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ABSTRACT 
The design of a pile involves two limit states: a serviceability limit state, which generally involves settlement or differential 
settlement limits, and an ultimate limit state. This paper proposes a Load and Resistance Factor Design (LRFD) 
approach for the ultimate limit state design of cohesive deep foundations. The load factors used are as specified by the 
National Building Code of Canada. The resistance factors required to achieve a certain acceptable failure probability are 
estimated as a function of the spatial variability of the soil. A mathematical theory was developed in this paper to 
analytically estimate the failure probability of deep foundations. The spatially random soil field was modeled using 
random field theory. The analytical results are validated by the simulation and then used to estimate failure probabilities 
and required resistance factors. 
 
RÉSUMÉ 
La conception d'un tas implique deux états de limite : un état de limite d'aptitude à l'usage, qui implique généralement le 
règlement ou les limites de règlement différentielles, et un état de limite ultime. Ce papier propose qu'un Chargement et 
la Résistance Factorise la Conception (LRFD) l'approche pour la limite ultime conception de fondations profondes 
cohésives. Le chargement factorise utilisé est comme spécifié par le Code de Bâtiment National de Canada. La 
résistance factorise a exigé atteindre une certaine probabilité d'échec acceptable est estimée comme une fonction de la 
variabilité spatiale du sol. Une théorie mathématique a été développée dans ce papier analytiquement pour estimer la 
probabilité d'échec de fondations profondes. Le champ spatialement de sol fait au hasard a été modelé l'utilisation 
théorie de champ faite au hasard. Les résultats analytiques sont validés par la simulation et ont estimé alors les 
probabilités d'échec et les facteurs de résistance exigés. 
 
1 INTRODUCTION 
 
Deep foundations, or piles, can fail either through 
excessive settlement, which is generally a serviceability 
limit state (SLS), or through a punching shear failure 
where the load applied to the pile exceeds the shear 
supporting strength of the surrounding soil (Fenton and 
Griffiths, 2007). The soil supports the pile through a 
combination of end-bearing, and friction and/or cohesion 
between the soil and the pile sides. In this paper, only 
cohesion resistance is considered, as would typically be 
found in an undrained soil, and end-bearing is ignored. 

In piles designed to support loads in undrained soils, 
geotechnical engineers try to find the effective 
perimeter, p , and length, H , required to avoid a cohesive 

resistance failure. In this paper, it is assumed that the pile 
type is already know, so that p  is known and the design 

involves determining H . To find H , ultimate limit state 
(ULS) conditions are checked using separate factors on 
loads and on ultimate geotechnical resistance. This leads 
to the load and resistance factor design (LRFD) 
methodology, collectively referred to as Limit States 
Design (LSD) in Canada, which requires that the factored 
geotechnical resistance at each limit state exceed the 
factored load. At the ultimate limit state, the design 
requirement is 

 ( )ˆ ˆ
g u T T
R I Lϕ α≥  [1] 

where 
g

ϕ is the geotechnical resistance factor, ˆ
u

R  is the 

characteristic (design) ultimate geotechnical resistance, 
I  is an importance factor, 

T
α is the total load factor and 

ˆ
T

L  is the total characteristic load, also referred to as the 

design load. The resistance factor, 
g

ϕ , is typically less 

than 1.0 and accounts for uncertainties in geotechnical 
parameters (Allen, 2005).  The load factor, 

T
α , is typically 

greater than 1.0 and accounts for uncertainty in loads. 

The ultimate geotechnical resistance, ˆ
u

R , is 

determined using characteristic soil properties, in this 
case the characteristic soil cohesion, ĉ . The importance 
factor, I , reflects the severity of the failure consequences 
and maybe larger than 1.0  for important structures, such 
as hospitals, whose failure consequences are severe and 
whose probabilities of failure should be much less than 
typical structures. Typical structures are usually designed 
using 1I = , which will be assumed in this paper. 
Structures with low failure consequences may have 1I <  
(NRC, 2006).  

