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ABSTRACT 
A variant of the Drucker-Prager Cap model is developed to more realistically capture the behaviour of sand under large 
deformation. The initiative of this work comes from the need to develop a user defined constitutive model in ABAQUS 
Explicit v6.7 finite element software. The model has been developed to resolve the existing issues of dilation rates of 
built-in models in ABAQUS. The classic Drucker-Prager model with or without a cap which are widely used in modeling 
of sand can lead to excessive dilation. The control and suppression of dilatancy is essential when the soil undergoes 
very large plastic deformation. The proposed model introduces a dilation rate in accordance with experimental 
correlations based on the Bolton stress dilatancy relationship. A hardening law consistent with the critical state soil 
mechanics concept is also proposed. The evolution of yield surface controls and limits the dilation of the soil. The 
proposed model requires a total of ten input parameters, which can be obtained from conventional laboratory tests. 
The performance of the model has been validated with the triaxial test results under drained conditions. 
 
RÉSUMÉ 
Une variante du modèle de Drucker-Prager Cap est mise au point pour capturer de façon plus réaliste le comportement 
des sables sous d'importantes déformations. L'initiative de ce travail vient de la nécessité d'élaborer un modèle de 
comportement défini par l'utilisateur dans ABAQUS Explicit v6.7. Ce modèle est développé afin de résoudre les 
problèmes existants des taux de dilatation des modèles encastrables. Le modèle classique de Drucker-Prager avec ou 
sans capuchon, qui sont largement utilisés dans l'analyse numérique des sols peut conduire à une dilatation excessive. 
Le contrôle et la suppression de dilatance est essentiel lorsque le sol est soumis à de grandes déformations plastiques. 
Le modèle proposé introduit un taux de dilatation conformément aux corrélations expérimentales basées sur la relation 
contrainte-dilatation de Bolton. Une loi de durcissement compatible avec les concepts de mécanique des sols à l’état 
critique est ajouté. L'évolution des surfaces de rendement contrôle et limite la dilatation du sol. Le modèle constitutif 
proposé est simple à calibrer avec un total de dix paramètres qui peuvent être obtenue à partir de test conventionnels 
en laboratoire. Le modèle est validé avec les résultats des essais triaxiaux en conditions drainées. 
 
 
1 INTRODUCTION 
 
 
Existing soil constitutive models are relatively simplistic 
for use in finite element analyses based on single phase 
explicit formulation used with adaptive meshing. More 
sophisticated models are needed to correctly capture the 
behaviour of soil, for example the seabed response to ice 
gouging where seabed shear strains could be up to 
1000% as shown in Figure 1 (Phillips et al. 2010). 
ABAQUS Explicit v6.7 allows users to develop their own 
material models and enhance the explicit analyses by 
implementation of user defined material subroutine 
VUMAT. This feature in ABAQUS is helpful in problems 
like ice gouging where the built-in models have a number 
of limitations. 

The coupled effects of density and confining pressure 
on soil behaviour have been studied by a number of 
researchers (e.g. Roscoe and Poorooshasb 1963; Been 
and Jefferies 1985; Bolton 1986; Ishihara 1993; and 
Verdugo 1992). One common point is that in each of 
these studies an index was defined to describe the effects 
of initial state of sand on stress-strain behaviour. The 

index is a measure of the distance between initial state 
and ultimate state where the failure occurs. It has been 
shown that these indices better represent the soil state 
and stress-stain behaviour than the relative density (Dr) 
generally used in geotechnical engineering (Cubrinovski 
and Ishihara, 1998). 

 

 
Figure 1. Logarithmic shear strain contours under a 
gouging ice keel 

Log Shear strain(γγγγp) 5-1000% 
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Proper simulation of dilatancy rate is an essential part 
of a constitutive model of granular soil. Vermeer and 
de Borst (1984) reported typical values of dilation angles 
of various soils, which have been widely used as input in 
constitutive models. Bolton (1986) also proposed a 
relationship for the maximum dilation angle based on 
available test data. 

