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ABSTRACT 
This paper focuses on the analysis of tunnelling problems in layered rocks using the Cosserat continuum approach. In 
the Cosserat continuum method, the interfaces between rock layers need not be explicitly modelled. Instead, the 
internal characteristic length, i.e., the layer thickness and the interaction condition between the layers are incorporated 
in the governing equations. Two tunnelling problems, an extruded tunnel excavated in layered rock and a circular 
tunnel with out-of-plane layers which requires a full 3D analysis, are solved using the Cosserat continuum finite 
element method. Results of the Cosserat approach are verified against alternative approaches. The paper 
demonstrates that Cosserat continuum approach can provide a mechanically-based yet efficient solution for the 
analysis of engineering scale discrete problems.   
 
RÉSUMÉ 
Cet article porte sur l'analyse des problèmes associés aux tunnels aménagés dans des roches stratifiées en utilisant 
l'approche du continuum de Cosserat. Dans la méthode du continuum de Cosserat, les interfaces entre les couches de 
roche n’ont pas besoin d’être modélisées de façon explicite. Au lieu de cela, la longueur interne caractéristique, c’est-à-
dire l'épaisseur de la couche et les conditions d'interaction entre les couches est incorporée dans les équations 
constitutives. Deux problèmes sont résolus à l'aide de la méthode des éléments finis et de l’approche du continuum de 
Cosserat, soit un tunnel extrudé et creusé dans une roche stratifiée et un tunnel circulaire ayant des couches obliques 
par rapport au tunnel et qui exigent une analyse complète en 3D. Les résultats obtenus par l'approche du continuum de 
Cosserat sont comparés à ceux obtenus par des approches alternatives. Cet article montre comment l'approche du 
continuum de Cosserat peut apporter une solution efficace basée sur la mécanique des matériaux pour l'analyse des 
problèmes discrets de grande échelle dans laquelle les effets d'échelle sont importants. 
 
 
 
1 INTRODUCTION 
 
Heterogeneities in geomaterials are prevalent in various 
forms such as fractures, joints, bedding planes, voids, 
and material boundaries. Such features pose great 
challenges to the understanding and predicting the 
complex range of behaviour of geomaterials. Also, they 
make numerical simulation of this class of materials 
challenging.  

The presence of joints greatly affects the stress 
distribution and deformation of rock engineering 
problems, and gives rise to various failure mechanisms 
due to scale effects. For example, in layered rocks, the 
impact of joints on tunnelling becomes particularly 
significant when layer thickness is comparable to the 
dimensions of the excavation.  

The mechanisms arising due to rock microstructure 
(layers) depend on the strength and mechanical condition 
between the layers (friction, sliding, and interface 
stiffness), joint orientation, and spacing. Effects of joints 
on the response of rock masses have long been 
represented using smeared (homogenous) concepts. For 
example, many strength criteria have been proposed that 
reflect the interconnection between presence of 
discontinuous surfaces with strength deterioration and 

anisotropic behaviour. These constitutive models tend to 
reflect large-scale effects of joint density and the 
condition of joint surfaces defined by their material 
parameters. Clearly, such approaches are incapable of 
predicting different mechanisms associated with internal 
length scales. 

Fortunately, rock mechanics has reached a point 
where it is well accepted that scale effects are an 
important aspect of jointed rock mass behaviour. In other 
words, jointed rock masses cannot be treated as 
standard continua. As a result, numerical methods that 
simulate the discontinuities seem to be essential.  

Three approaches are commonly used to model the 
discontinuous behaviour of jointed rock masses. These 
are:  

1. Discrete element techniques, and their 
combined discrete-continuum derivatives, 

2. Combined continuum-interface methods, which 
are continuum methods with special 
joint/interface elements that model 
discontinuous displacement behaviour, and  

3. Cosserat continuum methods. 
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Choosing between continuum and discontinuum 
methods for modelling jointed rock masses has been the 
subject of much debate in recent years. Due to their 
discrete nature, discontinuous models seem to be the 
natural choice for analysis. Discrete element techniques 
are based on a fully dynamic formulation and require 
algorithms for updating contacting pairs and calculating 
contact forces. These aspects considerably affect the 
solution time. Also, explicit definition of discontinuous 
interfaces complicates creating model geometry.  

