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ABSTRACT 
Limit states design (LSD) calibration for reinforced soil retaining wall design has until recently been restricted to 
comparison to allowable stress design (ASD) practice (often called “calibration by fitting”). This paper is focused on LSD 
calibration for the case of reinforcement pullout in geogrid reinforced soil walls. A unique feature of the paper is a pullout 
resistance database of more than 300 data points that provides sufficient statistical data to carry out the calibration. The 
framework adopted in this study is based on the approach reported by Bathurst et al. (2008a). Five different 
deterministic pullout models, including the current default AASHTO/FHWA pullout model, and the default load factor of 
1.35 recommended by AASHTO, are used in the calibration. The target probability of failure is taken as 1 in 100. To 
simplify the examples in the paper, load bias statistics are assumed. Deterministic models are investigated for hidden 
dependencies and a new pullout model is proposed. Calibration results are presented in the form of tables of resistance 
factors.  
 
RÉSUMÉ 
Le calibrage des méthodes de calcul aux états limites (LSD) pour le design des murs de soutènement renforcés a 
jusqu’à ce jour été restreint aux comparaisons à la pratique du calcul aux contraintes admissibles (ASD) (souvent 
appelé « calibrage par ajustement »).  Cet article porte sur le calibrage LSD pour le cas de l’arrachement du 
renforcement dans les murs renforcés de géogrilles.  Un aspect unique de l’article est une base de données de 
résistance à l’arrachement comprenant plus de 300 valeurs qui fournissent des données statistiques suffisantes pour 
permettre le calibrage.  Le cadre adopté pour cette étude est basé sur l’approche rapportée par Bathurst et al. (2008).  
Cinq différents modèles déterministiques d’arrachement, incluant le modèle courant implicite de l’AASHTO/FHWA et le 
facteur de charge implicite de 1.35 recommandé par l’AASHTO, sont utilisés pour le calibrage.  La probabilité de 
défaillance visée est de 1 dans 100.  Pour simplifier les exemples dans l’article, on suppose des valeurs de biais 
statistique pour les charges.  Les modèles déterministiques sont sondés pour des dépendances masquées et un 
nouveau modèle d’arrachement est proposé.  Les résultats de calibrage sont présentés sous forme de tableaux de 
facteurs de résistance.  
 
1 INTRODUCTION 
 
The American Association of State Highway and 
Transportation Officials (AASHTO 2007) and the 
Canadian Highway Bridge Design Code (CSA 2006) are 
committed to a limit states design (LSD) approach for all 
transportation-related structures, including reinforced soil 
retaining walls. LSD requires engineers to use prescribed 
limit state equations and load and resistance factors 
specified in design codes. The objective of LSD 
calibration is to compute appropriate load and resistance 
factor values to give an acceptable probability of 
exceedance for potential serviceability and failure modes. 
There are two main challenges for LSD calibration in 
geotechnical engineering practice: (i) poor prediction 
accuracy of some underlying deterministic models, and; 
(ii) lack of data to perform rigorous analysis. 

This paper focuses on LSD calibration for the limit 
state of pullout of geogrid layers in reinforced soil walls. 
Large databases for both measured reinforcement load in 
geosynthetic walls and pullout resistance from laboratory 
tests have been collected by the writers. Due to space 
limitations, this paper is focussed on the influence of the 
underlying deterministic pullout model and model bias 

statistics on the computation of pullout resistance factor. 
To simplify calculations, load statistics are assumed 
together with a target probability of pullout failure of 1 in 
100 over the design lifetime of the structure, typically 75 
years. In addition to quantifying model error, the paper 
highlights the influence of hidden dependencies between 
model bias statistics and calculated pullout capacity. 
Finally, a new pullout model is proposed that improves 
pullout capacity predictions and removes undesirable 
hidden dependencies. 
 