Another critical aspect in modeling of sand behaviour 
is the selection of appropriate yield surface. While the 
Drucker-Prager criterion (Drucker and Prager 1952) is 
frequently used in modeling of sand, one of the major 
limitations in the Drucker-Prager yield surface with an 
associated flow rule is that it results a dilatancy rate that 
is considerably higher than the values observed in reality. 
In addition, because the yield surface is not closed along 
the hydrostatic pressure (p′) axis in p′-q space, the 
prediction may not be realistic in compression. In order 
to overcome these deficiencies, Drucker et al. (1957) 
added a cap for compression yield which could harden or 
softens with plastic strain. 

The objective of this study is to develop a new 
method to control excessive dilation of dense sand using 
a non-associated flow rule. The paper consists of four 
parts. The first part shows the performance of Bolton’s 
(1986) dilatancy relationships comparing with updated 
laboratory test results available in the literature. The 
second part deals with the model formulation. The 
numerical code is used to show the performance of the 
model comparing the results with available test data in 
the third part. Finally, a parametric study has also been 
performed in order to show the effects of some critical 
input parameters. 
 
 
2 DILATANCY RELATION 
 
 
Bolton (1986) proposed the Dilatancy Index (IR) as: 
 

( ) 1ln −′−= pQII DR  [1]
 

where ID is the relative density which can be 
expressed as: 
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where emax and emin are the maximum and minimum 

void ratios, respectively; e is the current void ratio; p′ is 
the mean effective stress in kPa; and Q is a fitting 
parameter. Bolton (1986) showed that Q = 10 gives an 
adequately good fit for triaxial and plane strain test data 
considered in his study. However, Chakraborty and 
Salgado (2010) suggested that in order to achieve more 
realistic results at low pressures Q should be written as: 
 

[kPa] ln6.04.7 pQ ′+=  [3] 

 

Dilatancy rate at peak of stress-strain curve ( p

BD ) can be 

written as (Bolton, 1986): 
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where εv is the volumetric strain and ε1 is the major 

principal strain. The subscript B means that the dilatancy 
rate is based on the Bolton relationship. 

The strain variables in the triaxial space are defined 
as: 
 

31
2εεε +=v  [5] 

( )
31

3

2
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where subscripts 1 and 3 correspond to axial and 

radial directions and subscript v and q are respectively 
the volumetric and deviatoric strain components. 

The total strain consists of elastic and plastic 
components. However, at the peak stress level the elastic 
component of strain is negligible to plastic component 
(Jefferies, 1997). Therefore, neglecting the elastic 
component of strain at the peak and using Eqs [4], [5] 
and [6] the dilatancy rate at the peak (Dp) for triaxial 
stress space can be written as: 
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Jefferies and Been (2006) compiled a large number of 

triaxial test data on various sands available in the 
literature. In this study a total of 203 tests results are 
considered as the required information is available. 
Figure 2 shows a comparison between measured and 
predicted dilatancy rate using Eq. 7. Note that, the value 
of Dp obtained from Eq. 7 is positive. However, in order 
to be consistent with Jefferies and Been (2006), where 
the dilation rate at the peak has been reported as 
minimum value, Dp has been shown with a negative sign 
in Figure 2. The identical solid line is drawn to compare 
measured and predicted dilatancy rates. As shown, Eq. 7 
predicts the dilation rate reasonably well considering the 
fact that there is a wide variation in these tests such as 
specimen preparation, loading, saturation and others. 

Bolton (1986) also proposed a relationship between 
the angles of internal friction at peak stress (φ′max) and at 
critical stress (φ′cr), and dilatancy index (IR) as: 
 

Rcr I3
max

+′=′ φφ  [8] 

 
Figure 3 shows the comparison between the 

measured values (Jefferies and Been, 2006) and 
predictions using Eq. 8. A total of 165 triaxial test results 
are plotted in this figure. A reasonably good comparison 
was also found for angle of internal friction. 
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Figure 2. Dilatancy rate at peak stress 
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Figure 3. Predicted φ′max using Bolton’s dilatancy index 
against measured test data 
 
 
3 MODEL FORMULATION 
 
 
The proposed model includes the three fundamental 
elements as described in Sections 3.1 - 3.3. 
  
