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ABSTRACT 
A critical state constitutive model for sand was previously developed with emphasis on capturing the main aspects of the 
behavior of loose liquefiable sands.  The model, which was presented in details in previous publications, was formulated 
and verified for various drained and undrained monotonic and cyclic loadings of sands. However, since in-situ soils often 
exhibit strong inherent anisotropy, the model was extended to predicting the behavior of such soils.  In this paper, it is 
shown that adding a new parameter similar to that proposed by Li and Dafalias enables the model to simulate the 
behavior of inherently anisotropic sands.  
 
RÉSUMÉ 
Un état critique modèle constitutif pour le sable a été développé à l'accent étant mis sur la capture des principaux 
aspects du comportement des sables lâches liquéfiables. Le modèle, qui a été présenté en détails dans les publications 
antérieures, a été formulé et vérifiés pour diverses drainés et non drainés chargements monotone et cyclique des 
sables. Toutefois, depuis les sols in situ présentent souvent une forte anisotropie inhérente, le modèle a été étendu afin 
de lui permettre de prédire l'anisotropie telles. Dans cet article, il est démontré que l'ajout d'un nouveau paramètre 
similaire à celle proposée par Li et Dafalias permet au modèle pour simuler le comportement des sables nature 
anisotrope. 
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1 INTRODUCTION 
 
Many numerical analyses carried out in the field of 
geotechnical engineering require the use of a constitutive 
model.  Constitutive models enable researchers to 
perform analysis and design for a large range of 
geotechnical problems without the need for the time and 
cost associated with conducting many laboratory tests. 

Anisotropic behavior of soils, especially sands, is an 
important and often challenging aspect of soil constitutive 
modeling. This aspect of soil behavior has been 
investigated in many experimental studies carried out by 
various researchers (see e.g. Miura and Toki 1984; 
Yoshimine 1996). As these experimental studies have 
shown, and also pointed out by Been et al. (1991), 
anisotropy has significant effects on the behavior of 
sands. 

Yoshimine (1996) preformed a series of hollow 
cylinder (HC), undrained tests on Toyoura sand. In these 
tests, the direction of applied principal stresses with 
respect to the direction of soil deposition, and also the 
ratios between the principal stresses were kept constant 
in each test. Test results showed that the soil stress-strain 
behavior and stress path up to the critical-state failure 
were significantly affected by the direction of the applied 
principal stresses relative to the orientation of soil 
deposition, and therefore, they demonstrate the 
significance of anisotropy on sand response to loading. 
     A critical-state constitutive model for sands was 
presented by Imam et al. (2005).  This model was used to 
simulate sand behavior as observed in the triaxial 
compression and extension loading. However, in order to 

predict the behavior in other modes of shearing such as 
those conducted in the hollow cylinder apparatus, some 
extensions need to be done to the model formulation such 
that effects of anisotropy and mean effective principal 
stress can be properly accounted for.  In this paper, a 
relatively simple approach is used for taking into account 
the effect of material-inherent anisotropy on the yielding of 
sands, and this is incorporated into this model. In this 
approach, which was used by Li and Dafalias (2002) to 
incorporate anisotropy into their constitutive model, an 
anisotropy state parameter, A, is added to the model 
parameters. A second-order fabric tensor Fij (Oda 1999), 
defined based on micromechanical behavior of sand 
particles, is employed to describe the material-inherent 
anisotropy, and the scalar-valued state variable A is used 
to define this tensor using joint invariants of the stress 
tensor σij and the fabric tensor Fij.  
 
 
3 THE ORIGINAL CONSTITUTIVE MODEL 
 
A critical state constitutive model for sands was 
developed with emphasis on taking into account important 
aspects of the behaviour of loose liquefiable sand.  
Details of the model and its formulation are described 
elsewhere (see Imam et al. 2005), and the constitutive 
relationships are summarized in the Appendix of this 
paper.  The model uses a capped yield surface with the 
stress ratio Mp at its point of peak deviatoric stress (q) 
depending on the sand material properties.   
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   In the model, stress-dilatancy is based on Rowe’s 
(1962) relationship combined with a modified form of the 
Manzari and Dafalias (1997) equation.  The failure 
criterion is expressed in terms of a friction angle that 
depends on the current state parameter ψ through a 
slightly modified version of the Wood et al. (1994) 
relationship.  
   The model uses a single set of parameters to predict 
sand behavior over a wide range of void ratios and 
confining pressures.  The critical state line represents soil 
state at large strain, while the behavior at small and 
medium strains is captured by other material parameters 
such as the yielding, dilatancy, and plastic modulus 
parameters, which take into account anisotropy.  
 
