the formation 
is a subject of future work. The mud flow and its cessation 
is modeled using the lubrication theory and mud rheology 
characterized by a yield stress and post-yielding viscous 
behaviour. The changes in crack width and the condition 
for the initiation of fracture propagation are modeled 
under premises of the Linear Elastic Fracture Mechanics 
(LEFM).  

The limiting equilibrium states of the mud cake in a 
stationary crack, when the cake is at its plastic threshold, 
are studied. These states correspond to either onset or 
cessation of the transient mud flow, and, as such, allow to 
predict conditions for the initiation of the fracture 
propagation. The ensuing continuous propagation driven 
by viscoplastic mud in limit equilibrium, although not a 
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part of this paper, can be addressed by adopting the 
methods developed by Garagash (2006) for different inlet 
boundary condition (mud flux, instead of the mud 
pressure, specified at the crack inlet).  
 
2 MATHEMATICAL MODEL 
 
We consider a pre-existing crack of length  l  at the edge 
of a wellbore in elastic permeable rock. The crack plane 
is perpendicular to the direction of the minimum in-situ 
stress, Figure 1a. 
 

  
 

Figure 1. (a) Crack at the edge of a wellbore partially 
invaded by the mud cake. (b) Magnification of the crack.  
 
The fluid (mud cake) invades a priori unknown part of the 
crack, 

  
x ≤ l

f
, from the wellbore under a given mud 

pressure   p(0,t) = p0 (t) . When the crack is partially filled 

with mud 
   
(l

f
< l)  the tip region ahead of the wellbore 

fluid front is filled with the reservoir pore fluid at ambient 
pressure, 

  
p

tip
(t) = p

amb
. Otherwise

   
(l

f
= l),  the tip 

pressure is an unknown of the problem. Under condition 
when the length of the crack is much smaller than the 
wellbore radius, the approximation of a crack at the edge 
of a half-plane is considered, Figure 1b, where the remote 
confining stress  

 

  
σ0 = 3σmin − σmax − p0  [1] 

 

is equivalent to the Lame’s hoop stress σ
θθ

 at the 

wellbore edge (Figure 1a). 
 
2.1 Mud Cake Equilibrium Considerations 
 
Mud-cake is considered as a viscoplastic fluid with yield 
stress 

  
τ

o
.  Fluid flow in the crack channel is characterized 

by the maximum and minimum (zero) shear stress values 
at the crack walls,   z = ±w 2,  and the crack symmetry 
plane, z = 0, respectively (axis z is perpendicular to the 
crack plane). Consequently, fluid flow (if any) takes place 
along the part of the crack channel, 

  
w

o
2 < z < w 2,  

where the shear stress exceeds the plastic threshold, 
while the inner core 

  
z ≤ w

o
2  with 

  
τ (z) ≤ τ

o
is translated 

as a rigid body with the outer flow. Integrating equilibrium 
equations across the rigid core allows to relate the core 
thickness to the local pressure gradient (e.g, Economides 
and Nolte 2000) 

 

  
w

o
(x) =

2τ
o

−dp / dx
 [2] 

 
The flow of the viscoplastic fluid in the crack channel 

takes place when the local crack width exceeds the rigid 
core width given by Eq. 2. On the other hand, the flow 
cessation or, alternatively, mobilization corresponds to 
the state of fluid limit equilibrium, when the width of rigid 

core just coincides with the crack width, 
  
w(x) = w

o
(x).   

 
2.2 Crack Opening 
 
Crack opening is related to the net normal loading 

  
p(x) − σ0 on the crack walls by an integral equation of the 

linear elasticity theory, which, for an edge crack, can be 
written in the following form 

 

   
w(x) = G

x

l
,
s

l







p(s) − σ0

′E0

l

∫ ds,   [3] 

 
where  ′E  is the plane strain elastic modulus. Kernel G is 
defined by the following expression 

 

  

G(ξ,η) =
8
π

f (ξ ζ )

ζ 2 − ξ2

f (η ζ )

ζ 2 − η2max{ξ,η}

1

∫ ζdζ  [4] 

 
in terms of the “configurational” function for an edge 

crack, 
   f (ξ) � 1.297 − 0.297ξ5/4  (Tada et al. 2000). 