3.1 Yield Surface 
 
The yield function is defined using Drucker-Prager Cap 
model, which consists of three surfaces shown in Figure 
4. These surfaces are the shear surface, transition 
surface and a cap. The shear surface defines the region 
where the failure is dominant by shear flow while the cap 
accounts mainly the plastic compaction behaviour. The 
transition surface is implemented in order to avoid 
numerical instability. This surface provides a smooth 

transition from the shear zone to the cap. These three 
surfaces can be defined as: 
 
For shear surface AB (i.e. θγ sinApp a −≤′ ) 

dpqFs −′−= θtan  [9] 
 

On the cap CD (i.e. app ≥′ ) 
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On the transition zone BC (i.e. aa ppAp <′<− θγ sin ) 

( ) ( ) ( )22
cos1 at ppAAqF −′−−−−= γθγ  [11] 

 
where p′ is the mean effective stress; q is deviatoric 
stress; γ is the radius of the transition surface; pa is an 
evolution parameter which controls the size of the yield 
surface; A and B are respectively vertical and horizontal 
radii of the cap; θ is the slope of the shear failure line in 
p′-q space; and d is the cohesion intercept. 

The values of θ and d could be obtained from 
effective strength parameters φ′ and c′. 
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Also: 
 

θtanapdA +=  [14] 

RAB =  [15] 
 

where R is the cap eccentricity parameter 
 

 
Figure 4. Drucker-Prager Cap yield surface 
 
3.2 Plastic Potential Function 
 

In this study, the flow rule is assumed to be 
associated on the cap and non-associated on shear and 
transition surfaces. The following plastic potential 

A 

B 
C 

D 
′ 
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function has been used for the shear and transition 
zones. 
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ε
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where α and β are respectively the vertical and 

horizontal radii of the ellipse of the plastic potential 
function in shear and transition zones and ε is a 
constant. The subscripts st represents that Eq. 16 is 
applicable to both shear and transition zones. 

From some geometric relationships, α and β can be 
found as: 

 
θα tanapd +=  [17] 

apd += θβ tan  [18] 
 

3.3 Hardening Law 
 
The third fundamental element of the model is the 

hardening law which has been defined based on the 
critical state soil mechanics concepts as: 

 

( ) p

qaaa dppHdp ε−= max,  [19] 

( ) p

qdHd εθθθ −= max  [20] 

 
where H is the hardening modulus; pa,max is the 

maximum value of the evolution parameter pa; and θmax 
is the maximum value of θ. In this model, pa,max

 
and θmax 

limit the size of the yield surface resulted from strain 
hardening. As shown later, the value of pa,max

 
and θmax 

are determined based on the dilatancy index (IR) using 
current value of p′ and ID. 

It is to be noted here that Eqs. 19 and 20 present a 
simple hardening law which is in agreement with critical 
state soil mechanics concepts and restricts the size of 
the yield surface to a maximum allowable value based on 
the state of the soil. These equations are functions of 
plastic shear strains. 

Following Jefferies and Been (2006), Eq. 19 can be 
written in a dimensionless form as: 
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For triaxial condition θmax can be expressed in terms 

of φ′max as: 
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As the soil elements are assumed to obey the 

normality rule, the plastic strain increments can be 
calculated as: 
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where  χ is a scalar multiplier and G is the plastic 

potential surface. 

Now substituting p

vdε  and p

qdε  from Eqs. 23 and 24 

into Eq. 7 and then using θmax from Eq. 22 the following 
equation can be obtained. 
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Eq. 25 defines the ratio of evolution parameter to the 

mean stress at the peak state. Note that d=0 for sand. 
 

3.4 Dilation Limit 
 
The Drucker-Prager plastic potential function 

generally results in an excessive amount of dilation in 
shear at relatively low confining pressures. This is 
attributed to the nearly horizontal normal vectors on the 
ellipse of plastic potential function at lower values of p′, 
which results in larger volumetric strain increments and 
thereby higher dilatancy rate. In order to avoid this 
problem a modified plastic potential surface in the shear 
zone is proposed to limit the dilatancy to a specified 
value. In this paper the maximum dilation suggested by 
Bolton (1986) which is presented in Eq. 7 is selected as 
the limiting dilation rate. Therefore, for each plastic 
potential surface in p′ - q space a transition mean 

pressure pD
p

max

can be obtained by substituting p

vdε  and 

p

qdε  from Eqs. 23 and 24 into Eq. 7. 
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 That means the plastic potential function for mean 

stress less than pD
p

max

 is a straight line (Figure 4). 