Continuum-based methods such as the Finite 
Element Method (FEM) and the Finite Difference Method 
(FDM) are based on solid theoretical foundations and 
enjoy a long history of development. Nevertheless, they 
suffer from some inherent deficiencies due to the very 
nature of a continuous description of media. Joint 
elements are devised specially to reflect the discontinuity 
in displacement at the interfaces of two layers. Combined 
continuum-interface techniques have been shown to be 
capable of capturing some fundamental effects of 
discontinuities on the behaviour of discrete media 
including anisotropy, strength behaviour, and scale 
effects. Due to the assumed kinematics of a joint element 
and the fixed connectivity between its nodes, the most 
appropriate use of a joint element is in the modeling of 
problems where pairing between two contacting objects 
does not change (Riahi et al. 2010). Compared to the 
discrete element techniques, the combined continuum-
joint element approach provides a much more efficient 
numerical tool in the solution range where displacements 
of discrete blocks is insignificant. However, they also 
suffer from deficiencies shared by the discrete element 
techniques in defining complex input geometries. The 
problems associated with model geometry can become 
insurmountable in the three-dimensional modelling of 
jointed rock masses with intersecting sets of joints when 
the resulting blocks need to be further discretized into a 
mesh or grid.  

     In order to harness the advantages of fully 
continuum methods we need to resort to advanced 
continuum theories such as micropolar continuum 
theories. These theories enhance the mechanics of the 
classical continuum by introducing intrinsic length scales 
into the governing equations. The Cosserat continuum is 
considered as a subclass of generalized continua. It 
assumes additional rotational degrees of freedom for 
each material point. As a result, in addition to gradient of 
displacement (strains), gradients of rotations (curvatures) 
also appear in the governing equations (Eringen, 1999; 
Eringen, 2002; Forest, 2005).  

Recent advances in the finite element formulation of 
the Cosserat continuum framework for analysis of 
layered rocks (Mühlhaus (1993; 1995), Adhikary et al. 
(1997; 1999; 2007), Riahi et al. (2008; 2009)) are 
testament to the capabilities of enhanced continuum 
methods in modelling complex responses of 
geomaterials. These works show that the Cosserat 
continuum method is capable of predicting some 
fundamental behaviour arising from the presence of 
discontinuous surfaces including anisotropy, complex 
strength response due to failure of joints or intact rock, 

and mechanisms controlled by internal lengths such as 
bending and buckling of rock layers. 
 
2 COSSERAT CONTINUUM 
 
Perhaps the most natural way of enhancing the classical 
continuum representation is to consider rotational 
degrees of freedom for each material point in addition to 
the translational degrees of freedom. The first rigorous 
formulation of the idea of a material body enhanced with 
independent rotational degrees of freedom dates back to 
the seminal work of the Cosserat brothers (Cosserat and 
Cosserat, 1909).  

The basic kinematic variables of Cosserat theory are 
the displacements, the first-order displacement gradients 
(normal and shear stains), the microstructural rotations, 
and the rotation gradients (curvatures).  

In Cosserat theory, in addition to the stress-strain 
work conjugate pair, micromoment-curvature is another 
kinetic-kinematic work conjugate pair which is introduced 
into the governing equations. A direct consequence of 
introducing the micromoment-curvature work conjugate 
pair is to relax the stress tensor symmetry. The resulting 
differences in the shear components of the stress tensor 
are then equilibrated by micromoments.  

The appealing aspect of Cosserat continuum theory is 
that the additional constitutive relations between 
micromoments and curvatures incorporate the effects of 
material microstructure. As a result, Cosserat continuum 
theory can capture scale effects and provides a 
mechanically enhanced yet homogeneous description of 
materials with microstructure. For example, in the case 
of layered media, the bending stiffness of individual 
layers is incorporated into the constitutive equations, 
distinguishing the model from conventional treatments. 
 
 
3 GOVERNING EQUATIONS, MICROPOLAR 

STRESS AND MICROPOLAR COUPLE STRESS 
 
Cosserat theory assumes that micromoments exist at 
each point of the continuum. In Cosserat theory, 
equilibrium of forces and moments are expressed in the 
following form1 (Truesdell and Toupin 1960): 

 

,
0

ij i j
bσ + = ,                                                                                                                 

[1]     

,
0

k kj j kij ij
m eµ σ++ = , [2]                                                                                                                             

 
where b is the body force, m is the body couple moment, 
and σσσσ and µµµµ are the Cosserat stress and Cosserat couple 
stress, or moment stress, respectively. The stress tensor 
σσσσ is analogous to the Cauchy stress of the classical 
continuum. Also, the stress vector or stress traction and 

                                                        
1 Note: Within this text bold notation represents vector or tensor 
quantities; single sub-index refers to components of vectors and 
double sub-indices denote components of second rank tensors or 
matrices. 
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the couple stress vector or moment traction are defined 
by 
 

σ = ⋅t σ n  and 
m

= ⋅t µ n ,                                                                                         [3]                    

 
where n is the normal to the surface. 