2 BACKGROUND 
 
Limit states design (LSD) is a reliability-based design 
approach, which is fundamentally different from the 
conventional factor-of-safety (FS) approach. LSD 
explicitly includes an acceptable estimate of the 
probability of failure (Pf) for the design limit state under 
consideration while the FS-based approach does not. 
The objective of LSD calibration is to estimate the load 
and resistance factor values such that a prescribed 
(target) Pf is satisfied. A brief background is necessary to 
understand the calibration analyses presented later in 
this paper. 
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2.1 Limit State Function 
 
The fundamental criterion in LSD is to ensure that, for a 
specific limit state (g), the resistance (R) must be greater 
than the load effect (Q). This is expressed by the limit 
state function 
 

0QRg ≥−=                                                      [1] 
 
The probability of failure (g < 0) is related to the 

overlap area of the frequency distributions for R and Q. In 
North America, LSD is based on a factored resistance 
approach that can be expressed as 
 

∑ γ≥φ niin QR                                                      [2] 

 
Here, Qni = nominal (specified) load; Rn = nominal 

(characteristic) resistance; γi = load factor; and ϕ = 
resistance factor. Uncertainty in the calculation of 
resistance capacity is taken into account by a single 
resistance factor while (typically) different load factors are 
applied to multiple load sources. In design codes, the 
load factor values are always greater than one and the 
resistance factor values always less than or equal to one. 
However, for these criteria to apply the underlying 
deterministic design models must be reasonably 
accurate.  

 
2.2 Model Bias 
 
Bias (also called model bias) is defined as the ratio of 
measured to calculated value. Calibrations carried out in 
this paper are based on bias statistics. This approach has 
been used by Nowak and co-workers (Nowak 1994, 
Nowak and Grouni 1994, Nowak and Szerszen 2003, 
Szerszen and Nowak 2003) for LSD calibration of 
highway bridge design codes in Canada and the United 
States. Basic concepts of this approach applied to 
reinforced soil walls have been described by Bathurst et 
al. (2008a) and Allen et al. (2005). As the term suggests, 
model bias values are a quantitative measure of the 
accuracy of the underlying deterministic load or 
resistance model used in a limit state function. For a 
good model, the mean bias value is close to one and the 
coefficient of variation (COV) is small.  

Using the bias concept, Equation 2 can be expressed 
as 
 

R i i Qi iX Xγ λ ≥ ϕ λ∑ ∑         [3] 

 
Here, XQi = load bias = Qmi / Qni; XR = resistance bias 

= Rm / Rn; Qmi and Rm = measured load and resistance; 
and λi = load ratio (say, Qni / Qn1). When there is only one 
load term, such as in the current analysis, Equation 3 
reduces to 
 

Q R Q
X Xγ ≥ ϕ        [4] 

 
Once the load factors are selected, Equation 3 or 4 

can then be used to estimate Pf (LSD design) or the 
resistance factor value (LSD calibration). 
 

2.3 Probability of Failure and Reliability Index 
 
The first step in LSD calibration is to select a target Pf 
value. In general, the selection of Pf is related to load 
capacity redundancy in the structure. Reinforced soil 
walls are highly redundant systems due to the use of 
multiple reinforcement layers. Load shedding from one 
failed reinforcing element to the remaining layers is 
expected for reinforced soil walls. This is analogous to 
pile groups for which a Pf value of 1 in 100 was 
recommended by D’Appolonia (1999) and Paikowsky et 
al. (2001). The same Pf value was adopted by Bathurst et 
al. (2008a) and Allen et al. (2005) and is used in the 
current study. 

Civil engineers, especially structural engineers often 
use reliability index (β index) to specify the Pf magnitude 
in design. The target Pf value used in the current study of 
1 in 100 corresponds to reliability index β = 2.33. 
 
2.4 Closed-form Solutions and Monte Carlo Method 
 
If the limit state function (Equation 4) is linear and the 
load and resistance bias values are normally distributed, 
β can be computed using 
 

( )

Q

R Q

2
2Q

R R Q Q
COV COV

γ
µ − µ

ϕ
β =

γ 
µ + µ 

ϕ 

    [5a] 

 
If the bias values are log-normally distributed, then 
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  [5b] 

 
Here, µR and µQ are the mean of resistance and load 

bias values, respectively, and COVR and COVQ are the 
corresponding coefficients of variation. When a closed-
form solution does not exist (e.g. normal and log-normal 
distribution combination) the more adaptable Monte Carlo 
method can be used to estimate the Pf value. For LSD 
calibration, the general procedure is to fix the load factor, 
which is often prescribed, and then assume different 
resistance factor values until the target Pf or β value is 
obtained. 
 