However, the plastic potential function for a mean stress 
between pD

p
max

 and pa remains the same as Eq. 16.  

During shearing the value of pD
p

max

 is changing 

because IR is a function of current state of stress and 
density. Therefore, the shape of the plastic potential 
function should be updated with progress of shearing. 
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Figure 5. Two segmented plastic potential function in 
shear zone 
 
 
4 MODEL VALIDATION 
 
 
The proposed model is used to simulate some triaxial 
test results of sand samples under different loading and 
initial conditions (Jefferies and Been, 2006). A total of 10 
input parameters are required for this model, which are 
module of elasticity E, Poisson’s ratio ν, cohesion 
intercept d, the slope of the failure line θcr, evolution 
parameter pa, minimum void ratio emin, maximum void 
ratio emax, void ratio e, hardening modulus H and 
eccentricity parameter R. The parameters used in these 
analyses are listed in Table 1. The value of θcr is 
obtained from the plot of respective test data in p′ - q 
space. Since the analysis has been performed only for 
sand, d = 0 is used. The elastic modulus E, hardening 
modulus H and cap eccentricity R have been estimated 
based on density and confining stress of the specimen. 
The value of Poisson’s ratio ν = 0.2 is adopted. 

Figures 6 and 7 show the simulation of dense Erksak 
sand and in Figures 8 and 9 the response of loose 
Erksak sand is predicted using the constitutive model. 
Figure 10 shows the simulation results of triaxial test of 
dense Ticinio sand. 

As shown, the proposed model reasonably predicts 
the test results. 

 
Table 1. Model input parameters 

 
Erksak 
330/7 
(Fig.5) 

Erksak 
330/7 
(Fig.6) 

Erksak 
330/7 
(Fig.7) 

Erksak 
330/7 
(Fig.8) 

Ticinio 
530/0 
(Fig.9) 

E(kPa) 2.07x105 2.0x105 1.07x105 5.75x104 8.0 x105 
ν 0.2 0.2 0.2 0.2 0.33 
θcr (deg) 52 53 49 49 54 
emax 0.747 0.747 0.747 0.747 0.89 
emin 0.521 0.521 0.521 0.521 0.6 
e 0.59 0.667 .775 0.82 0.66 
H 300 200 55 75 150 
R 2.5 2.5 1.2 1.2 3 
p0 (kPa) 130 60 1000 200 100 
The value of pa is derived according to p0, R and θ 

 

 

0

100

200

300

400

500

0 5 10 15 20

q
 (
k

P
a
)

εεεε1 (%)

Test Data

Analysis

 
 

-1

1

3

5

7

0 5 10 15 20

εε εε
v
(%

)
εεεε 1 (%)

Test Data

Analysis

 
Figure 6. Simulation of drained triaxial test of a dense 
sample of sand (Erksak 330/7, e0 = 0.59, p0 = 130 kPa) 
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Figure 7. Simulation of drained triaxial test of a dense 
sample of sand (Erksak 330/7, e0 = 0.677, p0 = 60 kPa) 
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Figure 8. Simulation of drained triaxial test of a loose 
sample of sand (Erksak 330/7, e0 = 0. 775, p0 = 1000 
kPa) 
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Figure 9. Simulation of drained triaxial test of a loose 
sample of sand (Erksak 330/7, e0 = 0.82, p0 = 200 kPa) 
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Figure 10. Simulation of drained triaxial test of a dense 
sample of sand (Ticinio 530/0, e0 = 0.66, p0 = 100 kPa) 

 
5 PARAMETERIC STUDY 

 
In this section the model sensitivity to the variation of 
input parameters is investigated. The parameters used in 
baseline analysis are shown in Table 2. The parametric 
study is performed for four critical parameters (E, θ, Dr 
and H) which have significant influence on model 
performance. The parametric study has been carried out 
by varying one parameter at a time while keeping all 
other parameters at the same value as that of the 
baseline analysis (Table 2). Figures 11 to 14 show the 
predicted results for various conditions. One line in these 
figures show the baseline analysis while the other two 
lines show the effects of corresponding input parameters. 
 