In this paper only dead and live loads will be 
considered, so that the total factored load is obtained from 

 ˆ ˆ ˆ
T T D D L LL L Lα α α= +  [2] 

 where ˆ
L

L  is the characteristic live load, ˆ
D

L  is the 

characteristic dead load, and 
L

α and 
D

α are the live and 

dead load factors, respectively. The load factors used in 
this paper are as given by the National Building Code of 
Canada: 1.5

L
α =  and 1.25

D
α =  (NRC, 2005). 

The characteristic loads, ˆ
D

L  and ˆ
L

L , are obtained by 

applying bias factors to the means of the load distribution: 
ˆ 1.18

D D
L µ= (Allen, 1975) and ˆ 1.41

L L
L µ=  (Becker, 
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1996), where 
D

µ and 
L

µ are the means of the maximum 

lifetime dead and live loads, respectively. 

While ˆ
u

R  is the characteristic ultimate resistance used 

in design, the actual ultimate resistance of a pile, 
u

R , due 

to the actual cohesion, c , between the pile surface and its 
surrounding soil is given by (Das, 2000),  

 
0

( )

H

u
R p z dzτ= ∫  [3] 

where p  is the effective perimeter length of the pile 

section and ( )zτ  is the ultimate shear stress acting on 

surface of the pile at depth z . Several methods are 
available for obtaining the cohesive resistance of piles in 
undrained soils. One of the presently accepted 
procedures, the α - method, is described by Das (2000). 
According to the α - method, the unit surface shear 
resistance in undrained soils can be represented by the 
equation, 
 ( ) ( )z c zτ α=  [4] 

where ( )c z  is the soil cohesion at depth z and α is an 

empirical adhesion factor, typically in the range from 0.5 
to 1 (CGS, 2006).  For a normally consolidated clay, with 
cohesion less than 50 kPa, Das (2000) suggests an 
adhesion factor of 1.0, which will be assumed here. 
Combining Eq’s 3 and 4, the cohesive ultimate resistance 
of a pile with length H and effective perimeter length p  

is given by 

 ( )
0

H

u
R p c z dzα= ∫  [5] 

where now ( )c z  is the average cohesion around the pile 

perimeter at depth z . 
In order to determine the resistance factor required in 

Eq. 1, the failure probability of the pile must be estimated. 
This probability will depend on the load distribution, the 
load factors selected, and the resistance distribution. The 
resistance distribution is discussed in Section 2 and the 
load distribution is discussed in Section 3. Section 4 
develops the mathematical framework and simulation for 
the failure probability estimate, and illustrates how the 
theoretical estimates agree with simulation. 

The paper considers four maximum lifetime failure 
probabilities of a single pile: 2 3 4, 10 010 , 1− − − , and 510− . 

Meyerhof (1995) suggests that a typical lifetime failure 
probability for a foundation is around 410−  and so these 
numbers range on the low side of that suggested by 
Meyerhof. However, foundations are normally supported 
by more than a single pile, and multiple piles provide at 
least some system redundancy which serves to reduce 
the failure probability. If it is assumed that Meyerhof’s 
estimate is for the entire foundation system, then the 
required failure probability for a single pile would be less 
than the system failure probability of 410− . Although more 
research is required to determine the failure levels 
appropriate for redundant pile systems, the National 
Cooperative Highway Research Program (NCHRP) 

reports (Barker et al., 1991, and Paikowsky, 2004) are 
based on a lifetime failure probability of about 310−  for an 
individual pile which suggests that NCHRP is considering 
pile redundancy. 

Some of the failure probabilities considered herein, i.e  
3 410 , 10− − , and 510− , might be appropriate for designs 

involving low (e.g. storage facilities), medium (typical 
structures), and high (e.g. hospitals and schools) failure 
consequence structures, respectively. The resistance 
factors required to achieve these target probabilities will 
be recommended in Section 5.  
 