    Fig. 1 represents the stress and couple stress 
measures for a 3D representative volume. The first 
subscript of the stress tensor refers to the direction of the 
surface normal of the surface on which the stress acts. 
The second subscript of the stress refers to the direction 
that the stress acts. The first subscript of the couple 
stress (or moment stress) refers to the axis about which 
it causes rotation, while the second subscript denotes the 
surface on which the moment stress acts. The notation 
adopted for stress tensor components is similar to the 
standard notation used in classical continuum theory; 
however, it is different from the notation of some of the 
previous works on Cosserat theory referred in this paper 
(Mühlhaus, 1993; Adhikary and Dyskin, 2007). The 
notation adopted for couple stress components is 
compatible with most literature on Cosserat theory; 
however, it differs from the ordinary notation used in 
plate theory, where the moment subscript refers to the 
stress components by which the moments are produced 

(i.g., 
2

2

h /

x xx z
h /

M zdσ
+

−
= ∫  (Szilard 2004). 

    In the absence of body moment and when couple 
stress terms are self-equilibrated, the condition of 
symmetry of the Cauchy stress and its work conjugate 
strain measure is retrieved, and the Cosserat continuum 
reduces to the classical continuum. 

 
 

 
Figure 1. 3D representation of stress and couple stress 
measures. 
 
3.1 Cosserat Rotations 
 
Compared to a classical continuum, an enhanced or 
Cosserat continuum is obtained by adding rotational 
degrees of freedom to each point of the continuum. 
Cosserat rotation is defined as the independent rotation 
of a rigid triad attached to each material point which 
rotates independently with respect to the material triad. In 
a 2D framework, the Cosserat rotation has one 
component about the out-of-plane direction. In a three-
dimensional framework, however, the Cosserat rotation 
has three independent components about axes of the 
orthogonal coordinate system. The Cosserat rotation is 
represented in the matrix form by 

 

 c
R

3 2

3 1

2 1

1

1

1

θ θ

θ θ

θ θ

 −
 

= − 
 − 

. 

     
[4] 

 
For further details on the mathematical description of 

the Cosserat continuum in a general (large deformation) 
framework, refer to (Steinmann 1994). 
 
3.2 Cosserat Strain 
 
Using the principle of virtual work, the Cosserat strain 
measure γγγγ, which is the work conjugate to σσσσ, is defined in 
the following form:  

 

,ij j i
uγ = −

ijk k
ε θ   ,                                                                                                                             [5] 

 

where 
ijk

ε is the permutation symbol. 

 
3.3 Cosserat Curvature  
 
In a continuum with microstructure, in addition to the 
rotation of the rigid triad with respect to the material 
(reference) triad, which is defined as the Cosserat 
rotation, the variation in the rotations of adjacent triads is 
a second measure of deformation referred to as 
curvature. The expression for the second-order curvature 
tensor in a three-dimensional framework becomes 

 

11 12 13 1,1 1,2 1,3

21 22 23 2,1 2,2 2,3

31 32 33 3,1 3,2 3,3

κ κ κ θ θ θ

κ κ κ θ θ θ

κ κ κ θ θ θ

− − −  
  

= = − − −  
   − − −   

κ  or 

,i j

c

ij
κ θ= − .                                                             

[6]                                                                                  

 
 
4  FINITE ELEMENT FORMULATION 
 
4.1  Nodal and internal variables 
 
In the FEM formulation of a Cosserat continuum, each 
node N is associated with three displacement and three 
rotational degrees of freedom. The vector of nodal 
degrees of freedom is defined as 

 

1 2 3 1 2 3
[ ]u u u θ θ θ=  U= u   θ  .          [7]          

 
Using a notation similar to Voigt notation, the second-

order strain and curvature tensors can be expressed in 
the following vector form: 

 

γ ==== 11 22 33 23 32 13 31 12 21
[ ]γ γ γ γ γ γ γ γ γ , [8] 

====κκκκ [ ]11 22 33 23 32 13 31 12 21
κ κ κ κ κ κ κ κ κ . 