 

 
 
Figure 1 – Yield surface of isotropically consolidated sand 
 
 
Figure 1 shows a graphical representation of the yield 
surface, and the stress ratios at critical state (Mcs) and at 
failure (Mf) in a p-q plane normalized to the maximum 
mean normal stress at yielding (pc).  Values of Mp in 
triaxial compression and triaxial extension are referred to 
as Mp,c and Mp,e, respectively.  These stress ratios control 
the yield surface shape (i.e. width), and account for 
effects of void ratio, mean normal stress, and inherent 
anisotropy on the yielding stresses.  A small Mp results in 
a slender yield surface and applies to sand that is loose, 
or subjected to high confining pressures, or loaded in a 
weak direction such as the triaxial extension.  Stress-
induced anisotropy is represented by stress ratio α, at 
which the tangent to the yield surface is parallel to the q-
axis.  This stress ratio is non-zero only in anisotropically 
consolidated sand.  Size of the yield surface is 
determined by pc.  In anisotropically consolidated sand, 
the stress state corresponding to this maximum mean 
normal stress does not lie on the p axis since it is 
associated with a shear stress.  
 
 

2 VARIATIONS OF STRESS RATIO MP 
 
Based on suggestions by previous researchers and 
comparisons of test results, Imam et al. (2002), indicated 
that in loose and very loose sands, the ratio of shear 
stress to mean normal stress at the peak point of the 
undrained effective stress path (UESP) is very close to 
the stress ratio at the peak point of the capped yield 
surface, Mp, and therefore, the latter can be estimated 
from measurements of the UESP, and used in the 
formulation of the yield surface. Since formulation of the 
original model is such that the stress ratio Mp affects a 
number of aspects of the predicted response such as the 
yielding stresses, plastic modulus, etc (see Imam et al. 
2005), modifying the original model, the influence of 
anisotropy on the stress ratio Mp is investigated, and this 
effect is incorporated into the model.  Ability of the 
modified model to account for sand anisotropy is then 
examined.  
  
2.1 Effects of anisotropy on Mp 
 
In the extensive experiments conducted by Yoshimine 
(1996) using the HC apparatus, effects of the intermediate 
principal stress (accounted for through b= (σ2- σ3)/(σ1- σ3)) 
and the direction of loading (accounted for through the 
angle α between the direction of major principal stress 
and normal to the bedding planes, as illustrated in Fig. 
1(a)) were investigated.  In these series of undrained 
tests, all specimens were consolidated isotropically to 100 
kPa before being sheared.  
 
 

 
 

 
 
Figure 1.Loading in HC apparatus (after Yoshimine 1996) 
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Figure 1 (b) shows stress paths for a sample of such test 
series, in which all tests were conducted at b=0, but the 
angle α was varied from zero to 45 degrees.  It may be 
seen from this figure that although the relative density and 
b are the same for all the tests, the stress ratio q/p at 
which the peak value of q is reached is not constant but it 
changes with α. 
    It is noted that considering all possible conditions of 
loading, b can vary from 0 to 1 and α from 0 to 90 
degrees.  Loading in triaxial compression (TC) 
corresponds to b=0 and α=0 and in Traxial extension (TE) 
to b=1 and α=90.  In his HC testing, Yoshimine (1995) 
selected certain combinations of b and α such that 
unacceptable non-uniformities will not occur in the soil 
sample. 
    Fig. 2 shows a schematic representation of typical 
values of stress ratios Mp,c and Mp,e obtained for the two 
extreme conditions of TC and TE loading respectively.  