2 THE RANDOM SOIL MODEL 
 
The soil cohesion, c , is assumed to be lognormally 

distributed with mean, 
c

µ , standard deviation 
c

σ  and 

spatial correlation length, θ . The lognormal distribution is 
selected because it is commonly used to represent non-
negative soil properties and has a simple relationship with 
the normal distribution – that is, ln c is normally 
distributed, with parameters 

ln c
µ  and 

ln c
σ . The 

correlation coefficient between the log cohesion at some 
point 

1
x  and a second point 

2
x  is specified by a 

correlation function, 
ln

( )
c

tρ , where 
1 2

t xx= −  is the 

distance between the two points. In this study, a simple 
exponentially decaying (Markovian) correlation function 
will be assumed.  The Markov correlation function has the 
form 

 
ln

2
( ) exp

c

t
tρ

θ

 − 
=  

 
 [6] 

 

3 THE RANDOM LOAD MODEL 
 
In this paper only live and dead loads are considered, as 
is typically the case in code development. Assuming that 
the total load is equal to the sum of the maximum lifetime 
live load, 

L
L , and the static dead load, 

D
L , i.e, 

 
T L D

L LL= +  [7] 

and that the total load 
T

L is still at least approximately 

lognormally distributed (Fenton et al., 2008), then the 
parameters of the total load distribution can be obtained 
from 

 

2 2

ln

2

ln ln

ln(1 )

1
ln( )

2

T T

T T T

vσ

µ µ σ

= +

= −
 [8] 

where 
LT D

µ µ µ= +  is the sum of the mean (maximum 

lifetime) live and (static) dead loads, and 
T

v  is the 

coefficient of variation of the total load defined by 
(assuming that dead and live loads are independent), 

 
2 2

L D

T

L D

v
σ σ

µ µ

+
=

+
 [9] 
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The design problem considered in this study involves a 
pile supporting loads having means and standard 
deviations which are shown in Table 1. 
 
Table 1. Load distribution parameters 
 

Parameter Values 

L
µ  20 kN 

D
µ  60 kN 

L
σ  6 kN 

D
σ  9 kN 

T
µ  80 kN 

T
σ  10.82 kN 

lnT
µ  4.4 

lnT
σ  0.14 

 
4 ANALYTICAL AND SIMULATION RESULTS 
 
In this section, the background to an analytical solution to 
the failure probability of an individual pile placed in a 
spatially varying undrained soil is presented. Although 
space limitations in this paper prohibit a complete 
solution, the basic ideas are presented, from which a 
solution can be formulated. The authors will be publishing 
their complete analytical solution shortly. In this paper, it 
was felt that the complete description of the simulation 
used to validate the analytical solution would be more 
valuable to the reader. That description follows the 
analytical formulation. 

In order to determine the probability of failure of a pile, 
the soil must first be modeled as a spatially varying 
random field. In general, the cohesion will vary in three 
dimensions, but there is little advantage in considering the 
3rd dimension since piles are essentially one-dimensional 
and only the 2nd dimension is needed to provide distance 
from the pile location. Hence, this study considers a two-
dimensional random field in which the pile is place 
vertically at a certain position and soil samples are take 
vertically at some possibly different position (as in a CPT 
or STP sounding). 

The analytical approximation to the probability of pile 
failure in undrained soils can now be explained as follows. 
When the soil properties are spatially variable, as they are 
in reality, the hypothesis made in this paper is that Eq. 5 
can be replaced by 
 u

R pH cα=  [10] 

where c  is the equivalent cohesion as ‘seen’ by the pile 
over its entire length. It is assumed here that c  is the 
arithmetic average of the spatially variable cohesion over 
the pile length H , 

 
10

1 1
( )

H n

i

i

c c z dz c
H n =

= = ∑∫  [11] 

Again, ( )c z is interpreted as an average cohesion around 

the pile perimeter at depth z . If the pile is broken up into 
a series of elements (as will be done in the simulation), 
the average is determined using the sum at the right of 

Eq. 11, where 
i

c  is the local average of ( )c z over the th
i  

element, for 1,2,...,i n= . 
To design the pile, Eq. 10 is replaced by 

 ˆ ˆ
uR pH cα=  [12] 

where ĉ  is the characteristic cohesion which is commonly 
estimated from a set of m  observations 

1 2
ˆ ˆ ˆ, , ...,

m
c c c  of 

soil cohesion taken at the site. In this paper, an arithmetic 
average of the observations will be used to define the 
characteristic cohesion, 

 
1

1
ˆ ˆ

m

j

j

c c
m =

= ∑  [13] 

This is an estimate of the mean cohesion and no bias 
factor is applied to obtain the characteristic value. 