22
σ
 

33
σ
 

32σ
 

13
σ
 

12
σ
 

23
σ

 

21
σ
 

31
σ
 

11
σ
 

22
µ

 

33
µ

 

23
µ

 

13
µ

 

21
µ

 

32
µ

 

12
µ

 

31
µ

 

11
µ
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Finally, using FEM discretization technique with the 

interpolation function, φ , the strain and curvature field 

can be interpolated with respect nodal values of 
N

u  and 

N
θ  through 

 

N

N

N

uγ
B

θκ

  
=   

   
.                                                                                                                  

[9]                                                                                             

 

The operator 
N

B  has a block structure and is 

expressed in the following form:  
 

[ ]
N1 N 2

N

N39 3

B B
B

0 B
×

 
=  
 

,                                                                                        
[10]                  

with 
                                                  

,1 ,3 ,2

1 ,2 ,3 ,1

,3 ,2 ,1

0 0 0 0 0 0

0 0 0 0 0 0 ,

0 0 0 0 0 0

T

N N N

N N N N

N N N

φ φ φ

φ φ φ

φ φ φ

 
 

=  
 
 

B

 

[11]                                                                                                         

2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

B

φ φ

φ φ

φ φ

− 
 

= − 
 − 

T

N N

N N N

N N

, 

 and 

1 3 2

3 2 3 1

3 2 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T

N , N , N ,

N N , N , N ,

N , N , N ,

φ φ φ

φ φ φ

φ φ φ

 
 

= − 
 
 

B ,                                                                                  

where 
N

φ  is the shape function for the N
th node and is 

used for interpolation of both the displacement field and 
the rotation field. 

 
4.2 Material stiffness matrix 
 
Similar to the approach adopted in the derivation of the 
finite element formulation of the classical continuum, the 
FEM Cosserat formulation can be obtained by applying 
the principle of virtual work. 

The material stiffness matrix is expressed in the 
following form: 

 
mat T

NM N M
K B DB= ,                                                                             [12]  

 
where B  is defined by Equations (10) and (11), and D  
is a block diagonal matrix which relates the stress and 
couple stress measures to their work conjugate 
measures, strains and curvatures, respectively, through 

the appropriate constitutive law D =[
1

D ,
2

D ]. 

 

4.3 Constitutive Equations   

 

Cosserat continuum theory provides an enhanced 
mathematical description of the mechanics of a 
deformable body by introducing higher-order kinetic and 
kinematic variables. The appealing aspect of the 
Cosserat theory is that these kinetic and kinematic 
variables can be linked to the physical behaviour of 
materials with microstructure (particulate, blocky, or 
layered material) by mechanically-based approaches. 
The additional Cosserat parameters should be 
determined based on the mechanical response of a 
material with a particular microstructure. In the case of a 
layered material, the bending stiffness of the individual 
layers plays a significant role in the overall response of 
the material. Constitutive equations for the particulate 
(Mühlhaus and Vardoulakis 1987), layered and blocky 
(Mühlhaus 1993 and 1995) materials in a two-
dimensional framework have been widely discussed. The 
following constitutive relations are proposed for layered 
materials in a three-dimensional framework (Riahi 2008, 
and Riahi and Curran 2009),   

 

3 6

1

6 3

[0]

[0]

n

G

A
D

A

×

×

 
=  
 

, 
11 12 13

21 22 23

31 32 33

An

A A A

A A A

A A A

 
 =  
  

, 

22 11

11 11

22 11

11 11

11 11

11 11

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

A
G

G G

G G

G G

G G

G G

G G

 
 
 
 

=  
 
 
 
 

, 

 

  [13]                                                                                                                             

 

[ ]

[ ] [ ]

[ ]

[ ]

2 5

2 2 7 2

2 5 2 5 5

2 7

(1 ) 0
0

0 (1 ) 0

0 0

0

D

ν

ν

ν

ν

×

× ×

× ×

×

 −  
   −   
  =   
  
  
   

B

B

B B

B B

, 

   

[14]                                                                                                                             

and 
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( )
11 22 22

2

2

1
1

(1 / )n

E
A A

E hk

ν ν
ν

ν

= =
+

− −
− +

, 

33

(1 )