 
 

 
Figure 2.Shematic representation of the peak point of 
UESP in TC and TE tests (Imam et al. 2002) 
 
 
In expressing the stress state at the peak point of the 
UESP for use in sand modeling, it is preferable to use 
sinφp in which φp is the mobilized friction angle, rather 
than the stress ratio Mp (Imam et al 2005). These two 
stress variables are related to each other through the 
following equation: 
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Fig. 3 shows variations of sinφp with void ratio obtained 
from experiments with various combinations of b and α. 
These results indicate that as α increase, sinφp decreases 
and, in most cases, as b increases, sinφp slightly 
decreases.  They are consistent with other studies 
reported by different researchers (e.g. Shibuya and Hight 
1987).  Moreover, Fig. 3 shows that for a certain void 
ratio, values of sinφp obtained from the combinations of b 
and α corresponding to TC and TE constitute the upper 
and lower extremes respectively, and that the lines 
connecting values of sinφp for the same combination of b 
and α have approximately the same slope of variation with 
void ratio.  In the following sections, these variations are 

formulated using the fabric tensor and parameter A 
described briefly before. 

 
 

 
Figure 3. Variations of sinφp with void ratio for various 
combinations of b and α (modified after Imam et al. 2002) 
 
 
3 FORMULATION OF THE VARIATION OF MP 
 
3.1 The Fabric Tensor  Fij  
 
Random distribution of non-spherical particles such as 
those of sand has certain statistical characteristics for the 
package of particles in their spatial arrangement. These 
characteristics are known as material fabric (Brewer 1964; 
Oda 1972). The orientation of non-spherical sand 
particles can be determined by means of a pair of unit 
vectors, n and –n along their major axis of elongation. 
Oda (1999) defined a second order tensor Fij, named the 
fabric tensor as follows: 
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in which N is the number of particles in a specific volume 
and k

in  and k

jn  are components of the kth vector. 

Components of this tensor show the net portion of 
particles that are oriented in a specific direction.  FIJ is 
symmetric and it therefore can be represented by its 
principal values. In most cases, soils are transversely 
isotropic and, as a result, two of the principal values are 
equal to each other. According to Eq. 2, FIJ has a unit 
trace and, for the principal values F1, F2, and F3, since 
F2=F3 we have F1=1-(F2+F3)=1-2F3. This means that for a 
transversely isotropic soil with known direction of 
deposition – which is usually the vertical direction– just 
one scalar quantity is needed to define the fabric tensor. 
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For such a material, FIJ can be written as (Oda and 
Nakayama 1988): 
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In which ∆ is a measurable quantity which represents the 
magnitude of anisotropy of the particles.  It can be shown 
that ∆ is equal to zero when the material is isotropic and 
changes to unity when all particles are oriented in one 
plane (plane of transverse isotropy). This parameter 
depends on sand particle shapes and the process of soil 
deposition. 
 
3.2 Anisotropy state parameter A 
 
Li and Dafalias (2002) used a relatively simple approach 
to account for the effect of the relative orientation of the 
stress and fabric tensors. A scalar-valued state variable A 
was introduced, which is a function of the joint invariants 
of Fij and σij. A normalized modified stress tensor 

ijT
~  was 

defined using the aforementioned fabric tensor as follows: 
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In which the normalized stress tensor ijσ̂  is defined such 
that its mean normal stress equals unity. The tensor 

ijT
~   

is then used for the definition of all stress-related 
variables. The anisotropic state variable is defined as: 
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and Mc and Me are the critical state stress ratios in TC 
and TE respectively.  

     It can be shown that for isotropic materials A=0, and 
for anisotropic materials, depending on the orientation of 
the stress relative to that of the soil fabric, it can be 
negative or positive. The variation of parameter A for 
selected values of ∆=0.2, Mc=1.25 and c=0.75 with b and 
α is shown in Fig. 4.  As shown in Fig.4 parameter A 
decreases with both b and α and it is more sensitive to α 
than to b. Moreover, the TC and TE modes of shearing 
are consistent with the highest and lowest values of A 
respectively.  Considering the observed effects of b and α 
on sinφp discussed before, it can be seen that the 
variation of A is consistent with the variation of sinφp with 
b and α.   
 