3 PULLOUT DATABASE 
 
Rigorous LSD calibration requires statistical information 
for both the load and resistance data. For this study, they 
are the maximum reinforcement load in a layer and the 
corresponding ultimate pullout capacity of the same 
layer. As noted earlier, this paper is focused on the 
resistance (pullout capacity) side of the pullout limit state 
equation. 

Reinforcement pullout capacity is generally measured 
using laboratory pullout tests. Juran et al. (1988) reported 
a synthesis of experimental pullout data available at that 
time. Since then the influence of test methodology on the 
results and interpretation of pullout testing has been 
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investigated by Farrag et al. (1993) and Palmeira and 
Milligan (1989), amongst others. However, until recently a 
large pullout test database from many sources was not 
available. The writers have compiled a database of more 
than 500 test results collected from 17 sources. The data 
sources include published papers, commercial laboratory 
reports and government certification programs. A total of 
318 geogrid pullout data were used to quantify the 
prediction accuracy of five pullout models. These data 
were from tests carried out using flexible vertical loading 
devices such as airbags and pullout boxes meeting the 
minimum dimensional requirements of ASTM (D6706). 
The reinforcement types include all three typical 
commercial geogrid products (uniaxial, biaxial and woven 
polyester (PET)). The accuracy of five different 
deterministic models was investigated. No significant 
statistical differences related to product type were found 
and hence different pullout models for different product 
types were not needed. Soils were typical granular 
materials ranging from sand to gravel. Confining 
pressures in the laboratory tests ranged up to 120 kPa 
and measured pullout loads were less than 80 kN/m.  
 
4 CALIBRATION 
 
As mentioned earlier, the target Pf is set at 1 in 100. 
Clearly there are an infinite number of combinations of 
load and resistance factor values that can satisfy a 
prescribed Pf value. In this analysis, a load factor γQ = 
1.35 recommended by AASHTO (2007) is used and the 
corresponding resistance factor computed.  

 
4.1 Bias Statistics for Geogrid Pullout Resistance 
 
According to AASHTO (2007) and FHWA (2001) the 
pullout capacity (Pc) for sheet geosynthetics (geotextiles 
and geogrids) is estimated using 
 

ev
*

c LF2P ασ=  [6] 

 
Here, σv = normal stress at elevation of the 

reinforcement layer, Le = anchorage length, F* and α = 
dimensionless parameters. In the FHWA document, the 
following default values are recommended: α = 0.8 for 
geogrids and α = 0.6 for geotextiles, and F*

 is related to 
the peak soil friction angle (φs) by 
 

s
* tan

3
2

F φ=    [7] 

 
Equation 6 shows that for a specific combination of 

soil and reinforcement specimen, predicted pullout 
resistance is linearly proportional to vertical stress. This 
contradicts some pullout test data presented later where 
the measured pullout capacity is shown to be much 
greater than the predicted value under low confining 
pressures. This phenomenon is related to the dilation of 
soil in the vicinity of the reinforcement-soil interface 
(Juran et al. 1988).  

In this paper five deterministic pullout models with 
different prediction accuracy, including the current default 
AASHTO/FHWA pullout model, are investigated. 

4.1.1 Model 1: using average measured F*α value 
 
Model 1 is based on back-calculation of a single value for 
F*α using the average of multiple tests carried out on the 
same soil with a single geogrid product and 
reinforcement length under different normal stress (one 
test series). This model is typically used to interpret the 
results of product-specific laboratory testing with one soil 
material. 

Figure 1a shows the measured versus calculated 
pullout resistance values using Model 1. The data fall 
evenly about the 1:1 correspondence line with little 
spread. The bias mean and COV are 1.00 and 0.21, 
respectively (Table 1). However, the bias values tend to 
decrease with increasing calculated resistance values 
(Figure 1b). A zero-slope test (Draper and Smith 1981) 
performed on this data reveals that the 95% confidence 
interval on the slope of the linear regression line does not 
include the zero value. This is quantitative evidence that 
there is significant relationship (dependency) between 
the parameters in this plot (at a level of significance of α 
= 5%) and hence using Equations 5a and 5b with 
statistics for the entire data set is not valid (i.e. there is 
hidden error). One strategy to remove this undesirable 
dependency is to parse the data into different groups and 
divide each data point in a group by the average group 
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Figure 1.[0] Prediction accuracy using Model 1: (a) 
Measured versus calculated pullout resistance 
values;[0] (b) Dependency between resistance bias and 
calculated values. 
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value (correction factor). The moving average values 
(solid symbols in Figure 1b) suggest convenient break 
points at 50 and 100 kN/m. The correction factor values 
are given in the figure. 