(1 )
(1 )(1 2 )

( / )n

E
A

E

E hk

ν

υ
υ υ

−
=

−
+ − −

,     

( )( ) ( )12 21
1 1 2 1 /

n

A
E

A
E hk

ν

ν ν ν
= =

+ − + −
, 

( )( )
( ) ( )( )( )

13 31 23 32

2

1

1 2 1

n

n n

A A A A

E E hk v

v hk v v E hk

ν

= = = =

+ −

− − + +

 

2

11

s

Ghk
G

G hk
=

+
, 

22 11
G G G= + ,  

2

11

2

11

( )
12(1 )

Eh G G
B

G Gυ

−
=

− +
.                   

 [15] 

 
In the above relations, E , G  and υ  correspond to 

Young’s modulus, shear modulus, and Poisson’s ratio, 
respectively, of the intact material comprising the layers. 

h  is the layer thickness, and 
n

k  and 
s

k  are the normal 

and shear stiffness of the layer interface. 
Finally, it should be noted that the above constitutive 

equations are based on the mechanical considerations of 
a plate component (Szilard 2004). For a thorough 
treatment of FEM formulation and constitutive equations 
refer to Riahi (2008), and Riahi et al. (2009). Here only 
the constitutive relations are briefly included to facilitate 
interpretation of results. 
 
5 ANALYSIS OF TUNNELS IN LAYERED ROCK 
 
In this section, the FEM Cosserat model is used to 
analyse tunnel excavations in layered rock. The results 
predicted by the FEM Cosserat model are compared to 
those predicted by other numerical methods using 
commercially available software packages. 

 
5.1 Analysis of excavation with in-plane layers 
 
This example concerns analysis of an excavation in 
layered rock. The layers are parallel to the tunnel axis. 

The primary purpose of this example is to investigate 
how layers and the subsequent induced anisotropy affect 
the elastic and elasto-plastic response of excavations. 
For various anisotropy orientations (dip angles from 0 
(horizontal joints) to 90 deg. (vertical joints)), the elastic 
and elasto-plastic response of the problem is studied. 
The results predicted by the FEM Cosserat model are 
verified against those predicted by Phase2 . In Phase2 

layers are explicitly modeled using joint elements 
(Rocscience, 2005). 

The geometry, boundary conditions and mesh 
discretization for the FEM Cosserat solution of this 
problem are shown in Figure 2. For all four input models 
with different joint orientations (presented in Figure 3), 

the FEM mesh used in the Cosserat solution remains 
unchanged. The top boundary is subjected to a uniform 
pressure of 100 MPa. All other boundaries are fixed. In 
the elasto-plastic solution the load was applied in 10 
increments. In order to compare the results with those 
predicted by Phase2

, in the 3D Cosserat model the 
displacements associated with the out-of-plane direction 
(uy) and the Cosserat rotation around the x axis (θx) are 
constrained. As a result, the full 3D model behaves 
similarly to a 2D plane strain problem, and therefore it is 
justified to use one element in the out-of-plane direction. 

The intact rock is modelled as an isotropic Mohr-
Coulomb material with a Young’s modulus of 17.8 GPa, 
Poisson’s ratio of 0.25, friction coefficient of 33.5 deg., 
dilation angle of 16.72 deg., cohesion of 10.28 MPa, and 
tensile strength of 0.5 MPa. The joints are spaced 2.5 m 
apart and exhibit a Mohr-Coulomb failure behaviour with 
a friction coefficient of 30 deg., dilation angle of 30 deg., 
and cohesion of 0.5 MPa, with no tensile strength.  

For each input model, the elastic response is 
investigated for two cases: i) kn=20 GPa/m and ks=200 
MPa/m, and ii) kn/ E=1e10 and ks=200 MPa/m. Also, 
using the FEM ubiquitous joint model, it is investigated 
how neglecting the layer thickness would affect the 
results. The ubiquitous joint model is a limiting case of 
the Cosserat model in which the elastic and elasto-plastic 
properties of the material are modified to take into 
account the orientation and mechanical response of 
joints; however, joint spacing or bending stiffness of the 
layers is disregarded (B=0).  

Figure 4 shows the displacement contours predicted 
by the Cosserat model and Phase2 model.  

 

 

         

Figure 2. Geometry, mesh discretization, and boundary 
conditions for the FEM Cosserat solution of a 2D-
extruded tunnel excavated in layered rock. 
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Figure 3. Geometry and joint orientation and spacing for 
the 2D-extruded tunnel excavated in layered rock. 
 