The required minimum design pile length, H , is 
obtained by using Eq. 12 in Eq. 1, 

 
( )

ˆ

c c

g

I L
H

p c

α

ϕ α
=  [14] 

By further substituting Eq. 14 into Eq. 10, the ultimate 
resistance becomes 

 
ˆ( )

ˆ

T T

u

g

I L c
R

c

α

ϕ
=  [15] 

The design philosophy in this study is as follows: find the 
required length, H , such that the probability that the 
actual load, 

T
L , exceeds the actual ultimate resistance, 

u
R , is less than some small acceptable failure probability, 

m
p . The actual failure probability, 

f
p , is 

 [ ]f T u
p P L R= >  [16] 

and a successful design methodology will have 
f m

p p≤ . 

Substituting Eq. 15 into Eq. 16 and collecting random 
terms to the left of the inequality leads to 

 
ˆˆ ( )

T T T

f

g

L c I L
p P

c

α

ϕ

 
= > 

  
 [17] 

The computation of the probability in Eq. 17 now involves 
the determination of the distribution of ˆ /

T
L c c . If the 

random load, 
T

L , and cohesion values, ĉ and c , are all 

assumed to be lognormally distributed, which is a 
reasonable assumption (Fenton and Griffiths, 2008, and 
Fenton et al., 2008), then the term ˆ /

T
L c c will also be 

lognormally distributed and its parameters can be 
determined by considering the individual distributions of 

T
L , ĉ , and c . As mentioned above, space in this paper 

does not permit the full mathematical description. The 
interested reader is referred to an upcoming paper by the 
authors. The simulation approach to computing 

f
p is 

simper and will be described in detail shortly. Once the 
probability of failure is computed via Eq. 17, it can be 
compared to the maximum acceptable failure 
probability,

m
p . If 

f
p  exceeds 

m
p , then the resistance 

factor needs to be reduced. 
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The probability in Eq. 17 can also be estimated via 
simulation, and this is used to validate the analytical 
computation. Simulation essentially proceeds by carrying 
out a series of hypothetical designs on a series of 
simulated soil fields and checking to see what fraction of 
the designs fail. In detail, the steps involved in the 
simulation are as follows; 
1. The cohesion, c , of a soil mass is simulated as a 

spatially variable random field using the Local 
Average Subdivision (LAS) method (Fenton and 
Vanmarcke, 1990). Cohesion is assumed to be 
lognormally distributed with mean 50

c
µ =  kPa and 

coefficient of variation, 
c

v , ranging from 0.1 to 0.5. 

The correlation length (see Eq. 5) is varied from 0 to 
50 m. 

2. The simulated soil is sampled at m locations along a 
vertical line through the soil at some distance, r , 
from the pile. These virtually sampled soil properties 
are used to estimate the characteristic cohesion, ĉ , 
according to Eq. 13. Three sampling distances are 
considered. The first is at 0r = m which means that 
the samples are taken at the pile location. In this 
case, the uncertainty about the pile resistance only 
arises if the pile extends below the sampling depth. 
Typically, probabilities of failure when 0r = m are 
very small. The other two sample distances 
considered are 4.5r = m and 9r = m, corresponding 
to reducing understanding of the soil conditions at the 
pile location. These rather arbitrary distances were 
based on preliminary random field simulations, which 
happened to involve fields 9 m in width. However, it is 
really the ratio, /r θ , which governs the failure 
probability. 