Integrating Eq. 3 by parts leads to the form  
 

   

w(x)
l

= J
x

l
,
s

l







1
′E

dp

ds0

l
f∫ ds +

p0 − σ0

′E
J

x

l
,0







,  [5] 

 

where 
  
J(ξ,η) = G(ξ,η)dη

η

1

∫ .  In Eq. 5, the upper 
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integration  limit has been set at the mud cake front 
position since the pressure gradient is zero in the tip 
region ahead of it. 
 
2.3 Crack Propagation Condition 
 
Asymptotics of deformation and stress near the crack tip 
loaded by normal tractions can be expressed in terms of 
the stress intensity factor (SIF) defined by (e.g., Rice 
1968) 

 

   
K

I
= π l

2
π

p(x) − σ0( ) f (x l )

l 2 − x2
dx

0

l

∫  [6] 

 
where f is the previously defined configurational function 
for an edge crack.  

Adopting the Linear Elastic Fracture Mechanics 
(LEFM) theory, initiation of crack propagation requires 
that the stress intensity factor reach the critical value 

 
K

Ic
 

(rock fracture toughness parameter), 
  
K

I
= K

Ic
.  The latter 

“breakdown condition” can be recast in terms of the rock 
“tensile strength” 

 
σ

c
 for an edge crack as follows 

 

   
K

I
/ (1.121 π l ) = σ

c
,  [7] 

 

where 
   
σ

c
≡ K

Ic
/ (1.121 π l ). In view of Eq. 6, the left hand 

side of Eq. 7 is a particular average of the net pressure 
along the crack. Tensile strength is dependent on the 
crack length and, thus, it can not be regarded as a rock 
material parameter. In spite of this, the advantage of the 
“tensile strength notation” is realized in a special case 
when the net pressure is uniform in the crack, i.e. 

  
p(x) − σ0  is constant along the crack (and equal to the 

average defined by the left hand side of Eq. 7). Two well-
known limiting breakdown scenarios corresponding to the 
uniform net pressure correspond to: (i) the crack filled 
with reservoir pore fluid under ambient conditions, 

  
p

amb
− σ0 = σ

c
,  (Hubert and Willis 1957); and (ii) the 

crack filled by the equilibrated wellbore fluid with uniform 
net pressure distribution, 

  
p0 − σ0 = σ

c
,  (Fairhurst and 

Haimson 1967).  In application to the problem at hand, 
the case (i) corresponds to the situation when wellbore 
mud does not  enter the crack 

  
(p0 ≤ p

amb
)  which is 

critically loaded by ambient reservoir pressure. The case 
(ii) does not apply to mud cake plugs, since the latter 
maintain a pressure gradient (Eq. 2), which contradicts 
the net pressure uniformity assumption of (ii).  
 
 
3 SOLUTION FOR A PLUG IN LIMIT EQUILIBRIUM 
 
Under conditions of the limit equilibrium, when the non-
deforming mud cake core just coincides with the crack 
width, 

  
w(x) = w

o
(x),  Eqs. 2 and 5 are solved for the net 

pressure 
  
p(x) − σ0  distribution in mud cake plug 

   
(x ≤ l

f
), and length of the plug 

 
l f  as a function of the 

inlet 
  
p0 − σ0  and tip 

  
p

tip
− σ0  values of the net pressure.  

 
3.1 Scaling 
 

In order to facilitate the solution, it is convenient to 

introduce the nondimensional plug length   ξf
,  net 

pressure  Π,  and crack opening Ω as follows  
 

   
ξ

f
=
l

f

l
, Π =

p − σ0

p
∗

, Ω =
w

w
∗

 [8] 

 
where 

 
p

∗
 and 

 
w

∗
 are the characteristic values of the net 

pressure and crack opening defined as a small fraction 

  
ε = 2τ

o
′E  of the modulus  ′E  and the crack length 

 
l,  

respectively,  
 

   
p

∗
= ε ′E = 2τ

o
′E , w

∗
= εl = l 2τ

o
′E  [9] 

 
Normalized solution (Eq. 8) is a function of normalized 
coordinate 

  
ξ = x l  along the crack  (distributions Π  and 

Ω only) and of the values of the normalized pressure at 
the crack inlet and the tip, 

 

  

Π0 =
p0 − σ 0

p
∗

=
2p0 − (3σmin − σmax )

p
∗

,

Π
tip

=
p

tip
− σ 0

p
∗

=
p

tip
+ p0 − (3σmin − σmax )

p
∗

,

 [10] 

 
respectively, governed by normalized Eqs. 2 and 5: 

 

  
Ω =

1
−dΠ / dξ

 [11] 

  
Ω(ξ) = J(ξ,η)

dΠ

dη0

ξ
f∫ dη + Π0J(ξ,0)  [12] 

 
and the tip boundary condition  

  
Π(ξ

f
≤ ξ ≤ 1) = Π

tip
.   