 

 

 

Figure 4. Contours of total elasto-plastic displacement 
predicted by (a) FEM Cosserat model, and (b) FEM 

explicit joint model, for joints oriented at 60
o  with respect 

to a horizontal plane. 
Figure 5 shows the displacements at the centre of the 

tunnel roof predicted by the Cosserat model, Phase2 
model with explicit representation of the joints, and the 
ubiquitous joint model. For details on the formulation of 
Cosserat plasticity refer to Riahi and Curran (2008). 

Comparison of the results show that the Cosserat 
model is capable of predicting both magnitudes and 
patterns of displacement correctly.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90

Joint orinetation 

T
o

ta
l 

d
is

p
la

c
e
m

e
n

t 
(m

)

FEM Cosserat model

FEM explicit joint model

FEM Cosserat model B=0
(ubiquitous joint)

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90

Joint orinetation 

T
o

ta
l 
d

is
p

la
c

e
m

e
n
t 

(m
)

FEM Cosserat model

FEM explicit joint model

FEM Cosserat model with B=0
(ubiquitous joint)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90

Joint orientation

T
o

ta
l 

d
is

p
la

c
e
m

e
n

t(
m

)

FEM Cosserat model

Explicit joint model

FEM Cosserat model B=0
(ubiquitous joint)

 
 
Figure 5. (a) Total elastic displacement at the center of 
the tunnel roof for joints with kn=20000 MPa/m and 
ks=200 MPa/m; (b) Total elastic displacement at the 
center of the tunnel roof for joints with kn/E =1e10 and 
ks=200 MPa/m; (c) Total elasto-plastic displacement at 
the center of the tunnel roof for joints with kn=20000 
MPa/m and with ks=200 MPa/m. 

 
5.2 Analysis of excavation with out-of-plane layers 
 
This example investigates the elastic and elasto-plastic 
response of a circular hole, with a radius of 3m, 
excavated in a layered rock mass. The layers are dipping 
at an angle varying from 0 deg. to 90 deg. with respect to 
the tunnel axis. Figures 6 and 7 show the geometry, 
boundary conditions, and the joint orientation and 
spacing for this problem. The length of the extrusion is 
60 m and a distributed load with a magnitude of 100 
MPa/m is applied over a width of 9 m on the top surface. 
Due to symmetry, in the FEM Cosserat model, half of the 
problem is simulated using 2430 brick elements (20-
noded). The intact material is an isotropic rock with 
Young’s modulus of 20 GPa and Poisson’s ratio of 0.3. 
The intact material and the joints exhibit a Mohr-Coulomb 
shear failure along with a tension-cut-off. The elasto-
plastic material parameters for the intact rock and the 
joints are presented in Table 1.  

The results predicted by the 3D FEM Cosserat model 
are compared to those predicted by the discrete element 
technique using 3DEC (Itasca) with deformable blocks.  

Figures 8 and 9 show the contours of total 
displacement predicted by the FEM Cosserat model and 
3DEC, for layers dipping at 30 deg. and 60 deg. with 
respect to the tunnel axis. 

Figure 10 shows values of maximum displacement at 
the tunnel roof for a number of layer orientations. Two 
different values of layer thickness are considered in this 
example: h=1.5 m and h=3 m. Also, the error of the 
solution predicted by the ubiquitous joint model is 
investigated by reducing bending stiffness of the layers, 
B, to zero. As previously discussed, the conventional 
ubiquitous joint model is a limit case of the Cosserat 

(a) 

(b) 

(a) 

(b) 

(c) 
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model in which bending stiffness of the layers is 
disregarded.  

Comparison of the results presented in Figures 8-10 
shows that the results predicted by the Cosserat model 
are in good agreement with those predicted by the 
discrete element approach.  

 
 

 
 
 

Figure 6. Geometry, boundary conditions, and mesh 
discretization of the FEM Cosserat model for Example 2; 
element type: 20-noded brick; number of elements: 2420, 
number of elements in out-of plane direction: 20, number 
of FEM nodes:48696,  number of DOF in 3D: 11565. 
 

 

  

  
 

Figure 7. 3DEC model for joints dipping (a) 0
o , (b) 30

o , 

(c) 60
o , and (d) 90

o . 