The zero-slope test applied to the corrected data 
shows that the earlier dependency has been removed 
(Figure 2a). A cumulative distribution function (CDF) plot 
is presented in Figure 2b for the corrected resistance bias 
values together with approximations to the data using 
normal and log-normal distributions. 
 
4.1.2 Model 2: using 1st-order approximation to 

measured F*
α values 

 
An alternative approach to Model 1 is to fit a first-order 
polynomial approximation to F*α versus normal stress 
data. This is expected to better capture stress-level 
dependency of pullout capacity. Since F*α values 
generally decrease with increasing normal stress, the 
linear regression should show a negative slope. Model 2 
reduces to Model 1 if the range of normal stress is narrow 
and (or) the magnitude of normal stress is very high.  

Figure 3a plots bias values against calculated pullout 
resistance using Model 2. As expected, there is no visual 
dependency. Also, zero slope of the regression line is 
included in the 95% confidence interval [-0.0004, 0.0008]. 
The bias mean remains one but the COV value of 0.13 is 
lower than COV = 0.19 using Model 1. 

Figure 3b shows the CDF plot and the normal and log-
normal approximations to the bias data. For the 

resistance data in LSD calibration, it is the lower tail of 
the distribution that makes a major contribution to the 
computed Pf value. Here, neither the normal or log-
normal distribution using all the data can fit the lower tail 
satisfactorily. Since the selection of best fit-to-tail 
distribution is subjective, two fit-to-tail CDF curves are 
given in Figure 3b. The resistance factor values using the 
best fit-to-tail distributions are reported later in the paper. 

 
4.1.3 Model 3: AASHTO (FHWA) approach with default 

coefficients 
 
The underlying deterministic model with default 
coefficients is described in Section 4.1. Figure 4a shows 
the measured versus predicted pullout resistance using 
Model 3. Most (about 90%) of the data fall above the 1:1 
correspondence line. The computed bias mean is about 
2.21. Hence, Model 3 underestimates the pullout capacity 
by a factor greater than two on average. However, this 
bias mean value is misleading if the hidden dependency 
is not considered. Figure 4b shows that there is 
pronounced dependency between the bias and 
calculated resistance values. In fact, when the calculated 
resistance values are greater than 30 kN/m, almost all 
data are less than the mean bias value.  

One way to quantify the influence of the hidden 
dependency is to fit a power function curve to the bias 
versus calculated resistance data (Figure 4b). This power 
function is used later to propose an improved pullout 
model (Model 5). It is noted that there is a fundamental 
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Figure 2. Resistance bias statistics for Model 1 after 
removing dependency: (a) Corrected resistance bias 
values versus calculated resistance; (b) CDF plots of 
corrected resistance bias values. 
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Figure 3. Resistance bias statistics for Model 2: (a) Bias 
versus calculated resistance values; (b) CDF plots of 
bias values. 
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difference between Model 3 and Model 5. Model 3 
assumes a linear relationship between pullout capacity 
and normal stress while Model 5 assumes a nonlinear 
relationship. The latter is consistent with observations 
made by some researchers from results of laboratory 
pullout tests. Similar to adjustments made to Model 1, this 
power function can also be used to compute correction 
factors to remove bias dependency. The quantitative 
influence of ignoring and correcting for hidden bias 
dependency on factored resistance values is discussed 
later in the paper. 
 
4.1.4 Model 4: Bi-linear pullout model 
 
The nonlinear relationship between pullout capacity and 
normal stress can be approximated using a bi-linear 
distribution of the efficiency factor (ψ) with normal stress. 
Here ψ is defined as F*

α divided by tan φs. Current design 
codes also use bi-linear functions to estimate the 
coefficient of earth pressure used in the calculation of 
reinforcement loads for steel reinforced soil walls (e.g. 
AASHTO 2007). Using the optimization solver in 
Microsoft Excel, the writers propose the bi-linear 
efficiency factor distribution (Model 4 here) shown in 
Figure 5a. 