Normalized form of the breakdown condition, Eq. 7, 
states  

 

  
K = K

c
  [13] 

    

K ≡
K

I

1.121p
∗

π l
= 0.568

Π(ξ)f (ξ)

1− ξ2
dξ

0

1

∫ ,  

    

K
c

≡
σ

c

p*

=
K

Ic

1.121p
∗

π l
,  

 
where  K  is the normalized SIF (Eq. 6) and 

  
K

c
 is the 

normalized toughness (tensile strength), respectively.  
3.2 Numerical Method 
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Numerical method to solve the system of Eqs. 11-12 
relies on the discretization of the mud plug extent into a 
set of elements (intervals)  and adopting a piecewise 
constant pressure gradient approximation over this set. 
This approximation allows explicit evaluation of the 
elasticity integral for the opening, Eq. 12. Substituting 
resulting approximations for the opening and pressure 
gradient in Eq. 11 and evaluating it at the midpoints of the 
elements’ set yields an algebraic system of equation in 
terms of the unknown values of the pressure gradient. 
This equation set is solved using the Newton’s iterative 
method. Full details of the numerical method are given by 
Garagash (2009).  
 
3.3 Solution Map and Loading Trajectory 
 
Figure 2 shows the contour plot of the normalized length 

 
ξ

f
 of the plug and the normalized SIF  K  in the space of 

the normalized problem parameters: the inlet and tip 
values of the net pressure. Parametric regimes (I) and (II) 
correspond to a fully-open and partially-open crack (along 
its length), respectively, invaded by mud cake. (Zero SIF 
corresponds to smoothly closing crack walls at the tip – 
corresponding contour line separates the two regimes in 
Figure 2). Regime (III) corresponds to a closed crack (net 
pressure in the crack is negative) and regime (IV) 
corresponds to an open crack (net pressure in the crack 
is positive) which is not invaded by mud (inlet mud 
pressure is less than the reservoir ambient value). No 
limit equilibrium mud cake plugs exist in parametric 
regime (V) in a sense that it can not be reached in the 
space of parameters of Figure 2 by a continuous, quasi-
static loading trajectory, as discussed further. 
 

 
Figure 2. Map of limit equilibrium solutions in the 
parametric space of the inlet and tip net pressure. Solid 
lines - plug length contours 

 
ξ

f
={0, 0.1, 0.3, 0.5, 0.7, 0.9, 

1}; and dashed lines - normalized stress intensity factor 
contours  K ={0, 0.1, 0.2,…, 0.9, 1}.  
 
When the crack is not fully-filled with mud cake, tip 
pressure is equal to the (constant) reservoir ambient 

value, 
 
p

tip
= p

amb
. Consequently, in view of Eq. 1, loading 

trajectory due to, say, increasing mud pressure in the 
wellbore,  p0,  corresponds to a line with slope ½ in the 

parametric space of Figure 2  
 

  
ξ

f
< 1: Π

tip
= (Π

amb
+ Π0 ) / 2  [14] 

 
where constant 
 
  

  
Π

amb
= 2p

amb
− (3σmin − σmax )( ) p

∗
 [15] 

 
corresponds to the intercept of the loading trajectory with 

  
Π

tip
= Π0  line. (Two such trajectories are illustrated in 

Figure 3). Once the crack is fully-filled with the mud cake 
(when loading trajectory first intersection with the   ξf

= 1  

line on Figure 2), loading trajectory follows the latter line 
of full-saturation, corresponding to further pressurization 
and inflation of the fully mud-filled crack. 
 

 
Figure 3. Examples of (a) 

  
Π

amb
< 0  and (b) 

  
Π

amb
> 0  

loading trajectories in the parametric space of Figure 2. 
State A – incipient mud plug 

  
(ξ

f
= 0);  State A’ – the first 

state of a fully-open crack   (K = 0);  State B – the first 

state of the full mud plug 
  
(ξ

f
= 1).  