 
 

 
 

Figure 8. Contours of elasto-plastic displacement for 

layers dipping at (a) 30
o ,(b) 60

o predicted by the FEM 
Cosserat solution joints. 

 

 
 

 

  
 

Figure 9. Contours of total elasto-plastic displacement for 

layers dipping at (a) 30
o , (b) 60

o predicted by 3DEC. 
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Figure 10. Maximum displacement at the tunnel roof 
versus joint orientation (a) elastic model (b) elasto-plastic 
model. 
Table 1. Strength properties of the material with out-of 
plane layers. 
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6 CONCLUDING REMARKS 
 
Computational techniques for modelling jointed rock 
problems have evolved from a continuous notion to a 
discontinuous one in recent years. As numerical models 
evolve, they provide better insight into the complex 
behaviour of geomaterials. They also offer more reliable 
prediction tools for design engineers.  

Rock masses, in general, exhibit a wide range of 
behaviour associated with different mechanisms. These 
mechanisms can be in form of slip failure on the joint 
planes or shear failure of the intact rock, fracture 
propagation, instability failures such as buckling, and 
kinematic failures such as detachment of blocks.  

Models that intend to capture the whole range of 
behaviour require adopting a combined discrete-
continuum approach or micromechanical approaches 
such as the synthetic rock mass technique. Clearly, the 
resources required for such analyses make them 
impractical for most engineering scale geotechnical 
problems. A pragmatic solution to rock mechanics 
problems requires that the critical features and the 
dominant responses be captured in a timely manner 
using reasonable computational resources. 

There are two aspects that we believe are paramount 
to the successful application of these techniques in 
research and practice: 

1. Numerical models should account for the 
characteristic physics and micromechanics of the 
problem through proper mechanical representation of 
materials. Such approaches eliminate the need for 
complicated empirical constitutive models and 
associated parametric adjustment techniques.  
2. Numerical models must be specific purpose. In 
other words, the paramount aspects of the behaviour 
and the range of response should guide the 
development and application of a numerical method.  
The first aspect noted above addresses the growing 

need for more physically-based models. The second is 
due to the need for solutions that can overcome practical 
problems associated with defining input geometry, 
required solution time, and computational resources.  

The dimensions of typical excavation problems are 
such that explicit definition of material microstructures 
through interface elements or discrete element 
techniques makes creating the input geometry 
challenging and requires high computational resources. 
The complexities become even more restrictive in three- 
dimensional analyses, stochastical approaches, or 
determining safety factor through the shear strength 
reduction approach. 

On the other hand, without proper consideration of 
material microstructure such as inter-layer interaction, 
and internal lengths, deformation and failure 
mechanisms cannot be correctly predicted.  

This paper shows that the FE-Cosserat model can be 
regarded as a method that meets both of the 
aforementioned criteria. The Cosserat continuum 
approach provides a smeared description of jointed rock 
masses by incorporating the mechanical characteristics 
of joints (stiffness, strength, and orientation) and layer 

thickness into the constitutive equations of the material. 
The finite element method based on the Cosserat 
continuum description incorporates the effects of 
discontinuities in the material constitutive equations. 
Combined finite element-joint methods and discrete 
element techniques, explicitly simulate the discontinuous 
surfaces. 

This paper shows that the solution predicted by the 
FE-Cosserat method closely matches those predicted by 
methods that explicitly simulate joints. FE-Cosserat 
method however, is advantageous in that it uses a mesh 
which is totally independent of joint orientation and 
spacing. This aspect is of paramount importance in the 
solution of large scale problems and problems with 
complicated geometries due to presence of joints. 

It is shown that the FE-Cosserat method is capable of 
capturing the dominant effects of discontinuous surfaces 
in deformation and strength. It is also capable of 
capturing scale effects resulting from material 
microstructures. However, due to the inherent 
assumptions of the constitutive equations of the Cosserat 
continuum, the FE-Cosserat solution is most appropriate 
in problems where microstructure follows a sequential 
pattern. Also, the method cannot capture mechanisms 
such as total detachment of rock blocks. 

It is concluded that the Cosserat continuum and, in 
general, micropolar continuum theories can provide a 
mechanically based and practical solution to problems 
concerning materials with periodic microstructure. 
Research in the Cosserat description of material with 
microstructure therefore, may lead to reliable solutions to 
engineering scale problems that are deemed to be 
beyond current computational capabilities. 
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