3. The length of the pile required by the design, H , is 
computed using Eq. 14. 

4. The equivalent cohesion, c , is computed according to 
Eq. 11 by sampling the soil along the sides of the 
pile. 

5. The ‘true’ ultimate pile resistance,
u

R , is computed 

using Eq. 10. 
6. Dead and live loads, 

D
L  and 

L
L , are simulated as 

independent lognormally distributed random variables 
and then added to produce the actual total load on 
the pile, 

T D L
L L L= + . The means and coefficients of 

variation of the dead and live loads are assumed to 
be 60

D
µ = kN, 0.15

D
v =  and 20

L
µ = kN, 0.3

L
v = , 

respectively. 
7. The ultimate resistance factor, 

u
R , and total load, 

T
L , are compared. If 

T u
L R> , then the pile, as 

designed, is assumed to have failed.  
8. The entire process from step 1 to step 7 is repeated 

sim
n times. If 

f
n of these repetitions result  in a pile 

failure, then an estimate of the probability of failure is 

 
f

f

sim

n
p

n
�  [18] 

9. Repeating steps 1 through 8 using various values of 

g
ϕ  in the design step allows plots of failure 

probability vs. resistance factor, for the various 
sampling distances, coefficient of variation of the 
cohesion, and correlation length, to be produced. 

 
The analytically estimated failure probabilities can be 
superimposed on the simulation-based failure probability 
plots, allowing a direct comparison of the methods. 
Figures 1, 2 and 3 illustrate the agreement between 
failure probabilities estimated via simulation and those 
computed analytically using Eq. 17. Given all the 
approximations made in the theory, the agreement is 
considered to be excellent, allowing the resistance factors 
to be computed analytically with reasonable confidence 
even at probability levels which the simulation cannot 
estimate – the simulation involved only 2000 realizations 
and so cannot properly resolve probabilities less than 
about 0.001. 

 
Figure1. Failure probabilities when the soil has been 
sampled at the pile location ( 0r =  m). 

 
Figure 2. Failure probabilities when the soil has been 
sampled at 4.5r =  m from the pile centerline. 
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Figure 3. Failure probabilities when the soil has been 
sampled at 9r =  m from the pile centerline. 
 
 
   The above figures show the comparison of failure 
probabilities estimated from simulation based on 2000 
realizations and theoretical estimates using Eq. 17. Note 
the change in the vertical scales – the probability of failure 
is much lower when samples are taken at the pile 
location, as expected, and increases as the distance to 
the sample increases. 
 
5 REQUIRED RESISTANCE FACTORS 
 
As suggested Section 4, the determination of the required 
resistance factor 

g
ϕ involves deciding on a maximum 

acceptable probability of failure 
m

p . In this section, the 

value of 
g

ϕ required to achieve four maximum acceptable 

failure probability levels ( 2 3 4, 10 010 , 1− − − , and 510− ) will 

be investigated. The corresponding reliability indices of 
these four target probabilities are approximately 2.3, 3.1, 
3.7, and 4.3, respectively.  

Figures 4, 5, and 6 show the resistance factors 
required for the cases where the soil is sampled at the 
pile, at a distance of 4.5 m and at a distance of 9 m from 
the pile centerline, respectively, to achieve the first three 
maximum acceptable failure probabilities. The case where 

510
m

p −= was omitted from the plots for the sake of 

brevity, but the results are similar and the resistance 
factors for this case are presented later. Figure 4 
corresponds to sampling at the pile location, and in this 
case, the design conditions are so well understood that 
the resistance factor exceeds 1.0 when 410

m
p −<  and so 

these plots are not shown. The authors do not 
recommend using 1.0

g
ϕ > since this analysis does not 

consider measurement errors. 
The worse case occurs when the correlation length, θ  

is between about 1 and 10 m. This worst case is 
important, since the correlation length is very hard to 
estimate and will be unknown for most sites. In other 

words, in the absence of knowledge about the correlation 
length, the lowest resistance factor in these plots, at the 
worst case correlation length, should be used. 