 
Figure 3 shows two representative loading trajectories. 
Positive 

 
Π

amb
 trajectory corresponds to gradual filling of 

the initially open crack with mud followed by further crack 
pressurization along the full-saturation line   ξf

= 1.  

Negative 
 
Π

amb
 trajectory corresponds to filling of initially 

closed crack (once the inlet net pressure raised to exceed 
the zero value) , which remains partially closed (Region II 
on Figure 2) until the trajectory reaches the   K = 0  line. 
Past that point, the gradual filling of now fully-open crack 
(Region I on Figure 2) continues until the line of full-
saturation is reached and followed along.  
 
Figures 4 and 5 show the evolution of the net pressure 
and the crack opening profiles for the two loading 
trajectories depicted in Figure 3a and 3b, respectively.   
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Figure 4. Example of the evolution of the normalized net-
pressure and crack opening profiles along a 

  
Π

amb
< 0  

loading trajectory (Figure 3a).  
 
3.4 Breakdown Conditions 
 
Toughness or tensile strength based criterion, Eq. 13, for 
the initiation of crack propagation can be readily 
evaluated for the equilibrium states of the pressurized 
fluid in the crack based on Figure 2. Namely, given a 
specific value of the dimensionless toughness or, 
equivalently, normalized tensile strength, 

   
K

c
,  the 

corresponding 
  
K = K

c
 curve in Fig. 2 provides the set of 

critical normalized values of the inlet and tip net pressure 
to initiate propagation of the crack. The latter values are 
not independent, but rather related via a fixed loading 
trajectory parameterized by number 

  
Π

amb
,  Eq. 15. In view 

of that, the SIF solution is recast on Figure 6 as a function 
of number 

  
1

2 Π
amb

= (p
amb

− 1
2 (3σmin − σmax )) / p

∗
 (which 

characterize the ambient pore pressure and in situ stress)  
and normalized pressure difference (overbalance) 
between the wellbore mud pressure and ambient 
reservoir pore pressure), 

  
1

2 (Π0 − Π
amb

) = (p0 − p
amb

) / p
∗
.  

A loading trajectory in the space of Figure 6 is given by a 
vertical line corresponding to a specified ambient state. 
The crack is fully-filled with the mud at and above the 
ξ f = 1  line. 

 

 
Figure 5. Example of the evolution of the normalized net-
pressure and crack opening profiles along a 

  
Π

amb
> 0  

loading trajectory (Figure 3b). 
 

 
Figure 6. Contours of the normalized stress intensity 

factor 
    
K = K

I
(1.121p* πl)  in the space of the ambient 

pressure measure 
  
p

amb
− 1

2 (3σmin − σmax )  and mud 
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pressure overbalance 
  
p0 − p

amb
.  Dashed lines show the 

incipient mud plug 
  
(ξ

f
= 0),  and the full mud plug 

  
(ξ

f
= 1).  

If, for a given ambient pressure and in situ stress 
conditions (value along the horizontal axis of Figure 6), 
the wellbore pressure (vertical axis of Figure 6) is 
increased to reach the breakdown curve 

  
K = K

c
, the 

crack propagates indefinitely (i.e., it can not be stopped) 
as long as the wellbore pressure is maintained at or 
above the breakdown level. To show that, consider the 
case when the wellbore pressure is maintained at the 
constant (breakdown) value during the crack propagation, 
which is assumed to be slow enough so that the mud 
maintains the limit plastic equilibrium (which normalized 
solution is identical to that for the breakdown state). Then, 
the normalized stress intensity factor  K  is constant, while 
the normalized toughness 

 
Kc  decreases with growing 

crack length, Eq. [13], therefore resulting in unstable 
propagation. (In terms of dimensional quantities, the SIF 
K I  is increasing function of the length during 

propagation, while the dimensional rock toughness K Ic  is 

material constant). The identified unstable propagation is 
an artefact of the assumed limit plastic mud equilibrium. 
In this case, the mud shear stress will exceed the plastic 
threshold, resulting in a viscoplastic transient mud flow in 
the propagating fracture. The latter corresponds to more 
effective pressure dissipation/redistribution along the 
fracture which lowers the normalized SIF (from its limit 
equilibrium value) to maintain the stable propagation 
condition, 

   
K = K

c
.   It is worthwhile to mention that stable 

fracture propagation with the mud in the limit plastic 
equilibrium is possible when the wellbore pressure is 
decreased past the breakdown, such as in the case of a 
crack driven by a (non-Newtonian) fluid injected at the 
crack inlet at a constant volumetric rate (Adachi and 
Detournay 2002; Garagash 2006). 
 