Using Model 4, the bias mean is close to one and the 
COV is about 0.40 (Table 1). Compared to Figure 4b, the 

visual impression from Figure 5b is that the dependency 
between bias values and calculated resistance is much 
less but nevertheless detectable as shown by the linear 
regression line superimposed on the data. This is 
confirmed by the calculation of the 95% confidence 
interval on the regression line slope which does not 
contain the zero slope value. In order to analyze the 
influence of the hidden dependency, the same technique 
used earlier for Model 1 was used on the bias data here. 
As shown in the figure, the correction factor values are 
1.05 and 0.8 above and below the selected break point of 
60 kN/m, respectively. For brevity, plots similar to Figure 
2 are not shown for corrected Model 4 bias data. 
 
4.1.5 Model 5: Non-linear pullout model 
 
A shortcoming of Model 4 is that there are remaining 
hidden dependencies from sources other than vertical 
stress. In order to remove all bias dependency, Model 5 
uses the power function fitted to the data in Figure 4b to 
adjust the current AASHTO/FHWA default pullout model 
(Model 3). Implementation of Model 5 is a two-step 
process. First, calculate the pullout capacity using 
Equation 6 with default coefficients; then, correct this 
value using the power function expression presented in 
Figure 4b. It should be noted that the power function 
coefficients are dimension-dependent (here, in units of 
kN/m). The two-step process can be expressed as 
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Figure 5. Model 4 prediction accuracy: (a) Efficiency 
factor versus depth assuming γ = 17.5 kN/m3. (b) 
Dependency between resistance bias and calculated 
values. 
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Figure 4.[0] Prediction accuracy using Model 3: (a) 
Measured versus calculated pullout resistance values; (b) 
Dependency between resistance bias and calculated 
values. 
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0.64

c cP (corrected) = 5.37P (kN/m)    [8] 

 
Figure 6 illustrates the prediction accuracy of Model 5. 

All measured versus predicted pullout load data fall close 
to the 1:1 correspondence line. The bias mean is about 
1.07 and the COV is less than 0.4. Moreover, the zero-
slope test indicates that the dependency between the 
bias and calculated resistance values is negligible. These 
are marked improvements over Model 3 that is currently 
used in most design codes. Figure 6c indicates that the 
log-normal approximation to the data on a CDF plot 

provides a better approximation than a normal 
distribution. 

 
4.2 Bias Statistics for Load 
 
Issues related to load model accuracy and potential 
hidden error in load models are equally important in LSD 
calibration as accuracy and hidden dependencies in 
resistance models. The current approach for the 
calculation of reinforcement load in geosynthetic 
reinforced soil walls is the AASHTO (2007) Simplified 
Method. This method has been demonstrated to be 
excessively conservative (Allen et al. 2002, 2003; 
Bathurst et al. 2008b). To overcome this problem Allen, 
Bathurst and co-workers have proposed a new empirical 
method, called the K-Stiffness Method, to estimate 
reinforcement loads under operational conditions. 
Including load bias statistics in the calculations to follow 
using the AASHTO Simplified Method or the K-Stiffness 
Method cannot be done in the space provided. However, 
to illustrate the general approach, load bias values are 
assumed to be log-normally distributed with a mean value 
equal to one and COV varying from 0.1 to 0.5. 
 
4.3 Example Calibration Results 
 
Table 1 summarizes bias statistics for the five pullout 
resistance models. It is assumed that the bias values are 
normally distributed for the first two models and log-
normally distributed for the last three models. Bias 
statistics that ignore dependency (e.g. Figure 1b) and 
bias statistics that are corrected to remove dependency 
(e.g. Figure 2a) are only slightly different for Models 1 
and 4. 

Table 2 shows the computed resistance factor φ 
values for β = 2.33 and γQ = 1.35. As may be expected, 
for all resistance models the computed φ value 
decreases as the COV of load bias increases. Except for 
Model 3, the bias mean of all other models are close to 
one and hence are easy to compare. In general, Models 
1 and 2 yield φ values closer to one than Models 4 and 5. 
This can also be expected since the first two resistance 
models are typically based on product- and soil-specific 
testing and hence the scatter in bias data (COV) is 
smaller; while the last two general models produce larger 
data scatter. Calibration results for Models 1 and 4 show 
that, if hidden dependency is not taken into account, the 
computed φ value could result in significant over- or 
under-design depending on the calculated resistance 
value. Table 3 shows φ  values computed using best fit-
to-tail distributions for Model 2. Comparison with fitting to 
the entire bias value data shows that best fit-to tail results 
in lower resistance values. The latter approach is judged 
to be better since it captures the distribution at the lower 
tail which strongly influences the probability of failure.   