To explain why a worst case exists, the nature of the 
correlation length must be considered. The correlation 
length, θ , measures the distance within which soil 
properties are significantly correlated. Low values of θ  
lead to soil properties which vary rapidly in space, while 
high values mean that the soil properties vary only slowly 
with position. A large correlation length, of say 50θ = m, 
means that soil samples taken well within 50 m from the 
pile location will (e.g. at 10r = m) will be quite 
representative of the soil properties at the pile location. In 
other words, lower failure probabilities are expected when 
the soil is sampled well within the distance θ  from the 
pile. Interestingly, because our soil sample is generally 
some sort of average, when θ  is very small (say, 0.01 m), 
then the sample will again accurately reflect the average 
conditions along the pile regardless of the sampling 
location, and in this case the failure probability is again 
low. At intermediate correlation lengths soil samples 
become imperfect estimators of conditions along the pile, 
and so the probability of failure increases, or conversely, 
the required resistance factor decreases. Thus, the 
minimum required resistance factor will occur at some 
correlation length between 0.0 and infinity. 

The worst case correlation length occurs when θ  is 
approximately equal to the distance from the pile to the 
sampling location. Notice in Figures 4, 5, and 6 that the 
worst case correlation length does show some increase 
as the distance to the sample location, r , increases. 

 
 

 
Figure 4. Resistance factor when the soil has been 
sampled at the pile location (note the reduced vertical 
scale). 
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Figure 5. Resistance factors when the soil has been 
sampled 4.5 m from the pile centerline. 
 

 
Figure 6. Resistance factors when the soil has been 
sampled 9 m from the pile centerline. 
 
 

As shown in Figure 6 the smallest resistance factors 
correspond the smallest acceptable failure probability 
shown, 0.0001

m
p = , when the soil is sampled 9 m away 

from the pile centerline. When the cohesion coefficient of 
variation is relatively large, 0.5

c
v = the worst case values 

of 
g

ϕ  dip down to 0.2 in order to achieve 410
m

p −= . In 

other words, there will be a significant construction cost 
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penalty if a highly reliability pile is to be designed using a 
site investigation which is insufficient to reduce the 
residual variability to less than 0.5.

c
v =  

The “worst case” resistance factors required o achieve 
the indicated maximum acceptable failure probabilities, as 
seen in Figures 4 through 6, are summarized in Table 2 
(which includes the 510

m
p −= case). To compare the 

resistance factors recommended in Table 2 to resistance 
factors recommended in the literature and to current 
geotechnical LRFD codes, changes in the load factors 
from code to code need to be considered. The resistance 
factors recommended in this study for 0.01

m
p = are 

greater than 1.0, which may be because the load factors 
provide too much safety for the larger acceptable failure 
probabilities when the site is well understood. Also, due to 
redundancy in pile groups, it is reasonable to use a lower 
reliability for a single pile. For example, if a single pile in a 
group has the smallest resistance and begins to fail, the 
load is transferred to other piles in the group with greater 
resistance and the overall foundation is less likely to fail. A 
reasonable value of target reliability index for single driven 
piles may be in the range of 2.0 to 2.5, corresponding to 

m
p between 0.01 and 0.001. 

  
Table 2. Worst case resistance factors for various 
coefficient of variation, distance sampling location and 
acceptable failure probabilities.  

Resistance Factor, 
g

ϕ  
r (m) c

v  
210

m
p −= 310

m
p −= 410

m
p −=  510

m
p −=  

0.0 0.1 1.20 1.08 0.99 0.91 

0.0 0.2 1.10 1.05 0.96 0.88 

0.0 0.3 1.10 1.01 0.91 0.84 

0.0 0.5 1.10 0.92 0.82 0.74 

4.5 0.1 1.11 0.98 0.88 0.80 

4.5 0.2 0.93 0.78 0.68 0.58 

4.5 0.3 0.76 0.60 0.49 0.40 

4.5 0.5 0.52 0.35 0.27 0.19 

9.0 0.1 1.10 0.95 0.85 0.77 

9.0 0.2 0.90 0.72 0.62 0.53 

9.0 0.3 0.72 0.53 0.42 0.34 

9.0 0.5 0.45 0.29 0.20 0.14 

 
Table 3 compares the resistance factors 

recommended in this study with some other sources. The 
individual “current study” values correspond to the 
moderate case where 0.3

c
v =  and 4.5r = m for 

acceptable failure probabilities 3 410 , 10
m

p − −= , and 510− . 