In the following we consider an example evaluation of the 
breakdown condition based on Figure 6. Consider the 
following set of the rock and fracture parameters: 

  ′E = 3 GPa, 
 
K

Ic
= 1 MPa√m,  l =  10 cm; and the mud 

cake yield strength 
  
τ

o
= 0.01  MPa. Then characteristic 

pressure and crack opening, Eq. 9, are 
 
p

∗
= 7.75 MPa 

and 
  
w* = 0.26 mm, respectively, and the normalized 

toughness is 
   
K

c
= 0.2.  Using corresponding normalized 

SIF contour on Figure 6 and applying above value of the 
characteristic pressure, the minimum value of drilling 
overbalance, 

  
p0 − p

amb
,  to cause fracture propagation 

can be determined for a given ambient state of the 
reservoir pore pressure and stress. Say, if reservoir 
conditions are characterized by 

  
p

amb
− 1

2 (3σmin − σmax ) ≤ −1MPa 
  
( 1

2 Π
amb

≤ −0.13),  then 

the minimum value of the pressure overbalance for the 
onset of crack propagation is 2.94 MPa 

  
(= 0.38p

∗
).  

Corresponding maximum fraction of the crack length 
invaded by the mud cake prior to propagation is 0.525. 
  
 
CONCLUSIONS 
 
Physical and corresponding mathematical model of the 
equilibrium of a viscoplastic mud cake in a partially 
invaded crack at the edge of a wellbore has been 
formulated. The scaling of the problem makes use of the 
characteristic values of pressure and crack opening 

defined as 
  
p

∗
= 2τ

o
′E ,  and 

   
w

∗
= l 2τ

o
′E ,  

respectively, to express the normalized net pressure of 
the mud cake, 

  
(p − σ0 ) / p

∗
,  the normalized crack 

opening 
  
w / w

∗
,  the normalized extent of the mud cake 

plug 
   
ξ

f
= l

f
/ l,  and the normalized stress intensity factor 

   
K

I
/ (1.121p

∗
πl)  at the crack tip as a function of two 

parameters: the normalized net fluid pressure at the inlet, 

  
(p0 − σ0 ) / p

∗
, and at the tip, 

  
(p

tip
− σ0 ) / p

∗
,  of the crack, 

respectively. For a crack partially filled with mud cake 

  
(ξ

f
< 1),  the pressure at the tip is equal to the ambient 

pore pressure value 
  
p

amb
,  which defines a linear loading 

trajectory (as the inlet pressure is continuously increased) 
in the space of the inlet and tip values of the net 
pressure, parameterized by single number 

  
(p

amb
− σ

amb
) / p

∗
.  (Here 

  
σ0 = 3σmin − σmax − p0  is the 

wellbore hoop stress, and 
 
σ

amb
 is its value when the 

wellbore pressure is equal to the ambient pore pressure 
value, 

  
p0 = p

amb
). For a crack fully plugged with the mud-

cake 
  
(ξ

f
= 1),  the net pressure at the tip is at or above the 

ambient level, and is given by the unique function of the 
inlet net-pressure, which defines the continuation of the 
loading trajectory.  
 
The presented solution allows to evaluate the toughness 
or tensile strength based criterion for initiation of crack 
propagation, which may lead to uncontrollable loss of 
mud circulation in a well. Specifically, this investigation 
provides pertinent information on the breakdown pressure 
(wellbore pressure at the initiation of crack propagation) 
as a function of the rock ambient stress, ambient pore 
pressure, pre-existing crack length, and mud cake 
properties.  
 
The theoretical framework suggested in this paper to 
model the mud cake invasion into a pre-existing wellbore 
crack under particular constraints on the crack geometry 
and fluid exchange between the crack and the permeable 
rock can be extended to other relevant cases. Some 
possible extensions include (i) the case of a longer crack, 
i.e. a crack which is not small compared to the wellbore 
radius, relevant to some extreme cases of mud losses 
associated with mud-driven fracture (Bratton et al. 2001); 
and (ii) different fracture geometry in response to different 
minimum in situ stress orientation (e.g., penny-shape 

468

GeoHalifax2009/GéoHalifax2009 



crack when the minimum in situ stress is aligned with the 
well).  
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