Finally, the influence of hidden dependency in Model 
3 is presented in Figure 7. The ratio of factored 
resistance value considering dependency (Rcd = 
φPc(corrected)) to the same value but ignoring 
dependency (Rid  = φPc) varies from greater than one for 
calculated pullout values less than 30 kN/m to less than 
one for calculated pullout capacity values greater than 30 
kN/m. A practical implication of the curve in Figure 7 is 
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Figure 6. Prediction accuracy using Model 5: (a) 
Measured versus calculated pullout resistance values; 
(b) Dependency between resistance bias and calculated 
values; (c) CDF plots of resistance bias values. 
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that ignoring dependency results in non-conservative 
(unsafe) design (Pf > 1/100) if the calculated resistance is 
greater than 30 kN/m and results in conservative (safe) 
design (Pf < 1/100) if the calculated resistance is less 
than 30 kN/m. 
 
 
5 CONCLUSIONS 
 
This paper presents the influence of model prediction 
accuracy on calculation of resistance factor in LSD 
calibration using five different geogrid pullout models and 
a large pullout database compiled by the writers. An 
attempt has been made to quantify the calibration error 
due to hidden dependency between the bias and 
predicted values. This has highlighted the importance of 
considering not only model bias in LSD calibration but 
also the quantitative effects of considering and ignoring 
hidden dependencies. In addition, special attention to the 
tails of CDF plots of basic random variables is always 
required even though the selection of best fit-to-tail 
distribution is subjective.  
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Figure 7.[0] Influence of hidden dependency on 
computed factored resistance capacity using Model 3. 
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Table 3. Computed resistance factor φ using best fit-to-tail distributions for Model 2 (β = 2.33, γQ = 1.35). 
 

Assumed load bias statistics (µQ = 1) Fit-to-tail curve 
(Figure 4b)  COVQ = 0.1 COVQ = 0.2 COVQ = 0.3 COVQ = 0.4 COVQ = 0.5 

Curve 1 (µR = 1, COVR = 0.21) 0.68 0.61 0.56 0.50 0.44 

Curve 2 (µR = 1.17, COVR = 0.27) 0.75 0.68 0.59 0.51 0.46 

 

Table 1. Summary of resistance bias statistics. 
 

Resistance 
prediction method Distribution type Maximum Minimum Mean (µR) COVR Dependency 

Model 1 Normal 1.61 0.41 1.00 0.21 Ignored 

 Normal 1.55 0.39 1.00 0.19 Considered 
Model 2 Normal 1.46 0.42 1.00 0.13 None 
Model 3 Log-normal 6.77 0.52 2.21 0.49 Ignored 
Model 4 Log-normal 2.41 0.24 1.01 0.40 Ignored 

 Log-normal 2.29 0.26 1.00 0.39 Considered 
Model 5 Log-normal 2.31 0.35 1.07 0.36 None 

 

Table 2. Computed resistance factor φ for β = 2.33 and γQ = 1.35. 
 

Assumed load bias statistics (µQ = 1) Resistance 
prediction method COVQ = 0.1 COVQ = 0.2 COVQ = 0.3 COVQ = 0.4 COVQ = 0.5 

Dependency 

Model 1 0.78 0.71 0.61 0.53 0.48 Pc ≤ 50 kN/m 
 0.68 0.62 0.54 0.46 0.42 50 ≤ Pc ≤ 100 kN/m 
 0.62 0.56 0.48 0.42 0.38 Pc > 100 kN/m 
 0.68 0.61 0.56 0.50 0.44 Ignored 

Model 2 0.89 0.78 0.66 0.56 0.48 None 
Model 3 0.89 0.84 0.78 0.71 0.64 Ignored 
Model 4 0.54 0.50 0.45 0.41 0.36 Pc ≤ 60 kN/m 

 0.41 0.38 0.35 0.31 0.28 Pc > 60 kN/m 
 0.50 0.47 0.43 0.38 0.34 Ignored 

Model 5 0.59 0.54 0.49 0.44 0.39 None 
Note: Pc = calculated pullout value using deterministic model 
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