As can be seen, the Australian Standard, AS5100.3 
(2004) approximately spans the range of resistance 

factors proposed here, although the AS5100 values are 
somewhat higher. The slightly higher resistance factors 
may be because their live load factor is also significantly 
higher. It is also noted that the range given in AS5100.3 
corresponds to the degree of site understanding, not the 
consequence level (e.g. 0.45 would be selected if the site 
were poorly understood). The resistance factors 
recommended by NCHRP 343 (Barker et al., 1991) and 
NCHRP 507 (Paikowsky, 2004) are based on a reliability 
index 3.0 ( 0.0013

m
p = ) which is very close to the first 

level recommended by the current study in Table 3 
( 310

m
p −= ). The NCHRP resistance factors are 

somewhat lower than the 0.59 suggested here, which is 
perhaps slightly surprising considering the significantly 
higher load factors they are using.  

The AASHTO factors (2002, 2004) are based on the 
reliability index 2.0 ( 0.0227

m
p = ) which is very close to 

the recommended resistance factor corresponding to 
0.01

m
p = in this study (for 

c
v = 0.5).  The recommended 

resistance factor by AASHTO (2007) tend to be in the 
range suggested in this research for 210

m
p −= and 

410
m

p −= , despite their larger load factors. More 

research is needed to clearly compare these factors. 
 
Table 3. Comparison of resistance factors recommended 
in this study (r = 4.5 m)to those recommended by other 
sources. 

Load Factors 
Source 

/D Lµ µ  
L

α  
D

α  

Resistance 
Factor, 

g
ϕ  

210
m

p −=  0.76 
310

m
p −=  0.60 

410
m

p −=  0.49 

Current 
Study 

510
m

p −=  

3.00 1.50 1.25 

0.40 

CFEM (2006) 3.00 1.50 1.25 0.50 

AS  5100.3 (2004) 3.00 1.80 1.20 0.45 -0.65 

CHBDC (2006) 3.00 1.70 1.20 0.50 

NBCC (2005) 3.00 1.50 1.25 0.60 

AASHTO  (2007) 3.00 1.75 1.25 0.40 

AASHTO  (2004) 3.70 1.75 1.25 0.54 

AASHTO (2002) 3.70 2.17 1.30 0.59 

NCHRP 343 (1991) 2.00 2.17 1.30 0.55 

NCHRP 507 (2004) 3.00 1.75 1.25 0.50 

 
 

The load factors and the dead to live load ratio used in 
CFEM (2006) and NBCC(2006) are exactly as same as 
the values used in the current study and the 
recommended  resistance factors in these codes are very 
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close to the recommended values in this study for 
410

m
p −=  and 310

m
p −= , respectively. 

 
6 CONCLUSIONS 
 
This paper studied reliability-based design, specifically the 
load and resistance factor design (LRFD) of deep 
foundations. The load factors and load combinations are 
as used in the National Building Code of Canada (NRC, 
2005). A mathematical theory was developed to 
analytically estimate the probability of pile failure. The 
theoretical model assumes a stationary random soil with 
lognormally distributed cohesion, c . The effect of the 
soil’s spatial variability and the site investigation intensity 
on the resistance factor has been investigated via 
simulation and theory by considering various soil statistics 
and sampling locations. The simulation involved 2000 
realizations for each set of parameters and the results of 
the Monte Carlo simulation were compared to the 
proposed theory. Optimal resistance factors were 
recommended for the design of deep foundations for three 
target probability of failure.  

Both the theory and the simulation demonstrates that a 
‘worst case’ correlation length exists, and resistance 
factors based on this worst case, shown in Table 2, agree 
quite well with current literature and LRFD code 
recommendations, assuming moderate variability and site 
understanding, suggesting that the theory is in reasonable 
agreement with past experience. 

The overall agreement between the analytically 
derived resistance factors proposed in this study and 
those currently used in other codes, as shown in Table 3, 
is encouraging. The current study now provides a rigorous 
basis for the determination of resistance factors in pile 
design and the theory provides a framework to extend 
code provisions beyond calibration with the past. 
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