 
 
Figure 4.Variation of A with α and b 
 
 
4 MODIFICATION OF THE CONSTITUTIVE MODEL 
 
Modification of the formulation of the original model for the 
calculation of Mp is described here in detail. Details of the 
original model formulation can be found in the Appendix.  
As indicated before, some aspects of the model such as 
the yielding stresses and plastic modulus are affected by 
this stress ratio through the model formulation.  These will 
become a function of anisotropy once Mp is made a 
function of anisotropy.  However, other aspects such as 
the stress ratios at failure and critical state are not 
affected by Mp and are, therefore considered to remain 
unaffected by anisotropy.  The independence of these 
stress ratios of sand anisotropy has also been observed 
in experiments reported by a number of researches (see 
e.g. Yamada and Ishihara 1979; Cambu and Lanier, 
1988) and also assumed in some recent constitutive 
models for sands (e.g. Manzari and Dafalias 1997; Li and 
Dafalias 2002) 
    The stress ratio Mp for any soil state can be obtained 
using Eq. [1] for which the friction angle φp is determined 
from the following equations if loading is in TC and TE: 
 
 

ppcp k ψϕϕ µ −= sinsin ,
                  [8] 

pppep ak −−= ψϕϕ µsinsin ,
   [9] 

 
 
In which φµ is the friction angle at 

p
ψ =0 and, in TC, it is 

approximately equal to the inter-particle friction angle for 
the soil grains. The kp and ap are material parameters and 
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pψ is the state parameter at the peak point of the yield 

surface.  These relationships can be used to calculate the 
stress ratio Mp for TC and TE.  However, in order to 
determine this stress ratio for loading between TC and 
TE, and to account for the effects of inherent anisotropy, 
equations [8] and [9] are replaced by the following 
proposed equation: 
 
 

)A(Aksinsin pppp −ψ−ϕ=ϕ µ                  [10] 
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and Ac and Ae are the anisotropy parameters in TC and 
TE respectively, A is the anisotropy parameter for the 
current state and mode of shearing of the soil, and ap is 
the material parameter used in the original model. 
    In Fig. 5, results calculated using the modified 
formulation are compared with measured values. It 
indicates that the variation of sinφp with b and α can be 
modeled with good accuracy using equation [10]. 
 

 
 
Figure 5. Observed and predicted variations of sinφp with 
b and α using Eq. [10]  
 
 
Using Equation [10] to calculate sinφp for various 
combinations of b and α and, substituting this value into 
equation [1], stress ratio Mp can be calculated for various 
combinations of b and α and used for predicting sand 
behavior subjected to shearing at various combinations of 
b and α. 
 
 
5 PERFORMANCE OF THE MODIFIED MODEL 
 
     Accuracy of the modified model in predicting the 
anisotropic behavior of sands is investigated here by 
comparing model predictions and laboratory results of the 
behavior of Toyoura sand subjected to various loading 
directions as presented by Yoshimine (1996).  

Model parameters used for predicting the behavior of 
Toyoura sand are listed in table 1. The critical state line 
used for Toyoura sand is defined using the equation: 
-0.0063477p3+0.0367p2-0.11991p+0.92548 (p in MPa) as 
suggested by Imam et al. (2005). 
 
 
Table 1. Model parameters for Toyoura sand 
 
Parameter type Parameter name Value 

Peak state 

kp 1.2 

Φµ 20 

ap 0.45 

Stress-dilatancy 

Φcs 30 

kpt 0.75 

apt 0.01 

Plastic stiffness h 1 

Elasticity 
Ga 5000 

ka 8500 

Anisotropy 

Δ 0.2 

c 0.75 

Mc 1.25 

 
 
Figures 6 and 7 compare predicted and observed 
responses of Toyoura sand consolidated to two different 
void ratios and subjected to loading with b=0.0, but with α 
varying from 0 to 45 degrees.  Observed and predicted 
responses show a generally good match. 
Measured and predicted responses of Toyoura sand 
loaded under b=0.25 and α varying from 0 to 30 degrees 
are compared in Figure 8.  The two responses are 
generally similar.  However, observed response at α = 30 
degrees is somewhat softer than the predicted response.  
A reason for such difference might be the possible 
development of localized zones of higher strains in the 
actual test sample which might have led to increased 
softening compared to what would be observed in a 
uniformly straining sample.  The predicted response, 
which is based on an average behavior for a single soil 
element, is not expected to match the behavior of a 
sample with non-uniform straining pattern.   
 