Table 2. Model parameters for sensitivity analysis 
E 2.07x105 kPa Dr 60% 
ν 0.2 H 150 
d 0 R 2.5 
θcr 52° e0 0.58 
 
From εq vs. εv plots it is realized that the predicted 
dilatancy rate (i.e. slope of the curve) using the proposed 

model is zero at high strain level (e.g. %50>p

qε ). This 

feature is important in large deformation problems such 
as ice gouging where shear strains could be even more 
than 1000% as shown in Figure 1. 
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Figure 11. Schematic view of the model response with 
variation of Elastic Modulus 
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Figure 12. Schematic view of the model response with 
variation of angle of internal friction in pʹ-q space 
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Figure 13. Schematic view of the model response with 
variation of relative density 
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Figure 14. Schematic view of the model response with 
variation of hardening modulus 
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6 CONCLUSION 
 
 
In this paper the Drucker-Prager Cap model was 
improved to capture different responses of sands 
depending on the initial density and stress level. The 
result is a simple model with 10 easy to determine 
parameters that can relatively accurately predicts the 
strain-stress behaviour of the soils. The proposed 
constitutive model can address the issue of excessive 
dilation of which the Drucker-Prager Cap model suffers. 
The excessive dilation is superseded by more realistic 
dilatancy rates through the application of dilatancy index 
proposed by Bolton (1986). The shear hardening law of 
the model which is based on soil state and a maximum 
allowable dilation enables the model to predict some of 
the dense sand behaviours such as softening. 

In this study the proposed model has been validated 
for drained behaviour of loose to dense sand under 
triaxial condition.  

The model has been implemented in ABAQUS FE 
software using a user defined subroutine VUMAT in order 
to simulate large strain behaviour of sand during ice 
gouging event. Through the application of volume 
constraint method, the model was also extended to 
predict the undrained behaviour of soils. The research is 
in progress for undrained condition. 
 
REFERENCES 
 
Been, K., & Jefferies, M. G. (1985). A state parameter for 

sands. Geotechnique , 35 (2), 99-112. 
Bolton, M. D. (1986). The strength and dilatancy of 

sands. Geotechnique , 36 (1), 65-78. 
Chakraborty, T., & Salgado, R. (2010). Dilatancy and 

Shear Strength of Sand at Low Confining Pressures. 
J. Geotech. and Geoenvir. Engrg. , 136 (3), 527-532. 

Cubrinovski, M., & Ishihara, K. (1998). Modelling of sand 
behaviour based on state concept. Soils and 
Foundations , 38 (2), 115-127. 

Drucker, D. C., & Prager, W. (1952). Soil mechanics and 
plastic analysis on limit design. Q. Appl. Math , 10, 
157-165. 

Drucker, D. C., Gibson, R. E., & Henkel, D. J. (1957). 
Soil mechanics and work hardening theories of 
plasticity. J. Soil Mech. Fdn Engng Div. Am. Sot. Civ. 
, 122, 338-346. 

Ishihara, K. (1993). Liquefaction and flow failure during 
earthquakes. Géotechnique , 43 (3), 351-415. 

Jefferies, M. G. (1997). Plastic work and isotropic 
softening in unloading. Geotechnique , 47 (5), 1037-
1042. 

Jefferies, M., & Been, K. (2006). Soil Liquefaction. Taylor 
& Francis. 

Phillips, R., Barrett, J. & Al-Showaiter. A. (2010)  Ice 
keel-seabed interaction: numerical modelling 
validation 
 Offshore Technology Conference, Paper OTC 20696  

Roscoe, K. H., & Poorooshasb, H. B. (1963). A 
fundamental principle of similarity in model tests for 
earth pressure problems. 2nd Asian Conference on 
Soil Mechanics, (pp. 134-140). 

Verdugo, R. (1992). Characterization of sandy soil 
behavior under large deformation. Ph.D. thesis, 
University of Tokyo, Tokyo, Japan. 

Vermeer, P. A., & de Borst, R. (1984). Non-associated 
plasticity for soils, concrete and rock. Heron, 29, No. 
3.  

295