 
6 SUMMARY AND CONCLUSIONS 
 
A previously developed critical state model was extended 
to modeling the behaviour of inherently anisotropic sands, 
using an anisotropy parameter as defined by Li and 
Dafalias (2002).  Comparisons of predicted and observed 
responses of Toyoura sand tested in HC indicated that 
model predictions is generally in good agreement with 
observed behaviour. However, for certain combinations of 
b and α, they have some difference, a possible reason for 
that is the non-uniformities and localized deformations 
that might develop in the real sample compared to the 
uniform straining that is assumed in modeling a single 
element soil.  
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Figure 6. Predicted (right) and observed behavior of Toyoura Sand consolidated to Dr=24-25%, b=0.0 and α=0

o
 to 45

o
. 

 

      

      
 
Figure 7. Predicted (right) and observed behavior of Toyoura Sand consolidated to Dr=30-33%, b=0.0 and α=0

o
 to 45

o
. 
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Figure 8. Predicted (right) and observed behavior of Toyoura Sand consolidated to Dr=24-26%, b=0.25 and α=0

o
 to 30

o
. 
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APPENDIX 
 
The yield surface is defined as:  
 
 

f = (η − α)2 − Mα
2
 ( ) 0p/p1 2

1

c =







−                          [1-a] 

Mα
2 = (5Mp − α)(Mp − α)                                              [2] 

 
 
in which, for triaxial compression (TC) and triaxial 
extension (TE) we have:  

Mp,c = 
c,p

c,p

sin3

sin6

ϕ−

ϕ
                 in TC                          [3a] 

Mp,e = 

e,p

e,p

sin3

sin6

ϕ+

ϕ                 in TE                         [3b] 

and ϕp,c and ϕp,e are the friction angles at the point of 
peak q in TC and TE, respectively, and are obtained 
from: 
 
 
sin ϕp,c = sinϕµ – kp ψ                             in TC          [4-a] 
 
 
sin ϕp,e = sinϕµ – kp ψ – ap                     in TE          [4-b] 
 
 
in which ϕµ is the friction angle corresponding to ψp = 0 
in TC and is typically close to the inter-particle friction 
angle of the sand; kp and ap are material parameters, 
and ψ is the state parameter.  A Mohr-Coulomb type 
failure criterion, expressed in the following form, is 
used: 
 
 
sin ϕf  = sin ϕcs – kf ψ                                                  [5] 
 
 
in which ϕcs is the critical state friction angle and kf is a 
material parameter which is taken to be 0.75 for sand 
loaded in both TC and TE.  Friction angles obtained 
from [6] are converted to equivalent stress ratios at 
failure Mf,c and Mf,e for TC and TE as in [3].  These are 
the maximum stress ratios attainable at the current soil 
state, and may not be equal to the current stress ratio 

η. It is only at critical state (ψ = 0) where the current 

and failure stress ratios coincide and we have η = Mf = 
Mcs.   The flow rule is determined from the following 
relationship: 
 
 

d = 
p

q

p

p

d

d

ε

ε
 = A (Mcs-η)                                                [6] 

 
in which: 
 
 
Ac = 9/(9 – 2MPT,cη + 3MPT,c)                   in  TC         [7a] 
Ae = 9/(9 – 2MPT,eη – 3MPT,e)                   in TE          [7a] 
 
 
and MPT,c and MPT,e, are obtained using the following 
relationships:  
 
 
sinϕPT,c = sinϕcs + kPT ψ                                    for TC  
[8a] 
 
 
sinϕPT,e = sinϕcs + aPT + kPT ψ                      for TE   [8b] 
 
 
Hardening during shearing is determined from: 
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in which h is a non-dimensional material parameter 
related to soil stiffness during shearing, G is the elastic 
shear modulus, and (pf – pc)ini is the initial value of (pf – 
pc) at the end of consolidation and prior to shearing.  
The value of pf   is obtained by substituting the current 
Mf for η in Equation [1].  Elastic moduli are defined as 
follows: 
 
 

G = Gr 
2/1

a
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K = Kr 
2/1

a
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)p/p(
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)e973.2(

+

−
                           [10b] 

 
 
in which Gr and Kr are reference values that depend on 
the units used and may be obtained from the elastic 
moduli corresponding to the atmospheric pressure pa.    
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